THE IMDEXED. JOURNAL

01

THEASIATICSOCIETY

05

BENGAH.

EDITED BY
JAMES PRINSEP, F. R.S. gecretary of the asiatio gooiety.
\qquad
VOL. II.

JANUARY TO DECEMBER, 1833.

" It wifl tourish, if naturalista, chomists, antiquaries, philologers, and men of science, in di erent parts of Asia, will commit their observations to writing, and send them to the Asiatic Society at Calcutta; it will languish, if such communications shall be long intermitted ; and it will die away, if they shall entiraly cease."

SIR WM. Jonzs.

PEINTED AT THE BAPTIBT MIBSION PRE88, CIRCULAR ROAD COLD BY Mregh TEAOKER AND C0. ET. ANDREW' LIREABY. 1838.

Rav. (04e. Na: $1205 / 07$
\therefore

PREFACE.

On completion of this second volume of the Journal of the Asiatic Sociert, the Editor feels it to be due to his subscribers, as well as to himself, to lay before them as briefly as possible, the results of the arrangements which he contemplated carrying into effect at the conclusion of the last volume;-more especially as a somewhat erroneous estimate of the cost and circulation of the Journal found admission into a late notice of the Indian Periodical Press, drawn up by the Editor of one of the morning papers. The Jounnal is not published, as there stated, by the Asiatic Society, but solely at the cost and responsibility of the Secretary, who was Editor of it before he enjoyed the honour of an election to that office. Since there never has been the least view to profit, either in the Gluanings or in the present work, there can be no object whatever in concealing any information respecting its publication; and it may be useful hereafter to find on record a note of the expences of printing, and the difficulties against which a Journal exclusively scientific has had to contend, as well as the advantages which it has enjoyed, in India at the present time. The following particulars have therefore been extracted from the accounts of the two years now terminated.

The amonnt of subecriptions to the Journal at one rupee per number, including two extra numbers, in 1832, was Rs. 51488

From this, deducting 20 per cent. commission paid to Mesars. Thacker and Co. for circulating it, 102811

There remained net spabscriptions available, Rs. 411413
The Baptist Misaion Press charged for printing and stitching 500 copies, Rs. 374210
And the 15 plater cont with printing,

The result of the first year exhibits a sufficient accordance between outlay and return. Of the amount subscribed however, only Rs. 3786 13 have been collected up to the present time, so that in fact there was a deficit of Rs. 3922.

The alterations which the Editor proposed and completed for the second year were:-

1. The saving of nearly half of the commission paid for the mere circulation of the work (without responsibility), by undertaking that duty with the aid of his establishment as Secretary of the Asiatic Society;
2. As a return for this favor, he proposed circulating the Journal gratis to such of the paying members as should express a desire to take it in.

The effect of this scheme has been as follows :
Fifty members of the Society have availed themselves of the privilege, which has made a deduction to the same amount from the monthly receipts. The number of copies circulated, including those sent to subscribers and societies in Europe, is about 450.

The number of paying subscribers on the list, is 320 , which at $1 \mathbf{R}$. per month, (including one extra number of Buchanan,) would give Rs. 4480.

The expenses of printing 500 copies, of $\mathbf{6 7 0}$ pages,
at 4.5 per page, may be stated at
Rs. 2,890
144 pages of Buchanan, at 4-8 per page,. 648
Covers, table work, \&c. charged extra, 250
40 pages of Appendix, at 5 Rs. 200
28 plates (18 lithographs, 10 engraving**), 480
Establishment for circulation, 600
5,068
Leaving a loss on the year of Rs. 588 , or nearly as much as the subscriptions of the members exempted from paying.

But it must be mentioned, and mentioned witha degree of disappointment which is almost disheartening, that of the flattering list of sub-

[^0]scribers above given, 70 have not paid any part of the year's subscription, and as many more are still in arrears ; so that a balance of Re. $1321-8$ still remains to be collected. The actual state of the concern is therefore by no means so favorable as could be wished, for it leaves the Editor out of pocket upwards of 2000 Rs. as the reward of his labour for two years! But he will not for a moment suppose that the balances outstanding are not recoverable: on the contrary the principal difficulty lies in the distance, and the supposed want of a mode of remittance.-Many subscribers are not aware, that letters containing hoondees for the amount may be transmitted post free to the Editor.
It will be remembered, that the Bengal Government were pleased to bestow the privilege of free postage on the Gleaninas and on the Jovanal, on condition of the publication of the late Dr. Buchanan's Statistical Reports. Under the impression (justly formed) of a corresponding increase of circulation, consequent upon this liberal boon, it was reeolved not to incorporate these records in detached notices in the Journal, nor to diminish from its original matter*, bat to publish them as a separate work ; and one volume has accordingly been completed, containing 356 pages, which at 4.8 per page have cost Rs. 1,602

And a reprint of the first 108 pages, which became necessary on the subsequent extension of the edition from 300 to 500 copies,

$$
\text { Total, Rs. } 1818
$$

This expence has been incurred therefore on account of Government, in return for the postage saved, not to the work, but to the subscribers of the Journal. On the completion of the first volume of Buchanan, a second extra volume of an official nature on the Monetary System was commenced, of which 50 pages have been prixted with 3 plates, being in fact an expence of more than 300 rupees not included in the above estimate. The Government meantime placed the remaining volumes of Buchanan in the Editor's hands, with an intimation of its "desire that the printing of these records should be continued." It was therefore with no small feeling of mortification that

[^1]the Enrron perused the following letter, announcing that the privilege of free postage should cease from June next, especially after having been honored, on an explanation of the nature of the work, with an extension of the same privilege to the Madras presidency, in addition to that formerly bestowed by the Governors of Bombay and Ceylon.

To JAMES PRINSEP, Eba.

Genl. Dept. Editor of the Journal of the Asiatic Society,
Sir,

I am directed to inform you, that the Governor General in Council has resolved, that after six months the exemption from postage, which is now enjoyed by the Journal of the Asiatic Society, shall be discontinued.

I have the honor to be, Sir,
Your most obedient servant,

> Council Chamber, 2nd Dec. 1833.
G. A. BUSHBY, Offg. Sec. to Gort.

It may reasonably be feared that many subscribers at distant stations may be anable to continue their support to the work, when its cost shall be enhanced by postage ; but (should it be impossible, on a proper and respectful representation of the circumstances, to avert the imposition of postage) every means will be taken of lessening the burthen by sending the monthly numbers by the bangy instead of the regular dak.
On the contents of a volume which has already been perused by nearly all to whom it circulates, it would have been obviously needless to make any remark, were it not desirable to prove that the favors hitherto conferred apon the work by the Government of the country had not been altogether misapplied.
Independently of the volume of Dinajpur Statistics, which formis a model for the use of public officers engaged in collecting similar information, the Gleaninas and the Journal have been the meana of bringing to notice many of the mineral resources of our vast Indian Empire, and of leading to fresh discoveries by the announcement of what had already been found : coal may be adduced as an example, -of which twenty or more different localities have been brought to our knowledge through its pages, where only two were before known. Of thenative misoral productions, iron, copper, gold, \&c. :-Of the native arts and mannfactures, salt, sitre, turpentine, dyes, mills, \&c. namerous original ac-
counts have been inserted : catalogues of woods, medicinal plants and drags: experiments on materials, wood, irnn, cement ;-Statistical reports;-descriptions of newly explored countries and people :-in fact, it would be difficult to open a number of the Journal without finding some information which must possess value in the eyes of a government. Contributions of a more exclusively scientific mature have, is the mean time, continued to multiply, and the objects pointed out as desiderata at home in the geography, meteorology, geology, and matural history of this country, are in the course of rapid and systematic elucidation. So numerous for instance have been the registers of the weather offered for publication, that space could only be found for abstracts of many. There has hardly been time for the collection of materials regarding the tides of the Indian coasts, suggested in the Rev. Professor Whewnll's circular, (inserted in page 151,) but the attention of those who have opportunities of eliciting the information required, is again solicited to this object.

As aproof of the benefit conferred on science by the free and extensive circulation of a periodical devoted to such objects, the Editor feels pride in allading to the ardour which his plates of ancient coins have inspired in many active collectors, and above all to the reward bestowed ou himself by the munificence of General Vintura, the most succesaful parsuer of antiquarian research in the Panjab, who has preseated to him all the coins and relics discovered on opening the celebrated Tope of Manikyala. They are now on their way to Calcutta.

That extracts and analyses of Eurapean science have not been more frequent must be attributed once more to want of space and want of leisure. The Editor would recommend all who seek for knowledge of the progress of science in Europe to procure a copy of the Reports of the British Association for 1832, in which they will find every branch discussed by the philosopher best able to give it illustration. To attempt to shorten those admirable essays would be mutilation rather than abridgment; yet unfortunately most of them are too long for the pages of a monthly journal.

On the subject of orthography of native words, the Editor is driven to make one concession, for which he fears the learned Societies at home
will denounce him as an apostate to the system of their leader. Every commanication, with hardly any exception, which comes for publication, adopts the Gilchristian mode of spelling, or that modification of it which has been ordered to be used in all Government records, surveys, \&c. An attempt has been made hitherto to conform the whole to Sir William Jonss' method, but necessarily there have been continual omissions, and the contributors in most cases express themselves but ill pleased to see their words transformed into shapes but ill accordant with ordinary English pronunciation. The Editor has therefore resolved to adopt the middle course followed in Hayilton's Hindustan, namely, to print all Indian names and words in the ordinary roman type as they are usually written and pronounced, and to place in italics all such native terms and proper names, as are corrected, and spelt according to the classical standard of Sir William Jonss : in many cases the latter may be inserted in brackets after the ordinary word.

Where contributors have occasion to illustrate their papers by plates, it will be a great convenience to the Epitor to have the original drawings prepared of the same dimensions as the printed page of letter press, to save the trouble and expence of reducing them.

The Editor will not allude in this place to the severe loss he has sustained in the death of some of the most able and constant supporters of his work, and the departure to Europe of others in the course of the past year ; since he hopes that a more worthy channel will be found for the record of their meritorious labours for the cause of Science in India, in the Proceedings of the Asiatic Society, to which their names belong, and in which their repatation must ever be cherished with fond remembrance.

1st Jawwary, 1834.

LIST OF SUBSCRIBERS, 1833.

[The namea marked with an asterisk have availed themselves of the privilege of taking the Journal gratis, as members of the Asiatic Society : d, after a name, denotes doceacod or discontinuod.]

The Honorable the Court of Directors, (By the Secretary to Government, General Department,) one copy.

The Right Honorable Lord W. C. Bentincx, Governor General, \&ec. one copy.
The Honorable Sir C. T. Metcalpr, Bart. Member of Council, one copy.
-The Honorable Sir E. Ryan, Knt. Chief Justice, one copy.
-The Right Rev. Lord Bishop of Calcutta, one copy.
The Vemerable Archdeacon Corrie, one copy.
Subscribers for twelve copies.
The Physical Class, Asiatic Society.
Subscribers for four copies.
Hyderabad Book Society.
Subscribers for twoo copies.
P. Andrew, Esq. Calcutta.

Major A. Irvine, Delhi.
J. J. Maivery, Esq. Bombay.

Subscribers for one copy.

Abererombie, Lient. W. Hazareebagh. Agra Book Club.

- Anburey, Col. Sir Thos. Calcutta. Artillery Book Club, Dum-Dum. Atherton, H. Esq. Futtygurh.
-Avdall, J. Eeq. Calcutta.
Baikic, Dr. Ootacamund.
Baker, Capt. H. C. England.
Baker, Lieut. W. E. Seharanpur.
Ballard, Geo. Esq. Calcutta.
Bariow, J. H. Esq. Bagundee.
Barrett, M. Eeq. Calcutta.
Barrow, H. Esg. Ditto.
Batten, J. H. Esq.
Batten, G. M. Eeq. Calcutta.
Beatson, Lieut.-Col. W. S. Ditto.
Beckett, J. O. Esq. Coel.
Bedford, Capt. J. Allahabad.
Bell, Dr. H. P. Calcutta.
Bengal Club, Ditto.
Bemson, W. H. Esq. England.
- Benson, Major R. Ditto.

Betts, C. Eeq.
Bird, W. W. Eeq. Calcutta.
Blair, Major J. Barelly.
Blake, Capt. B. Cuttack.
Blake, H. C. Esq. Dhobah, near Culnah.
Blechynden, A. H. Esq. Calcutta.
Boilean, Lieut. J. T. Agra.
Boilean, Lient. A. H. E. Ditto.
Bombay Asiatic Society.
Boulderson, H. S. Esq. Seharappur.
Boulderson, S. M. Esq. Asimgwih.
Boutrons, T. Eeq. Parneah.
Bramley, Dr. M. J. Calentte.

Brander, Dr. J. M. Cuttack.
Bridgman, J. H. Esq. Gorackpore.
Bridgman, Lieut. P. Agra.
*Briggs, Col. J. Nagpore.
Brittridge, Capt. R. B. Barelly.
Brooke, W. A. Esq. d.
Brownlow, C. Esq. Calcutta.
Browne, Capt. W. Seharanpur.
Brown, Lt. E. J. Engineers, Allahabad.
Browne, G. F. Esq. Jounpore.
Bruce, W. Esq. Calcutta.
*Bryant, Col. Sir J. Head Quarters.

- Burke, W. A. Esq. Ditto.
*Burnes, Lient. A. England.
*Burney, Major H. Ava.
Burt, Lieut. T. S. Allahabad.
Butter, Dr. D. Ghaxipur.
Bushby, G. A. Esq. Calcutta.
Byrn, W. Esq. Ditto.
Calcutta Periodical Book Society. *Calder, J. Esq. Calcutta.
Campbell, Dr. D. Mirzapore.
Campbell, D. A. Esg. Nipal.
Campbell, J. Esq. Cawnpore.
Campbell, Dr. Arch. Moulmayne.
Carey, Rev. Dr. W. Serampore.
Carr, W. Esig. Calcutta.
Carte, Dr. W. E. Hansi.
Casanova, Dr. J. Calcutta.
* Cautley, Lieut. P. T. Seharanpur.

Chambers, R. G. Esq. Surat.
Cheek, Dr. G. N. Bancoorah.
Clarke, Dr. J. Calcutta.
Coignard, E. Esq. Junghipur.
Cole, R. Eseq. Madras.
*Colvin, Major J. Delhi.
Colvin, A. Esq. d.
${ }^{*}$ Colvin, J. R. Esq. Calcntta.
Conolly, Lieut. E. B. Cawnpore.
Conoylaul Tagore, Baboo, Caloutta.
Coombs, Lieut. Col. d.
Cope, Gunner, Meerut.
Cracroft, W. Esq. Dacca.
Crawfurd, W. Esq. Seharanpur.
Crommelin, Capt. A. Barrackpur.
-Csoma de Körös, Calcutta. Cullen, Col. W. Madras.
Cunningham, Leut. J. D. Rajmahal. Cunningham, Lieut. A. Berhampur. Curtis, J. Esq. Calcutta.

Dalby, Lieut. G. M. Calcutta.
De Courcy, R. Esq. Kishnaghur. Delhi Book Society.
Dennis, Capt. G. G. Meerut. Dickens, T. Esq. d.
Dixon, Capt. C. G. Ajmere. Dobbs, A. Esq. Calcutta.
Dorin, J. A. Esq. Ditto.
Douglas, H. Esq. Patna.
Drummond, Capt. J. G. Allahabed. Dubois, Col. A. Lucknow.
Duff, Rev. A. Calcutta. Dunlop, Lieut-Col. W. Cawnpore.
Durand, Lieat. H. M. Meerut.
Eckford, Dr. J. Nussirabad. Edgeworth, M. P. Eeq. Umbala. Editor Bombay Liter. Gaa. Editor Calcutta Courier.
Editor Calcutta Liter. Gaz. Editor Colombo Journal, Ceylon.
${ }^{-}$Egerton, C. C. Eeq. Calcutta.
Eisdale, D. A. Esq. Poona.
Ellerton, J. F. Eeq. d. Elliot, J. B. Eeq. Patan. Elliot, W. B. Eeq. Bauleah. Erskine, D. Isq. Elambasar.
Evans, Dr. Geo. Calcutta.
Everest, Rev. R. Delbi.
${ }^{*}$ Ewer, W. Esq. Allahabed.
Fagan, Lieut. G. H. Cewnpore. Fagan, Brig. C. S., C. B., Neemench. Falconer, Dr. H. Seheranpur.
Fane, W. Esq. Allahabad.
Ferguson, W. F. Caleutta.
Fiddes, Col. T. Muttra.
Fisher, Lieut. T. Kachar.
Fitzgerald, Capt. W. R. Celcutta.
Forbes, Capt. W. N. Ditto.
Fraser, H. Eeq. (Semr.) Dethi.
Fraser, A. Eeg. Ditto.
Fraser, C. S. Esa. Sengor.
Frith, Lieat.-Col. W. H. L. Dum Dum.
Garden, Dr. A. Calcutta.
Gardner, Col. W. L. Leeknow.
Gerard, Ceppt. A. Hensi.
Gerard, Capt. P. Sebbatinu.
Gerard, Dr. J. Ditto.
Gilchrist, Dr. W. Viriangaman.
*Gordon, G. J. Esq. Calcutta.
Gorton, W. Esq. Benares.
Governor (His Exc. the) of Ceylon.
Gowan, Capt. E. P. Calcutta.
Greme, H. S. Esq. d.
Graham, J. Esq. Calcutta.
Grant, J. W. Esq. Hurripaul.
Grant, Lieut. C. E. d.
Grant, Capt. W. Benares.
Grant, J. Esq. Calcutta.
Grey, E. Esq. Calcutta.
Greenlaw, C. B. Esq. Ditto.
Gubbins, C. Esq. Delhi.
Hall, Lieut. J. H. Kalladghee.
Hamilton, H. C. Esq. Bhagulpur.
Harding, Ben. Esq. Calcutta.

* Hare, D. Esq. Ditto.

Harris, F. Esq. Ditto.
Hart, Dr. T. B. Saugor.
Henderson, Dr. J. Agra.
${ }^{*}$ Herbert, Capt. J. D. d.
Hodges, Lieut. A. Sunderbunds.
Hodgson, B. H. Esq. Nipal.
Hodgson, B. Esq. Kishnaghur.
Holeroft, V. Esq. d.
Homfray, J. Esq. Care of Messrs. Jeasop
and Co.
Horse Brigade, Artillery, Meerut.
Howrah Dock Company, Calcutta.
Howstoun, R. Esq. Backergunge.
Huddleston, Lieut. H. Goruckpur.
Hunter, R. Esq. Púrí.
Hunter, J. Esq. d.
Hutchinson, Major G. Calcutta.
Hutchinson, Capt. F. Bombay.
Hutton, Lieut. T. Neemuch.
Inglis, Esq. China.
India Gaz. Press, Calcutta.
Inverarity, Lieut. J. Engincers, Madras.
Jackson, Dr. A. R. Calcutta.
Jeffreys, Dr. J. Ditto.
Jenkins, Capt. F. Ditto.
Jervis, Capt. Thos. Ootacamupd.
Jones, Capt. N. Cawnpore.
Jopp, Capt. J. Poona.
Kali Kissen, Moharaja, Bahadoor.
Kean, Dr. Arch. Murshedabad.
Kennedy, Lieut. T. Bombey, d.
Kerr, A. J. Esq. Malacea.
King, Dr. Goo. Patna.
Kassipersaud Choea, Baboo, Calcuttan.
Kyd, J. Esq. Ditto.
Laidly, J. W. Esq. Beerbhoom.
Lamb, G. Esq. Dscoa.
Lambert, W. Eeq. Allehabad.
Langatral, Dr. J. Calcutta.
Laughtoa, Br. R. d.
Law, J. S. Esq. Surat.
Lindsey, Dr. A. K. Chmar.
Lindsay, Col. A. Dum Dum.
Lloyd, Cort. Rich. Calcutta,
Lockett, Col. A. Ajmere.
Logan, Geo. Beq. Behmanpurp
Login, J. ©. Beq. Hyderabed.

Lovis, J. Esq. Bouleah. d.
Louis, T. Esq. Moradabad.
Lowther, W. Esq. d.
Lowther, R. Esq. Allahabad.
Lashington, G. T. Esq. Bhurtpoor.
Macdonald, Lieut. R. Saugor.
Macdowal, W. Esq. Rungpur.
Macfarlan, D. Esq. Calcutta.
Mecgregor, D. W. L. Loodianah.
MacCherne, W. O. H. Esq. Nusseerabad.
Mackenzie, Lieut. J. 8th L. I. Cawnpore.
Maclennan, Dr. J. Bombay.
Macleod, D. A. Esq. Assam. d.
Macleod, Col. D. Murshedabad.
-Macnaghten, W. H. Esq. Calcutta.
Macpherson, Lieut. S. Hyderabad.
MacRitchie, J. Esq. Bancurah.
Madras Club.
Mainwaring, T. Esq. d.
Malcolmson, Dr. I. N. Nagpore.
Mannuk, M. M. Esq. Calcutta.
Manson, Capt. J. Bittour.
Marshall, Capt. G. T. Calcutta.
Marshman, Rev. Dr. J. Serampore.
Martin, Lieut. R. Delhi.
-Martin, J. R. Esq. Calcutta.
Martin, C. R. Esq. Ditto.
Martin, W. B. Esq. Indore.
Master, W. Esq. Calcutta.

* Mendez, F. Esq. Ditto.

Mess Library, 11 th Light Dragoons.
Miles, Lt. R. H. Futtyghur.
${ }^{-}$Mili, Rev. Principal Dr. W. H.
Milner, Captain E. T. Almorah.
Military Board, Calcutta.
Military Library Society, Mhow.
Montgomery, Dr. W. Penang.
Montrion, Lt. C. Calcutta.
Moore, Capt. J. A. Hyderabad.
Morgan, R. W. Eeq. Tirhoot.
Morley, C. Esq. Calcutta.
Morris, J. C. Esq. for Mad. Lib. Socy. Madras.
Morris, J. C. Esq. Arrah.
Morse, Major A. Bombay.
Mouatt, Lt. James A. Kurnal.
Monatt, Dr. J. A. Pres. Bangalore B.
Socy. Bangalore.
Muller, A. Esq. Calcutta.
Murray, Capt. H. R. Noacolly.
Muzaufferpore Book Club, Tirhoot.
Napier, Lient. R. J. Seharanpur.
Nash, Dr. D. W. Hyderabad.
Nicholson, Capt. M. Jabalpur.
Nicholson, S. Esq. Calcutta.
Nisbet, W. Esq. d.
Noton, B. Esq. England.
Nuscirabad Book Society.

Omieers, 73rd Regt. N. I. Benares.
H. M. 16th, Chinsurah.
40th Regt. N. 1. Allyghur.
Oliver, Major T. Nussirabad.
Oliver, Hon'ble W. Madras.
Omaney, Lieut. E. L. Dacca.

Ommaney, M. C. Esq. Saugor.
Ostell, T. Esq. Calcutta.
Pakenham, T. Esq. Calcutta.
Parental Ac. Institution, Ditto.
Parker, H. M. Esq. Ditto.
Patrick, W. Esq. Fort Gloster.
Patton, Capt. J. W. d.
*Pearson, Dr. J. T. Calcutta.
*Pemberton, Capt. R. B. on Survey.
Persidh Narair ting, Baboo, Benares.
Piddington, H. Esq. Chonadinga Factory.
Pigg, T. Esq. Calcutta.
Playfair, Dr. Geo. Meerut.
Plumb, J. R. Esq. Calcutta.
Poole, Col. E. Ditto.
Pratt, Geo. Esq. Purneah.
Presgrave, Major D. Saugor.
${ }^{*}$ Prinsep, H. T. Esq. Calcutta.
Prinsep, Miss, England.
Prinsep, C. R. Esq. Ditto.

* Procter, Rev. T. Ditto.

Proprietors of the John Bull, Ditto.
Pyle, J. C. Esq. Futtyghur.
*Radhacaunt Deb, Baboo, Calcutta.
${ }^{-}$Ramcomul Sen, Baboo, Ditto.
Ramsay, Capt. W. H. Head Quarters.
Ranken, Dr. J. Delhi.
Rattray, R. H. Esq.
*Ravenshaw, E. C. Esq.
Renny, Lieut. T. Agrạ.
Renney, D. C. Muttra.
Rhodes, D. W. Sylhet.
${ }^{*}$ Richy, Monsr. A. L. Calcutta.
Roberts, Major A. Ditto.
Robertson, T. C. Esq. Sylhet.
Robison, C. K. Esq. Culcutta.
Rogers, Esq. Ditto.
Ross, A. Esq. Ditto.
${ }^{*}$ Ross, D. Esq. Ditto.
Ross, Capt. D. Gwalior.
Routh, W de H. Esq. Boolundshuhr.
Row, Dr. J. Bandah.
Royle, Dr. J. England.
Ruspini, Rev. W. Dinapur.
*Sage, Capt. W. Dinapur.
Sale, Lieut. T. H. Delhi.
Sanders, Capt. E. Cawnpur.
Sandy, T. E. Esq. Arrah.
Sandys, Rev. T. Calcutta.
Satchwell, Capt. J. Dinapur.
Saunders, Geo. Esq. Calcutta.
Saunders, J. O. B. Esq. Coel.
Scott, D. Esq. Burdwan.
Seaton, Lieut. T. Jamalpur.
Sevestre, Robt. Esq. Calcutta.
Shaw, T. A. Esq. Chittagong.
Shore, Hon'ble F. J. Futtyghur.
Shortreed, Lieut. R. Poona.
Siddons, Lieut. H. Berhampore.
Simmonds, Capt. J. H. d.
Sleeman, Capt. W. H. Jabalpur.
Sloane, W. Esq. Tirhoot.
Smith, T. P. Esq. Baitool.

Smith, Samuel and Co. Calcutta.
Smith, Capt. E. Ditto.
Smith, Lieut. J. T. Musulipatam.
Smyth, Capt. W. H. Calcutta.
Smyttan, Dr. Geo. Bombay.
Society Nat. His. Mauritius.
Southby, Capt. F. S. Calcutta.
Sparks, Capt. J. P. Ghazipur.
Speed, D. W. H. Esq. Calcutta.
Spiers, A. Esq. Allahabad.
Spilsbury, Dr. G. G. Jabalpur.
Spry, Dr. H. H. Saugor.
Stacy, Lieut.-Col. L. R. Nussirabad.
Stacy, S. P. Esq. Calcutta.
Stainforth, F. Esq. Goruckpur.
Stephenson, J. Esq. Patna.
Stevenson, Dr. W. Jun. Calcutta.
*Stirling, E. Esq. Allyghur. Strokes, Dr. J. Hamirpur.
-Strong, F. P. Esq. Calcutta.
Sutherland, Capt. E. Calcutta.
Sutherland, Hon'ble J. Bombay.
Sweetenham, H. Esq. Futtyghur.
Swiney, Dr. J. Kurnal.
*Swinton, G. Esq. England.
Sylhet Boak Club.
Tanner, Capt. W. F. H. Monghyr.
Taylor, T. G. Esq. H. C. Astronomer, Madras.
Tayler, J. Esq. Dacca.
Telfair, C. Esq. Mauritius d.
Terraneau, Capt. W. H. Sylhet.
Thomas, C. Esq. Singapore.
Thomas, Dr. W. Barrackpur.
Thomas, E. F. Esq. Kemann.
Thomason, J. Esq. Azimgurh. Thompson, Capt. G. Hazareebagh. Thompson, Capt. J. Calcutta. Thoresby, Capt. C. Berhampur. Tickell, Col. R. Barrackpoor.

Tierney, M. J. Esq. d.
Trade Association, Calcutta.
Trail, G. W. Esq. Kemaon.
Tremenherlt, Lieut. G. B. Delhi.
-Trevelyan, C. E. Esq. Calcutta.
*Trotter, R. Esq. Gyah.
*Troyer, Capt. A. Calcutta.
Turner, T. J. Esq. Seharanpur.
Twemlow, Capt. G. Arungabad.
-Twining, W. Esq. Calcutta.
*Tytler, J. Esq. Ditto.
Udny, C. G. Esq. Calcutta.
Vicary, Lieut. N. Meerat.
*Wade, Capt. C. M. Loodianah.
Walters, H. Esq. Chittagong.
Wallich, N. Esq. Calcutta.
Warner, Capt. J. H. Bauleah.
*Watson, Col. T. C. Dacca.
Watt, A. Esq. Singapur.
Waugh, Lieut. A. H. Agra.
Webb, L. W. Esq. Surat.
Wells, F. O. Esq Monghyr.
Western, Lieut. J. R. Midnapur.
White, Rev. E. Cawnpore.
Wilcox, Capt. R. Gt. Trig. Surv.
Wilkinson, W. Esq. Pooree.
Wilkinson, J. E. Esq. d.
Winfield, Capt. J. S. Bhopal.
*Wilson, H. H. Esq. England.
Wise, Dr. T. A. Hoogly.
Wise, J. P. Esq. Dacca.
"Withers, Rev. G. N. Calcutta.
Wood, Dr. Arthur, Simlah.
Woodburn, Dr. D. Shirghati.
Woollaston, M. W. Esq. Calcutta.

Zeigler, L. Esq. Setapur.

CONTENTS.

No. 13.-JANUARY.

Page.
I.-Continuation of the Route of Lieut. A. Burnes and Dr. Gerard, from Pésha- war to Bokhara. 1
11.-On the Manufacture of Saltpetre, as practised by the Natives of Tirhat. By Mr. J. Stevenson, Supt. H. C.'s Saltpetre Factories in Behar. 23
III.-On the Greek Coins in the Cabinet of the Asiatic Society. By James Prinsep, Secretary. 27
IV.-Eelipses of Jupiter's Satellites.. 41
V.-A method of preparing Strychnia. By J. T. Pearson, Esq. Assistant Surgeon. 42
VI.-Proceedings of the Asiatic Society. 43
VII.-Miscellaneous.
1.-Hot-spring at Pachete. By C. Betts, Esq... 46
2.-Extraordinary Banyan Tree at Kulow Nagty Hally, near Bhuoma Naik Droog, in the territory of Mysore.. 47
3.-Discovery of the Silhet Coal Mines... $i b$.
4.-Questions proposed by the Burmese Heir Apparent. ib.
VIII.-Progress of Astronomical Science. 48
IX.-Meteorological Register. 56
No. 14.-FEBRUARY.
I. - Note on the Origin of the Kala-Chakra and Adi-Buddha Systems. By Mr. Alexander Csoma de Körös.. 57
11. Journal of a March from Ava to Kendat, 'on the Khyendwen River, perform- ed in 1831, by D. Richardson, Esq. Assistant Surgeon of the Madras Esta- blishment, under the orders of Major H. Burney, the Resident at Ava. 69
III.-Trisection of an Angle. By Lieut. Nasmyth Morrieson, W. S. 71
IV.-Short Description of the Mines of Precious Stones, in the District of Kyat- pyen, in the Kingdom of Ava. 75
V.-Note on Saline Deposits in Hydrabad. By Assistant Surgeon J. Malcolm. son, Madras European Regiment. 77
V1.-An Experimental Inquiry into the Means employed by the Natives of Bengal for making Ice. By T. A. Wise, Esq. M. D. 80
VII.-Proceedings of the Asiatic Society 91
VIII-Systematically arranged Catalogue of the Mammalia and Birds belonging to the Museum of the Asiatic Society, Calcutta. By Dr. W. Warlow. 96
IX.-European Notices of Indian Natural History.
1.-The Dagong. 100
2.-Nipal Specimens. 101
X_Meteorological Table for February. 104

No. 15.-MARCH.

> 1.-On the Restoration of the Ancient Canals in the Delhi Territory. By Major Colvin, Engineers...
II.-Abstracts of Observations of the Temperature, Pressure, and Hygrometri- cal State of the Air at Nasirabad. By Major T. Oliver.. 128
III.-Determination of the Constant of Expansion of the Standard 10-feet Iron Bar of the great Trigonometrical Survey of India; and Expansions of Gold, Silver, and Copper by the same Apparatus. By James Prinsep... 130
IV.-Continuation of Dr. Gerard's Route with Lieut. Burnes, from Bokhára to Meshid... 143
V.-Proceedings of the Asiatic Society. - 149
Whewell's Desiderata on the subject of Tides. 151
VI.-Madras Literary Society. 154
VII.-Miscellaneous.
1.-Indian Botany... 156
2.-Indian Geology. 157
3.-Indian Arts and Manufactures. 158
4. -Note on Lieut. Burt's Instrument for trisecting Angles. 159
VIII.-Meteorological Register for March. 160
No. 16.-APRIL.
I.-Account of the Jain Temples on Mount Aba in Guzerát. By Lient. Burnes, Bombay Army... 161
II.-List of Indian Woods collected by N. Wallich, M. D., F. R. S., Correspond- ing Member of the Royal Institute of France, and the Academy of Sciences at Berlin, \&ec. and of the Society of Arts of London; Superintendent of the Botanic Garden at Calcutta... 167
III.-Table for Ascertaining the Heights of Mountains from the boiling point of Water. By James Prinsep, Sec., \&c... 194
IV.-Translation of a Tibetan Passport, dated A. D. 1688. By M. Alex. Csoma de Kōrös. 201
V.-Proceedings of the Asiatic Society. 203
VI.-Miscellaneous.
1.-Indian Meteorology. 206
2.-Indian Arts and Manufactures. 209
3.-Phenomenon of the Japanese Mirror. 214
VII.-Meteorological Register for April. 216
No. 17.-MAY.
I.-Origin and Classification of the Military Tribes of Nipal. By B. H. Hodg- son, Esq... 217
II.-Description of Bokhára. By Lieut. A. Burnes, Bombay Army, Assistant Resident at Kutch. 224
III.-On the Climate of Nagpur. By W. Geddes, Surgeon, Mad. Eur. Reg... 239
IV.-Table shewing the Rise of Spring Tides in Bombay. Harbour, during night and day, for the year 1832, communicated by Ben. Noton, Esq.. 247
V.-On the Native Manufacture of Turpentine. 248
VI.-Description of a Sun Dial in the Court of the Moti Masjid, in the Fort of Agra. By Capt. J. T. Boileau, Engineers.. 251
VII.-Catalogue of the most remarkable Celestial Objects visible in the Horizon of Calcutta, arranged in order of Right Ascension. 252
VIII.-Description of a Compensation Barometer, and Observations on Wet Barometers. By J, Prinsep, Sec., \&c... 258
IX.-Preceedings of the Asiatic Soeioty.
Page.
X_Miscellaneoras. 262 262
1.-Rastic Bridge.
2.-Remarks on the Paper on the Trisection of an Angic in No. 14. of the "Journal of the Asiatic Society.". 268
3.-New Patent Improved Piano-Forte. 269
4. -Specific Gravity of Metallic 'Alloys. 270
5.-Proportion of Recent and Fossil Shells. ib.
6.-Table of the Lengths in British Miles of the Degrees of Latitude and Longitude from 0^{0} to 30°, with the Areas bounded by them in Square Miles. 271
EI.-Meteorological Register for May. 272
No. 18.-JUNE
1.-On the Marriage Rites and Usagea of the Jats of Bharatpir. By G. T. Laibington, C. S.
II.-Report on the Geology of Hyderabad. By H. H. Voywey, Esq. Surgeon andGeologist to the Great Trigonometrical Survey of India, 1819.298
III. On the reprated Descendants of Alezander the Great, in the Valley of the Orus. By Lieut. Alezander Burnes, Bombay Army. 305
IV.-On the "Topes" and Grecian Remains in Panjab. By Lient. Burnes, Bom- bay Army. 308
V.-Note on Lieutemant Burnes' Collection of Ancient Coins. By James Prinsep,
See., ste. 310
VI.-Astromomical Observations at Barclly. By H. B. Boulderson, Esq. 318
VII.-Notice of a Native Sulphate of Ahumina from the Numinoms Rocise of
Nipal. By J. Stevemson, Superintendont H. C. Saltpetre Factories in Behar. 321
VIII.-Notice of a Native Sulphate of Iron from the Hipl of Bohar, and used by Netive Dyecs of Patata. By Ditto. 821
IX.-Notice of Anakyis of the Anhes of four Indian Plenter. By Ditto. 322
X.-Proceedinge of the Asintic Society. 898
EI. Misce:Inceors.
Eynopais of the Winds, Weather, Currents, \&ec, between Bombay and Sues, thronghout the Year. By Capt. J. P. Sanders, Bombay. 385
In.-Meteorological Register for June. 328
No. 19.-JULY.
I.-Twe Birth of Umo-a Legend of Himaligy-by Calidiea. - 390
II.-Doecription of the Pan-chaki or Native Water-mill. 359
III.-Description of the Salt Works at Paschpedder, Mewar. By Leut. A Burnes, Bombey Army. 366
IV.-Proceelings of the Asiatic Society. 867
V.-Reprort of the Committee appointed on the 97th March, 1838, to condder on the expedioncy of recommending to the Covermment the continuance of the Boring Experiment. 369
V1.-Misechancous.
1.-Remarks on Hutton's Mathematice. - 374
2-The Royal Society. 375
3.-Discovery of a Bed of Fassil (Marine?) Shells on the Table Land of Central India. 376
4.-Indian Zoology. 377
FIL_Analysis of Books.-Taylor's Astronomical Observation at Madras. - 300
Page.
VIII.-Meteorological Table kept at Bancoora, for the year 1852, by John Mac- Ritchic, Esq. 385
IX.-Meteorological Register for July. 384
No. 20.—AUGUST.
1.-Origin of the Shákya race, translated from the $\sum(L a)$, or the 26 th, volume of the m Do class in the Ka-gyur, commencing on the 161 st leaf. By M. Alex. Csomà de Körös,. 385
II.-Second Report on the Geology of Hyderabad. By H. W. Voysey, Esq. Surgeon and Geologist to the Trigonometrical Survey of India, dated Secan- derabad, the 28th June, 1820. 392
III.-Bactrian and Indo-Scythic Coins-continued. By James Prinsep, F. R. S. Sec. As. Soc. 405
IV.-Note on the Zoology of the 2nd Part of the Transactions of the Physical Class of the Asiatic Society of Bengal,. 417
V.-Note on the extraordinary Fall of the Barometer during the Gale of the $\mathbf{2 1 s t}$ May last. By James Prinsep, Sec. \&ec,. 427
VI.-Climate of Singapur,.. 428
VII.-Culminating stars observed with the Moon at Násirabad. By Lieut.-Col. Thomas Oliver, \&ec., 432
VIII.-Chemical Analyses. By James Prinsep, Sec. \&cc., 434
IX.-Earthquake, 438
X.-Meteorological Register, for August, 440
No. 21.-SEPTEMBER.
I.-An Inquiry into the Laws governing the two great powers, Attraction and Ree pulsion, as operating on the Aggregation and Combination of Atoms. By Julius Jeffreys, Esq. Bengal Medical Service, 441
II.-On Progressive Development in the cold-blooded Vertebrata. By D. W. Nash, Asst. Surgeon, Beng. Est. A. L. S. Corresp. Meaber S. A.. 465
III.-Some Geological.remarks made in the country between Mirzapir and Sigar, and from Sagar northwards to the Jamna. By the Rev. R. Everest, F. G. S. 8ce., 475
IV.-On the Notice of Alum or Salajit of Nipal. By A. Campbell, Assistant Surgeon, \&ce. 482
V.-Defence of Lt. Burt's Trisection Instrument, 485
VI.- Computation of the Area of the Kingdoms and Principalities of India, 488
VII.-Miscellaneous.
1.-Importation of Ice from Boston, 491
2,-On the Action of various Lights upon the Retina. . By Sir D. Brewster, 494
3.-Substances contained in Opium, 495
3.-Death of Captain J. D. Herbert, ib.
VIII.-Metoorological Register for August, 496
No. 22.-OCTOBER.
1.-A visit to the Gold Mine at Batting Moring, and Summit of Mount Ophir, or "Gunong Ledang," in the Malay Peninsula. By Lieut. J. T. Newbold, 23rd Regt. Mad. L. Inf. 497
II.-On the Nest of the Tailor Bird. By Lient. T. Hutton, 37th Regt. N. I. 509
III.-An Inquiry into the Laws governing the two great powers, Attraction andRepulsion, as operating in the Aggregation and Combination of Atoms. ByJulius Jeffreys, Esq. Bengal Med. Est.506
Page.
IV,Iron Squpension Bridge over the Beosi River, near Sagar, Central India. PL Xin. 538
V.-Additionsl Note on the Climate of Nagplur. By J. Prinsep, Sec. As. Spe. \&ce., 542
V1.-Proceedings of the Asiatic Society, 546
VII.-Analysis of Books, 551
VIII.-Miscellaneous.
1.-Circular Instructions. from the .Geological Society, for the Collection of
Geological Specimens, 557
2.-Mirrors of Fusible Alloy, 559
3.-Liverpool and Manchester Railway, ib.
IX.-Meteorological Register for September, 560No. 23.-NOVEMBER.I.-On the Colossal Idols of Bamián. By Lieut. Alezander Burnes, BombayArmy, 561
II.-Aceount of the Earthquake at Kathmandu. By A Campbell, Esq. Assistant Surgeon, attached to the Residency, 564
III.-Census of the Population of the City and District of Murshedabad, taken in 1829, 567
IV.-List of Birds collected in the Jungles of Borabham and Dholbhum. By Lieut. S. R. Tickell, 31st Regt. N. I., 569
V.-Note on the Fossil Bones discovered near Jabalpar. By J. Prinsep, Sec. As. Soc. 683
V1.-Report on a Collection of Objects of Natural History. By the Curator of the Museum of the Asiatic Society, 588
VII.-Note on the Genus Spiraculum. By J. T. Pearson, Carator As. Soc. 590
VIII.-On the Kukumb ka Tel, or concrete Oil of the Wild Mangosteen, 592
1X. -Note on the Coal discovered at Khyak Phya, in the Arracan District, 595
X.-Analysis of Books.-Transactions of the Batavian Society, 897
XI.-Miscellaneous.
1.-Register of the Temperature of Ghazipur. By the Rev. R. Everest, 604
2-Note on the Salajit of Nipal, 605
3.-Summary Sketch of the Geology of India, 606
ZII.-Meteorological Register for Nov. 1833, 608
No. 24.-DECEMBER.
1.-A short Account of the Charak Puja Ceremonies, and Description of the Im- plements used. By Ram Comul Sén, Native Secretary, Asiatic Society. 609
1I.-Specimens of some Ornamental Forms of Persian Writing. By Maha Raja Kali Kishen Behadur, of Calcutta, 613
III.-Description of an Indian Balance, called Tula. By the same, 615
IV.-Abstract of a Meteorological Journal, kept at Kotgarh, (Lat. $31^{\circ} 11^{\prime} 45^{\prime \prime}$N. Long. $77^{\circ} 27^{\prime} 49^{\prime \prime}$ E.) Subath $G_{\text {, }}$, and the intermediate places in the Himá-laga mountains for 1819-20. By Captain Patrick Gerard, 9th Regt. B. N. I. 615
V.-Notes on the Specimens of the Kankar Formation, and on Fossil Bones col-lected on the Jamna. By Captain E. Smith, Bengal Engineers,622
V1.-Purther particulars of the Earthquake in Nipal. By A. Campbell, Esq. Assistant Surgeon, attached to the Residency, 636
VII.-Note on the Fossil Palms and Shells lately discovered on the Table-land of
Sagar in Central India. By H. H. Spry, Esq. Bengal Medical Service, 639
VIII.-Meteorological Register at Barelly in 1831. By H. S. Boulderson, Esq. 641

1

ERRATA.

DIRECTIONS TO THE BINDER.

Thes sheets of Buchanan's Statistics are to be separated from the monthly numbers, and (being now complete) to be bound as a separate volume. The sheets of Appendix headed "Indian Monetary System" are also to be eeparated, and reserved to form part of a future volume.

The Plates may either be bound up at the end of the volume, or placed in the following order:

vII. Persian Coins, Pl. VI. 40
III. Tibetan Text, 58
\checkmark IV. Dr. Richardson's Route from Ava to Kendát, $\mathbf{7 0}$
V. Trisection of an Angle, , 78
[V. Sketch of Delhi Canals, to be cancelled.]
VI. Sketch of Delhi Canals, 105

VIII. Compensation Barometer, 958
IX. Turpentine Still, \&rc. 249
X. Rustic Bridge,
XI. Bactrian Coins, Pl. VII. 918

XIII. Geological Section through Hyderabad, _mamem 304
XIII. (bis) Section of the Calcutta Alluvium, 370
XIV. Bactrian Coins, Pl. VIII. . 416
XV. Trisection Instrument, 488
XVI. Iron Suspension Bridge, $\mathbf{5 4 0}$
XVII. Geological Sections, $\mathbf{5 5 7}$
XVIII. Mount Ophir, and Tailor Bird's Nest, 508
XIX. Colossal Idols of Bamian, _n_mememememememememen 561
XX. Fossil Bone and Shell of Jabalpúr, 583
XXI. Narsinhpír Fossil Bones, _n. 588
XXII. Urnamental Persian Writing, mumana 613
XXIII. Kankar Formation in Slabs, 684

XXV. Jamna Fossil Bones,
XXVI. Site of the Sadgar Fogsils, 640

JOURNAL

or

THE ASIATICSOCIETY.

$$
\text { No. 1.-Januàry, } 1833 .
$$

1.-Continuation of the Route of Lieutenant A. Burnes and Dr. Gerard, from Péshawoar to Bokhara. NRTT.

[The same gentleman who favoured us with the sketch of the mate of these travellera to Péshíwar (vol. I. 145) had prepared a continuation of his account, derived from the private letters of Dr. Gerard, for insertion in the present namber. While printing it, however, we were, through the kindness of Captain A. Gerard, put in pomestion of copies of his brother's more recentletters to himself: we have availod oarcelves of both; merely arranging the extracts in the order of the places visited; and we beg to offer our acknowledgments to both of our contribators for thoir permiscion to give publicity to private correspondence, in the absence of any direct commanication to ournelves, relative to a journey which excites so much interest-EEd.]
The travellers reached Pésháwar about the 15th March, Kabal on the lst May, Khulm, on the 30th May, and Balkh, before the 10th of Jume. They appear to have made twenty-six marches to the latter place, and to have traversed a space of about five hundred miles. They were induced to stop about 61 days at the principal cities on their way: of which 34 were spent at Pésháwar, 17 at Kabul, and 10 at Khulm.
"' The trip from Pésháwar to Kabú, was very harassing, and to me, ill of fever, superlatively so. The country is naturally difficult, and our merciless guide drove us about regardless of heat and cold; rain, and shelter. Our stay in Kabúl was too short to recover such an exertion, and I left that place in the same state of health as I arrived. Dost Muhammed Khan's treatment of us was highly satisfactory, and more than we durst have, relied upon, considering the position he occupies. We had none of the assidnons attentions and caresses of his brother at Pésháwar: his character does not admit of familiarity, while his situation equally forbids it; bat his civilities were of the first estimation. Kabul is rising into
power under his republican spirit of government, and I should say is destined to an importance in spite of itself, for in every view it is the key to India. It is astonishing how much the country is relieved by the overthrow of the royal dynasty; and with respect to the latest reigns of the Timúr family, the change in the condition of things for the better is not more wonderful than it is natural. In Shah Shujah's haughty career, there was little security in all we most value, and robberies and bloodshed disgraced the precincts of his court. Dost Muhammed's citizen-likedemeanor and resolute simplicity have suited the people's understanding; he has tried the effect of a new system, and the experiment has succeeded.

My fellow traveller pursues a very good plan for any political object, by keeping up correspondence with every one who has treated him with civility ; particularly with our friends in Kábul and Pésháwar. We may soon have to ask Sultán Muhammed for a supply of coals to navigate the Indus; mines have been discovered; and they ought to be worked upon scientific principles. Moorcroft searched in vain for seams, but no doubt the people took up the hint. The specimens which were brought to us indicate the variety to be what is termed anthracite, or slate coal, and consequently as fuel is very meagre; but this may be the exterior crust or shell, and when penetrated, a richer material may be discovered. We saw it in thin plates, of a concave-convex form ; the fracture wasgrey, but without any lustre, and it soiled paper ; at first I took it for graphite or plumbago, and I shall not be surprised if that mineral is contiguous. It burnt by the flame of a candle, and gave out a dense gas. We should have sent a specimen to Calcutta, had an opportunity offered. The mine is in the district of Kohat, in the plain-ward hills, and therefore most conveniently situated at the navigable extremity of the Indus. I hear there are mines in Cuch, which thus sets the question of physical capabilities at rest, and supplies the only remaining desideratum. Sultán Muhammed Khán would be delighted at the proposal of working the coal seams, for reciprocal advantages must flow from such a medium. There are also sulphur seams in Kohát; and adjacent, even conterminous with that estate, is the fertile country of the Wazirís, famed, I believe, for a superior breed of horsee, and report says, rich in indications of auriferous and other precious ores. Moorcroft paid a visit to that district, and I suspect that he was aware of its mineral deposits. The whole of Afghánistán teems with the germs of metallic treasures, but it may be long ere we become better acquainted with those hidden stores. I was disappointed in not discovering any traces of shells or fossils on the route to Kabul, but we durst scarcely look around us. I was too ill besides, and our journey was too precipitate for any useful purpose.

- We entered Kabul after a fatiguing journey at four o'clock, having been 24 hours from the last encampment, and with the exception of a short slumber our gaide unwillingly allowed us at midnight, and my doae upon the raisin bags of a small grocer's dukan by the road side, where my horse made his repast while I reposed, I may say, I was in a high state of corporal suffering during that long period, with a fever raging in my blood, and a fiery heat in my face, which haslatterly burned to parchment. I need not describe Kábul to you, who have travelled over the same ground, and I should certainly fail in my attempts, having seen but little of the place. One is not disappointed in the display, after the uniformly arid aspect of the surrounding country; but it is in this contrast, rather than in any peculiar scenery, that we are delighted with the spot. Frail mud houses, which seem only to be renewed by the accessions of patch-work, form a penurious threshold to a great entrepot of commerce; but when the bazar opens, one is amply gratified by a scene, which for luxury and real comfort, activity of business, variety of objects, and foreign physiognomy, has no living model in India. The fruits which we had seen out of season at Pésháwar loaded every shop; the masses of snow for sale, threw out refreshing chill, and sparkled by the sun's heat : the many strange faces and strange figures, each speaking in the dialect of his nation, made up a confusion more confounded than that of any Babel, but with this difference, that here the mass of human beings were intelligible to each other, and the work of communication and commerce went on. The covered part of the bazar, which is entered by lofty portals, dazzled my sight, even quite as much as the snow of the Himalayan peaks, when reflected against the setting sun. In these stately corridors, the shops rise in benches above each other, the various articles with their buyers and sellers, regularly arranged in tiers, represent so many living strata. The effect of the whole was highly imposing, and I feel at a loss adequately to describe the scene presented to our eyes.
"Our stay at Kabul furnished few objects of interest ; the time passed rapidly, and my own ill health prevented me making any exertion. We were Nawáb Jabar Khán's guests, and though our quarters occupied one side of a square which was a rendezvous for courtiers, we were infinitely more at liberty than at Pésháwar, and even quiet till we were roused up by Mr. Wolff, who amused us greatly by his various adventures. As long as he staid at Kabul, we were in a perpetual stir; the house was filled with Jews.
"The climate of Kábul was considerably colder than I was prepared for, when the barometer announced an elevation of 6000 feet. The
morning temperatare varied between 43° and 47°, and 66 degrees weas commonly the maximum of the day; while, in the house, 61° and 63° were the extremes; and this temperature was during the first half of the month of May. This state of the atmosphere is far below that of Simla, bat as there are no periodical rains, the summer heat increases till August; and, notwithstanding that, Baber talks of sleeping throughout the year with a pustin : in the dogdays, the air is warm enough to make the tops of the houses a comfortable place of rest. Kábul, like Kanáwar, is indebted for its fine climate and luxuriant gardens to the aridity of its atmosphere, and to irrigation. The snowy range, that lies on the north-west, contains within its ramifications many thousand orchards, from which all the dried fruits that fill the bazars of India are supplied. The majestic rhubarb grows there wild, and its succulent stem is one of the luxuries of every house ; it has a grateful acidity. Fresh snow fell frequently upon the neighbouring mountains, but none of the peaks appeared to attain a greater height than 16,000 feet. The summits of the true Hinda Kúsh were visible on the north, like heaps of pure snow. Macartney is outatleast 20 miles in his latitude of Kábul, which is too low. Rennel's position of it, and also of Kashmír and Kandahár, will be found most correct. Burnes took the elevation of the pole, and it is close upon $34 \frac{1}{2}^{\circ}$. The barometer showed a little above 24 inches, and water boiled at 202°. I need not mention our treatment by Jabar Khán, whose character is so well known. Common words would not express the friendly attentions he heaped upon us. He is much too good a man to be connected with the family : his whole pride of distinction is in charitable actions, and a modest, but confident demeanour of person. Of his brother, Dost Muhammed Khán, we have every reason to speak with the greatest respectand satisfaction. He is diminutive in stature, with a common face, which you would pass a dozen times without remark, and fail to distinguish in a mob. He has no state; a single attendant follows him, who is generally the best dressed of the two, and a stranger, fresh from an European or Indian court, would mistake one for the other. His habits correspond with his appearance, and every thing about him partakes of the simplicity of character that raises him above the multitude. It is in conversation, when his countenance becomes brightened with intense animation, that the mind of the chief developes itself, and evinces his intellectual power with the happiest effect.
"The Russian Church is held in high estimation at Kábul, and the Kábulis meet with much attention from the sabjects of the Autocrat,
while they are scarcely noticed beyond the Satlej; these opposite receptions of course leave strong impressions on the feelings of individuals.
" Dost Muhammed gave us six introductory letters (one to the king of Bokhara) ; and on the 18th of May, we took leave of Kibul, under the protecting guarantee of a Nazir, a man of high commexions and repare, who however proved himself anything but agreeable. The opportunity was too favourable to require consideration, the man's character was to be our passport, and as we anticipated difficultios in Mordd Bèg's territory, we thought ourselves fortunate ; although we afterwards re-pented.-Our ill-favored guide was proceeding to Russia, to recover the property of his brother, who died there. On this occasion, Doet Muhammed Khán wrote a letter to the Emperor!!"
"The passage of the HindúKásh presents no difficulties, and viewed in any way, shrinks to insignificance, compared with those portions of the snowy chain which you and I have seen. Even as a barrier to an invading army the difficulties are far from formidable by this route. The great pass, which is alone named Hinda Kúsh, is even more accessible, though more lofty; we would have taken that route, but for the dread of encountering Morad Bèg. The pass is worth seeing, especially as we heard some strange stories about flights of birds being so much baffled by the strong wind, that they no longer could fly against it, and actually took to walking for a change, when vast numbers were killed by the natives. The emperor Baber mentions the same thing, and the fact would seem to argue great elevation. The Hinda Kúsh has nolonger the configuration of the Himalaya; the steep cliffs of hard compact rock, which characterise that ridge, scarce appear here at all, and few of the peaks attain any remarkable altitude. The most prominent point was Kohi Beba, and I do not believe it rises to 19,000 feet : all the neighbouring heights appeared in bluff masses, resembling the contour of the mountains apon the Chinese frontier and the interior of Kanáwar, which is evidently the effect of a different structure; and as far as I could jadge from the nature of the road, wherever the bare rock was exposed, the elements of the whole range are of the class of formations termed recondary; and as we penetrated into the country, the hills cbanged into slate, gravel, and even mud, which last mixed with loam and calcareous rabble, all indurated by alternations of weather into a regged hariness, compose the formation of the Bameán "Buts," or idols, which most people believe, and the nativess themselves represent, to be cut out of the solid rock. But to return to the Hindu Kúsh :-we rode up to the pass, which is searcely 11,000 feet in height; the snow lay deep apon the summit, but was fast retiring before the ardent sun, and
the slopes were only speckled at that limit. The descent was quaggy and tedious, but there was not much of it, and villages appeared at a general level of 10,500 feet. The second pass was nearly 12,000 feet, the adjoining villages hampered by the snow projected their grey turrets through the uniform field of whiteness. The third pass was inaccessible by horses*, and we descended by the hollow of a gorge into a dell that drained off the waters towards Kúndúz and the Oxus. When I beheld the opposite course of the streams, I began to ask, is this the only range that separates Khorasán from Turkistan, and the valley of the Oxus; and when soon after I found our level to be close upon 5000 feet, I conceived that other and loftier ridges crossed our route; but a few more days, and the 13th from Kabul, brought us upon the plains of Tartary, for that name is specifically apposite in the region of Asia, adjoining Bokhára and Samarkhand. My understanding.was now enlightened, for I had but vague and ill-defined ideas of the geographical nature of this tract, but in one respect I was not wrong-I never delieved there could be any flat expanse, similar to the plains of India: and the fact is so, and could not have been otherwise; and long after we had entered the open country, and crossed the Oxus, a range of snowy mountains on our right-hand (our face being then towards Bokhára), confirmed my conjectures. We were both much surprised at such a sight, particularly as it was of so transitory a nature as nearly to elude our comprehension : it was almost sunset, and the outline, just lighted up, gleamed for a few minutes, and faded into a dim mass. The spectacle was full of grandeur, and left us wondering; for we never saw another trace of the range, or its desolate snows.
" The map gives us very imperfect notions, I should say none at all, on the subject; for the mountains, marked there as snowy, could not have been in sight, and those that seem to indicate their position, are not only black, but occupy a very limited space. Now, heights bearing perennial snow, and far exceeding that marginal boundary, do not often start up abruptly in patches or isolated ridges from a flat expanse of plain; as the routes to Yarkund cross them free of snow at this season of the year, they may not be so elevated as they appear. When thus in the open plains of Turkistan, the thought (which had often amused us) recurred, is the Hindú Kúsh the true limit of the great snowy chain that forms the northern frontier of British India? As to the appearance on the map, the illustration is correct, as far as it goes; but wenaturally, and upon cosmogonic grounds, ask, -where is the Himalayan ridge ? and where should it go to, but north. It (unfortunately for

[^2]geography) is unknown by that name, and amidst the confusion of such unmeaning designations as Hindú Kúsh, Caucasus, Suffed Koh (White Mountain), as if snowy mountains should be any other color : to be sure, we have heard of red, to which the map adds blue mountains, white mountains, cloudy mountains, and black mountains (see the map in the octavo edition of Elphinstone's Kábul) ; besides Taghs and Tukhts, innumerable; and lastly, Parapamisus, which is a fine sounding name, but it unfortunately happens not to exist; there are also Kara or black mountains, which are also salt. Is not all this too bad?-In seeking for the continuity of the Himalaya, we must go north of Ladák, and the sources of the Oxus, where a vast tract of lofty summits will be found to trend towards the skirts of Yarkund, and somewhere near the heads of the Oxus and Jaxartes, to define the slope of the country to the northwest; this will bring the high plateaux, north of the Indus, within more precise limits. All this tract, which is by no means very remote, is still unseen by the eye of civilised man.
" The Búts of Bamean represent a man and woman of colossal magnitude, carved in the cliff of the ridge that bounds the valley on the east. On approaching them, I saw from the very look of the hills, that they could only be moulded in some soft calcareous substance; yet a very intelligent man, a Hají Baba, who was with Moorcroft at the spot, insisted that the figures were in the solid rock, which would indeed have been an anomaly, as the whole of the neighbouring hills and the dell itself is a diluvial, perhaps an alluvial, deposit of mud, clay, and conglomerate. I was certain in my opinion, and took a bet of 100 groats to one, with the old Haji, that they were mud, and so they proved to be. A piece of a toe, or part of the nose of one, will decide their structure : it is not gypsum. Though it is rather a disappointment to find mud instead of granite, still these idols are very curious objects, both with regard to antiquity, and as memorials of an epoch, the history of which eludes our research. The written accounts, if they are not vitinted by mythological figures, assign their formation (creation) to the year 56 before the Christian era, which is far from extravagant, considering the nature of the records (Mahabbharat), which give that date; but without attending to these, it is almost certain, that they existed before the time of Muhammed, and when the country was possessed by the kafirs under the dominion of Zohak, whose reign was antecedent to Christianity.-These august idols, were mutilated both by Timúr the Great and by Nádir Shah : the former discharged arrows, and the latter fired shots at them. Some faint traditions of Alexander the Great are in the mouths of some of the inhabitants; but there are so many Sikan-
dars that it is almost impossible to extricate the right one.. We sam. nothing like Greek inscriptions, bat heard of many near us. A question readily occars-is the material of which the idols are constructed calculated to resist the impression of handreds of years, not to think of a period approaching to thousands? Had I not myself been fully aware of the preservative nature of the climate in the TrangHimalayan regions, and seen antiquity represented in mud walls, books and other works, which we consider perishable, I' should have beem staggered at the idea of the Bamean idols' claim to so remote an origin. The aridity of the atmosphere here is pretty similar to that of upper Kanawar and Tibet, where a thing neither rots or decompores, but falls to dust in long ages; and the substance of the figures is of that kind which becomes indurated by exposare to the air, and like the mad upon the roofs of the houses, acquires the hardness of the sarrounding kankar. Near this we passed a ruined fort, said to have been built in the days of Zohak ; the slender walls of unburnt brick were perched upon cliffs, which time had rendered inaccessible. Close to the Búts are the remains of a mud castle, about which some curious traditions are related; but I omit them, lest you might think me as credulous as the people who related them.

Without thinking of the idols, over which saperstition and undetermined antiquity have bestowed a false character, there never was a spot better appropriated for fabling the extravagancies of nature, or raising ideas of bháts and spectres. As to the káfira, their domiciles yet remain : desolation is not the word for this pleoe, the surface of the hills is actually dead; no vegetable trace is to be seen, all is parched up, and as it were baked white, and scoriated by the sun's rays; such is the horrid aspect of this part of the country, to which the caves of the kafirs have added a savage impresaion. These are still inhabited, but their first poseessors have long since disappeared ; the sides of the mountains are full of excavations, presenting to the approaching traveller some thing like a honey comb; whole families occupy these recesses, living in smoke and darkness, of which they seem to form a part, in their black figures.-One of the idols is actually tenanted, and high upon the acclivity are seen isolated nitchee and black heads peeping forth. At night, the moving lights and yelke of unseen people have a singularly wild effect, and one dwells in the contemplation of the scene, till it actualty appears one of an infernal kind, fit only for such companions as bháts and demoss. Barnes took sketches of the whole.
"A Persian of our party, who had been at Mowcow, had drawings of the idols, which he affirmed were an object of enquiry in that country, and that he had made them at the request of the Russians; and when they send to Bokhara for coins and other antiquities, there is mothing surprising in their extending research to Bamean. The figures appear to my eyes more like designs of Budha than any other; their physiognomy at least resembles that of images I have seen in Kankwar and Tibet. They are mentioned in several old books, and it is strange that any mystery should prevail about the age or events of which they are symbolical. We can however now assign them their true site and position in Hindú Kúsh, which were to us even at Kábal ertremely vague, and to people in India, utterly incomprehensible. Bamein has its site upon the northern declivity of Hindú Kush, and within its lofty ramifications, in a dell or valley, which throws its waters into a tributary of the Oxus, that passes through Kimdáz. The map places it south of the snowy ridge. -It forms the extremity of the Kabal dominions, and is elevated a little above 8000 feet. The climate was rude and disagreeably cold on the 20th of May, and the grain crops were only sowing. An idea has prevailed that Bameán is a pass in the Hindú Kfish, or in a more sonthernly ridge; but it is quite across the chain, although environed by snowy heights. On the morth, at the head of the dell, the mountains are depressed to a hollow, or pass between 10,000 and 11,000 feet, and beyond that the country subsides in undulations to the Oxus.

Hitherto we had adopted no particular precautions to maintain our diaguise, except evading the gaze of people, passing either unobserved, or as Armenians; but on entering Morád Bég's territory, we rolled our beads within our turbans, and this saved our faces from the scorching eumshine.

At Dwap or Doab, where Mr. Wolff was robbed, we apprehended danger, and provided an escort from a neighbouring brigand chief. In the hollow of a pass, we met a káfila of very fine horses: they were all cafe, and quite maware of their escape, as afterwards appeared. We had no idea of any alarm, but as we were descending the slope of the pass, a body of robbers appeared-they had lost their aim in the horses, and were now coming up to a couple of camels, the last remains of the kffila.-I was behind, as usual, and although I saw, I could not understand the manceuvres of our party, and kept lingering on till met by one of our servants, eent back to bid me gallop my horse. The robbers were very fair and candid, as I thought, saspecting who we were: they sent one of their party to communicate
with us, who on our side was met by a young led, the leader of our escort, and son of a neighbouring chief, who in his turn becomes freebooter, and to these mutual interests in plunder, and partly to our force, we owed our escape. They immediately declared themselves, and their disappointment in the horse káfila, intimating with a good deal of honesty, that they ought to have had a recompense in us. Notwithstanding this result, our káfila-báshí was very assiduous in his exertions to send the baggage mules and foot-travellers out of the way. The fate of the camels and their drivers was inevitable, the latter seemed to have lost all resolution, and between fear and hope they shrieked and stood still. We were looking up from a dell, and eagerly watched for their escape; but had to witness both them and the camels carried off, the former to be sold in the public markets of Bokhára. It is this ultimate object that makes the predatory work so odious and terrific. Highway-robbery, like slave trade, when pursued systematically, loses many of its horrors, and much of its criminality, (not that I am at all countenancing either.) In fact, whenever acts become a custom of a country, self-intereat deprives them of violence, and people club together for the sake of confederate advantages, frame laws of honor, and pursue their profession upon principle, and the state itself shares in the benefits of system; kasids, or letter-carriers are held sacred, the property of individuals is spared, and life is rarely lost. Many of the chieftains, such as Morad Bég, have a personal interest both in plundering káfilas, and in making slaves, and take turn month about with their feudatory vassals. Our friends, the robbers, kept within our sight, moving slowly along the top of a ridge, and occasionally reminding us of our good fortune. We were now fast descending towards the basin of the Oxus, though the country continued rugged, and now and then betrajed its altitude in hoary peaks. At last a mild wind from the north, and a haze in the horizon, announced our proximity to the plains of Tartary. The few latter marches were rather irksome, on account of the disguise we thought it prudent to adopt : the instant we reached our ground we were covered over with a heap of clothes. One morning, we found ourselves in juxtaposition to the chief of the place, a man of disrepute and a deputy of Morad Beg's : he came to dine with our kafila-báshí. We were lying amongst the long grass, and stole away a few yards, where we reposed with confident security, and listened to his conversation. Here we had troubles of a different kind, scorpions which stung our servants, and a little farther on, snakes; the heat too was already considerable, although our elevation was about the level of Subáthú (4200 feet), and our latitude above 36°; but we were refreshed with a little rain. However uncomfortable such
things may eppear in a letter, in reality there was much amusement, and our most serious misfortunes (apprehensions I should say) excited an interest that was far from disagreeable ; even Morád Bég himself appeared to me a plausible enough sort of a savage. At midnight, on the 29th of May, ourkafila-bíshí warned us to be off: we scrambled awkwardly through a marsh, and the day broke while we were yet in the deep hollow of a torrent; we hoped still to reach Khulm (which was to terminate all our doubts of safety) before the bazars were crowded, and finally, soon after sunrise we emerged upon the plains of Turkistan; the pass through the mountains was between mural precipices of tremendous grandeur; and I was so much struck with the solitude of the spot, that I conceived we might evade observation in some of the recesses of the cliffs, and eacape the sun's rays at the same time, and resume our journey at nightfill towards Balkh. On opening upon the new world, the first objects, as usal, were mountains, at the base of which rolled the Oxus; the river itmeif was not in the sight, but a regularly defined haze indicated its course, a phenomenon I had before remarked in the Satléj, and we curselves had observed in the Indus, which arises from the difference of temperature between the stream and superincumbent stratum of air. We regaled our eyes with the regions of "Trans-oxiana." The respectability. of our party saved us any trouble at the custom-house. We were not searched, and pushed through the streets, staring every one in the face. We entered a caravanserai full of people, and lodged ourselvesamongst tee merchants, and traders in Russian furs, and people of all nations and desuiptions, as if nothing had happened ; and I am not now going to waste time on the subject. Suffice it, that we found ourselves in the safe custody of Morad Beg, and after ten days rather anxious suspense, escaped from all apprehensions, and departed under his aid and protection !! How we extricated ourselves from a scene which was at one time tragic, at another comic ; contortion, trickery, and sordid interest on the part of the Naxir, to make the most of us; fear and folly on that of others; self. confidence and friendship in a few; wonder, expectation, and the most stapid credulity in Morád Beg himself, and altogether a drama in which the chief actors struggled for the loaves and fishes in our pockets; poor Morad Beg got nothing by his Oozbek simplicity, while we who susthined the whole scene were never thought of, except it was to produce more money. My purt in the play was rather that of a spectator than of a performer, and might appear easy; but I had taken an early interest in the swamps of Kúndúz and arid sands of Talikan, (as you will recollect,) the scenes of poor Moorcroft's misfortunes, and Mortid Heg himeelf became in my eyes an object of attraction, by his asvage
conduct on that occasion; and however strange it may appear toothers, as I fancy it did to Burnes, our situation at Khulm only struck me in the light of an opportonity I should have of realizing former prospects, and the idea of meeting the chief of Kúndúz, either as a tyrant or a friend, was by far from the least cherished of my adventures; but I was doomed to disappointment, and for some reason or other, my sunburnt face, silvery beard (which is now black enough), and ignorance of Persian, (though Turkf is the spoken language in Kúndúz,) were supposed by the catchers of the loaves and fishes to be unfavorable to our diaguise; consequently I was left behind, and Burnes alone paid Morad Bég a visit at his country seat. We had been summoned to his presence to give an account of ourselves, and to remove the suspicions which rumor had aftached to our character. Neither Burnes nor I anticipated any personal danger, but the chance of restraint, or at least incalculable delay, and the certainty of a pecuniary sacrifice, or absolute deprivation of all our resources, had sufficient alarmstomakeboth of us anxions for the result. Bad as the repute of Morád Bég was, and too surely deserved, by his treatment of Moorcroft, I could not resist the idea that we should find him better than he was described; and though poverty and power together might plead an excuse for robbing us of our money, sordidness itself could not wholly destroy the common sympathies of our nature, and make him stare forth the naked savage. The self-will of an atbitrary tyrant, enjoying a penurious chiefship, might induce him to an act of extreme rigor; but self-interest would scarcely allow him to trespass the bounds of discretion, and insulate himself from the feelings of.all around him. Burnes successfully appeared before Morád Bég, as on Armenian watch-maker from Lucknow, and it turned out, that the blackest person of cur party would have answered equally well; with the above simple reply, the despot of Kúndúz and king of terrors was satisfied. Could this be, amidst the game that was playing, the gold that was shining through us, promised bribes and open trickery? beaides, Morád Bég had heard of us at Pésháwar and Kábul approeching with five lak'hs of rupees, and the custom-house officers were looking out for us; yet all this and much more happened, and if there was no delusion, confirms the character of the Oozbeks as given by Elphin? atone, for unsuspecting candor and the most stupid credulity. Burnes paseed a pleasant-enough time at Morád Beg's country-seat, drinking tea all day, and eating the leaves, according to custom, after the manner of the ancients; and having been presented by an honorary investiture of some new clothes, he returned to Khulm, a distance of 70 miles, without dismounting, much better dressed than when he left it.-Moarcroft, at
the very same place, in his flight from Morad Beg, and for the safety of his life, made his remarkable journey to Talikan upon a single horse, with grain in his saddle bags; the distance, as then stated in the Govermment Gazette, 130 miles, seems to be excessive. Previous to this final result of Morád Bég's curiosity, we thought of escaping to Mazar; but we were watched, and this would have been a feat of senseless heroism. as we were liable to certain danger on the road from robbers. Morad Beg's courtesy and attentions to us as Armenians, in ordering an escort of 50 horsemen to see us beyond his frontier, did not allay our apprehen. sions for our liberty; and as the scheme, as well as ourselves, were notorions throughout thecaravanserai, we made every haste, and next morning's dawn saw us on the way to Balkh. Our own people, scarce aware of our plans, had provided us but meagrely, for a ride of 30 miles ender a borning sun, and I had neither clothes nor any thing else. We were now literally flying from ourselves, and the protection of a man whose very name we dreaded, and whose treatment of us is veiled in an obscurity, that leaves it doubtful, whether we at this present moment stand towards him in the relation of friends or enemies. Subsequent travellers may remove the uncertainty, which is of more consequence than appears to the eye, but in this respect our experience can prove to them no gaide.

The journey to Mazar was rather trying, over a bare, baked soil, withoat shade or water; the temperature of the air was 100°, and that of the san's rays much greater : my face at least was completely burnt. Our eacort left us at what appeared the most dreary point of the road, and it was actually the most dangerous; our horses were wearied, and that which I rode stood still in a place where our káfila-báshi said it was imprudent even to look around us. We entered Mazár unknown and unsaspected, and it was perhaps fortunate, as the people are intolerant bigots and disreputable in every way. Piles of snow, and the most delicious apricots were in abandance. It was here that Moorcroft's property was seized and plundered : we felt extremely anxious to ascermin if any papers or memorials still remained, and the fate of his books, which we heard were in the possession of the chief; but prudence constrained us to pass over the scene in silence.

We had here a contention with our guide, who enacted a scene on the oecasion, partaking at once of the pathetic and the furious.Burnes was fortonately on horseback, and had the whip hand in case of necessity-I mean, the advantage of escaping from an irritated Muhammedan, who had only to proclaim us infidels and revien of the prophet, and there would have been tragedy indeed.

Thins terminated our intimacy and connexion with the man, to whose care and protection we had been consigned, by the brother of Doat Muhammed Khán, for our safety to Bokhára; we never spoke again. The Syud, Mr. Conolly's friend, whom we met at Peshawar, and whose grateful feelings for the attention and liberality of the Governor General had interested him in our journey, to the extent of promising to protect and conduct us to Bokhára, we left at Kábul, ill, and otherwise too mach engaged in his own affairs, to assist us in any way. Thus deprived of the dependence we had in these people, and without any introductory letter to the king of Bokhára, (the Nazir having lost or wilfully destroyed it,) we had to make the best of our way unassisted.

On the road to Balkh, we turned aside to see poor Trebeck's grave. Muhammedan bigotry had yielded so far, as to permit his remains to be deposited within an enclosure or garden : a mulberry tree sheds its fruit over the spot. We had heard this young man spoken of every where with the highest eulogies, and it was a satisfaction to us to have visited his lone sepulchre. We wished to leave some record of the spot, bat although it is possible to get a slab-stone here for his and Moorcroft's graves, it is doubtful how such a memorial would be respected, unless we ourselves had witnessed its erection.

On entering Balkh, we were met by two custom-house officers, jolly fellows, and one of them a Túrkoman; but from the nature of their employment, rather boisterous and abrapt : they stopped our horses, bade us dismount, and said we must be searched. A little surprised, we kept our seats, and assured them we were not merchants. "We must see what is in those saddle bags," said they. Burnes then dismounted, and the Túrkoman began an examination of his person, passing his hand over his watch-what have we got here? Ah "Saat," that is a useful article to travellers-very well, have you got nothing else, no tillas (gold coin), and before Burnes could reply, he with much good hamour said, Come, come, you know as well as I do, that people cannot travel without money ; now, how many have you? Twenty, said Burnes, offering to untie them from his waist. Don't trouble yourself; there is no occasion, Your word is everything, I am satisfied; and pointing to me, (I had not dismounted, and was thinking what to say,) what has your companion ?the same. Thank you, replied the Tárkoman, you are gentlemen. I wish every one was as ready in their answers, they would save themselves and me much unnecessary and awkward tronble. Your names, said he. Sikandar Armenf and Gerard (with the French pronunciation). The tax upon our money was a tenth. Hindús pay a twentieth; and Mubammedans, a fortieth. We had no tillas except those tied about us ; but
the Tárkoman said, Make yourselves easy, I'll call upon you at the caravanserai. Such civil treatment, in such a country and by monstrous Túrkomans, denerves to be mentioned."
" We were now in the most ancient and renowned city in the world, and when we looked at the ruin and recalled to mind, the dynasty of Bectria, and in later ages the thrones of Jenghiz and Tymurr, with the neighbouring scenes of Bokhára and Samarkhand, the present and the past, it gave us a lively idea of the countless revolutions which had rolled away. There was nothing here by which we could recognise these memorable epochs, and judging from the aspect of the few inhabitants left, the spot seemed more suited to the dead, than as a place of abode for the living. The ruins, which are mostly of mad, are very extensive; but they only mark the modern site of the city. The insalubrity of Balkh is proverbial, and this calamity may be traced to the very effects of its former greatness. The eighteen beautiful aqueducts, by which it was irrigated, no longer guided by the art of the husbandman, have spread their waters over the face of the country, and transformed ite fair landscape into a stagnant marsh. Here the Nazir had another opportunity of resuming his tricks : in our difficulties with Morád Bég. we had intrusted him with our passports; and forgot them at Mazar. He now pretended to have lost them, and we were preparing to visit him vi et armis, when the intercessions of our Hajee restored them without more acting. From Balkh to the Oxus is almost a desert; camps of Tírkomans occur in some places, and the sand hills are well clothed with bushes. The high road was considered unsafe, and we followed the downward course of the valley. At one spot only we required an escort of Turkomans, who are themselves the robbers, but find it more advantageous to compromise their habits by an easily earned recompense. They were the first of the race we had seen, and their peculiarities struck us with surprise and interest. Their features, their dress, address and gay agility upon horseback, were all favorable; and, in fact every thing about them, but their modes of life and predatory customs, were reapectable. On the 15 th of June after travelling twelve hours, the day dawned upon the shores of the Oxus, and atnine o'clock, we were encamped upon its margin ; a point that had so long been in prospect, and glimmered through so many vague and ill defined ideas of difficulty and peril, wes now at our feet, and we were not satisfied till our feet were actually in its cool waters; and here we sat, slept, and passed three entire days, with more ease than we dare expect upon the banks of the Ganges, for here we had neither alligators nor enemies of any kind to dread.

The Oxus is a splendid river, here exhibiting an expanse and volume fully equal to our expectations, or its appearance as given in the map; but I should say of inferior magnitude compared with the vast extent of country of which it is the drain, and where deserts and arid mountains occupy so large a portion. The Hindú Kúsh generates bat a scanty tribute from its snow, and but few supplies are derived from the north; the great body of the water coming from the south-east and east, where the intersections of the Himalaya define the course of the streams to the Indus, and branching northward, give origin to the rivers which wash the Chinese frontier of Yarkind and Kashghar, the whole of which tract from the limit of Kundur in one direction, and Bokhára itself in another, is a blank in geography. It is true the sources of the Oxus are pretty well ascertained, and the travels of Meer Izzat Oolla have sketched the configurations of the country north-west of Ladak; but the height, extent, and nature of the mountains which intervene between Leh and Yarkínd, and along the north-west branches of the Indus and Hindú Kúsh, are wholly unknown.

The stream of the Oxus is muddy, like that of our Indian rivers; but confined within marginal banks bearing a stiff vegetation, it has a more regular channel, and rolls with greater rapidity; where we crossed it, the expanse of bed was divided by islands, and the current assumed varions degrees of size and velocity, the largest with a rate exceeding three milen per hour and a depth of 20 feet. As no rain falls in this country, the whole mass of water is liquified snow. It is impossible to form a comparative estimate of the actual bulk, but it can scarcely equal the Indus at Attok. The ferries are ill supplied with boats, but the boats themselves are substantial fabrics, and are bailt more after the model of our sloope than any thing I have seen in India; but the people have no idea of navigation ; their oars are of the radest kind, only one or two in a boat, but the chief impulse depends upon horses, which are fastened on each side of the bow, and, by their exertions to swim, drag the boats across the currents. I never heard of such a practice, and almost doubted it till we witnessed the spectacle. There are no fords downwards to its debouche in the Aral, but in winter it freezes over in several places, sufficiently strong to bear the transit of the káfilas, which is singular in a parallel of latitude under 40 degrees, and at a very inconsiderable elevation.

The bed of the river, where we crossed it, scarce attains the level of the Punjab rivers, in the line of our route, as well as we can estimate by the boiling point of our thermometers, which are the only means left us. Prinsep, in a letter to Burnes, reminds us of this resource (in the absence of barometers), to verify the levels of the Aral and the Caspian; bat this
method (at least with common thermometers, where the divisions which are so small, answer to so large an equivalent) is scarcely appreciable to the extent of $\mathbf{2 0 0}$ or $\mathbf{3 0 0}$ feet, which those land-locked seas are supposed to be depressed below the surface of the ocean. In this dry climate, the horary variations of the barometer would amount to more than the above quantity, but we shall lose noopportunity of using every means to confirm so curious a conjecture, if it is not already settled. From theOxusto Bokhara is more or less a desert tract, and the surface of the soil undergoes every modification of barrenness, from the hills just sprinkled with vegetation, to the hard-baked floor and dead sand heaps. The first foor days no villages but camps of Tárkmans were passed. The water was either salt or saliferous, and owing to our folly in trusting. to information which is in its nature imperfect, as the springs of potable water are as variable as the sand hills, we suffered excessively from thirst, the sun raged with a burning heat, and we had no defence against it but our clothes. The wind of the desert dried* us like parchment, but the nights were cool, and often cold : this however did not take place till towards day break, and the few hours sleep we then got were deliciously refreshing, ater hesving ap and down upon a camel's back all night. The face of the country was very uneven, almost hilly; we at last came to waves of pare sand which were said to shift their position, like those in the African deserts, and we eagerly looked out for the moving heaps; but all

[^3]I could believe of such an occurrence, and which I saw, was the carrents of loose send raised from the surface by the wind, or blown from one plece to another, the heaps themeelves being immovable en masse. At Karshi; which the map places full half way, we were seized with fever, no doubt from the swamps of Balkh or the misams of the Oxus. Burnes was first taken ill (some days previous), and here I and two of our party with a tea merchant followed, and as I delayed treating mysalf an doctors usually do, it was not until I had been a week in Bokbára, and after quantities of quinine, that I recovered, but the poor merchant died. He was an intelligent and agreeable companion, and the few days we were together in the desert left the impression of a long period of friendship. In our situation we become acquainted with individuals who, wiser in local experience than ourselves, entertain us by their adventures, and from whom we separate with regret. The fate of this man, out of so small a party and in so short a time, was a matter of some reflection to us, who were even more liable to the effects of climate and the fatiguea of travelling ; it shewed us that without any dangers from robbera, tyrants, or intolerant bigots, our health was sufficiently precarious, to make such a journey of doubtful success ; and though the chances of adventure did not allow us to consider any thing a real hardship, yet on looking back, we saw ample reason to consider ourselves fortanate in having so well overcome the trials we were exposed to.

I had almost forgotten to mention that we paid a visit to the desolate grave of poor Moorcroft at Balkh. It was a bright moon-light night, and our Haji, who attended his remains to the earth, showed us the way to the spot, which lay amidst marshes, and I could not help thinking that these very marshes had caused the melancholy event. We were surprised to hear that the severities of fortune, which accompanied Moorcroft's career from the beginning, had pursued him even beyond the grave, and that a burial place was barely permitted to his remains, upon the skirts of the city and on the outside of a garden wall. The spot is retired, and had we not been guided to it, by one who had witnessed the interment, we might have searched or inquired in vain for the site. We were unprepared for such a spirit of odious prejadice as seems to have prevailed against this lamented individual, for the same feelings didnot exist in regard to Mr. Trebeck. Mr. Guthrie's body is contiguous. Those solitary receptacles have for the first time been seen by an European eye, and remote as they are from friends or countrymen, they are nevertheless unmolested, where they themselves, while living, had gained by their praise-worthy conduct, a respect and remembrance that will long be cherished in Turkistan; and if they encountered some tyrants and wretches in their long travels, they met with many friends and well-
wishers, and have left the name of Englishman with all the honors which we moat covet. At Karshi we had a specimen of the gardens which poets have celebrated in their descriptions of Samarkhand and Bokhetra; we lay amidst apricots and ice, and I enjoyed both in spite of an ague that-almost shook me to pieces. We heard of slaves for sale here, and a young Hinds of our party, a clever and promising lad from the Delhi institution, whose thinst for knowledge leads him into many strange situations, has the following dialogue in his journal about the traffic. It is headed " a trick or jest for a slate girl, " and I extract it literally.
" On my return from bazar I besought a man to shew me the house of the merchant who sells men and women, which I reached after traversing very hot streets. The merchant received me civilly, and sent for three women from a room adjoining to that which was his own. He told them to sit before me, and then inquired of me which I liked to bey. I replied to him, the young one, who had regular features; wes mild and attractive, her stature elegant, though below the middle size, while her wit and vivacity exceeded even her allurements. In the mean time the two others, who were neither ugly nor beautifu, stood up and went into their rooms; the young one followed soon after, but sat in a separate place, guarded by a very old man. I was told by the merchant to go in the same room, to speak, to laugh, and to content the girl. I sat out to the girl, and conversed in the following manner. I love you and liketo bay you, art contented and pleased with me? She smiles and says, No, I do not like you, because she is afraid perhaps Isell her to another after enjoying my own gratification: her name was Gud-sad-barg, (the flower of a hundred leaves.) After much altercation, she says, Very well, I should swear not to sell her again and make please to her master. The old man who sat by the door told her to stand and to show me her whole body according to the enstom, which means perhaps that there be not any sort of disorder in her person. All her body was crystalline, her age was 13 or 14 years. I talked with her a long time on various subjects, inquiring her nativity and birth; she said her home was in Badakhshan, and she had a large family: she was ravished by the ruler of the country, and sold to this merchant. On saying this she brought a flood of tears in her eyes, and said, For God's sake buy soon, and release me from the hands of this unmerciful Uzbek. It made me very sorry : I cursed the ruler, and beatowed a malediction on her merchant who troubles her. I instantly got up and came away to my camp, without secing or telling any. word to the merchant, 3 I had not inctination to buy her. The experience and fun indriced me to make a trick for investigating the principles of alave merchants,
who I say are very miserable, criminal, savage, and unmerciful men indeed."
At this place a conspiracy was attempted to be formed againet us by a Persian of our káfila, a man of consummate address and knavery, and rumours were afloat that the king of Bokhára had interdicted our entering his capital; but the extravagance of the plot almost betrayed its falsehood: however, considering the influence and conduct of the Nazir, who was the bosom companion of the Persian, and with no other voucher of our character but our passports, we did not like the circumstances, though they scarcely made us uneasy. The remaining foor marches to Bokhara had less of the desert in them ; the undulations continued; also sand and salt-water. Sometimes the true and unlimited horizon was spread before the eye; at last, on the 27 th of June, we arrived in this fine city, which had a few months before appeared so remote and uncertain. I have written so much that you must not at present expect any account of this ancient place. The transit of letters from this is very uncertain, and to give them a chance of safety from the Allemens (robbers), and even the Khybaris near Pesháwar, we must fold them in the native fashion. The usages of the Muhammedan government are here extremely strict, and the precepts of their religion are fulfilled with awful rigor; we are not likely to come under any of the penalties, except, indeed, we are seen drunk in the streets, or amoking publicly, neither of which there is any chance of; but we might certainly have committed ourselves in regard to dress, which for all infidels is strictly defined and peremptorily imposed, and if we are naturally obnoxions to their sight, our dress adds to the spectacle. A black cap on our head and a rope round our waist, are particularly interesting; for we have only to pull the cap over our face and put the rope abont our neck, to make us really a spectacle! We are allowed to reside in a private house after some little remonstrance; a public sérai is our proper dwelling place. We cannot ride within the walls of the city, and must push our way through the densely-peopled streets, which detracts considerably from our interest in the scenes of the bazar, and in our walks in an atmosphere so warm and dusty. Moorcroft was permitted to ride, bat he was in character, and brought presents for the king and his courtiers; but this privilege was only granted on condition that his Mubammedan ayces should accompany him mounted, as they could not be seen oa foot attending an infidel on horseback. We have no character at all to support, except it is that of faqirs or beggars (not religions mendicants). The germents of all other unbelievers are similar to those in which we are accontred, such as Hindús, Armenians, and Jewe, and
these last we especially resemble in every thing except their features. The restriction we feel most is being unable to write, but this is more our fanlt, or our courtesy, than any actual prohibition of the state, for as we can elude suspicion by writing at night, it is only the chance of desection that prevents us taking up our pen in the day time. As I cannot see well by lamp light I shall not attempt making a single note, and by the time we leave this I shall remember nothing to write about. I have seen the minister, Ghós Bégi, once : heis a curious old man, and very fond of decorum, though without state or show in himself. He is always finding fault with our dress or posture in sitting; and this last is so easy matter, although we have.been trying it for six months past. With all the Begi's shrewd penetration, he seems to be at a loss what to make of us.

Upon the whole, our reception at Bokhára, if not remarkable for distinction (except indeed that regarding our dress), or favors (neither of which we had the least claim to, and I at least had no expectations of), has been sufficiently respectable and civil; and with the people, whether in the crowded bazars, in pablic sérais, in private converse, or in the moeques, our name and country have been a recommendation instead of a pivot for insult and ignominy ; and this too in a city notoriously orthodox in religions duties, and where Muhammedan principles of every kind are fearfully arbitrary. We have not heard the epithet of kdfir from one end of our journey to the other, and only at one place, near Attok, some boys used the expression of monkeys. Wherever we have gone and appeared as Europeans, that character has been respected; and we may depend upon it, that the name of Englishman, whether this is understood by Feringi or Angrez, if assumed with diecretion, is our best peseport.

We have no chance of seeing the king, except in the open streets with the reat of the mob: the rascal of a Názir has played ns this trick. Dost Muhammed's letter would have done us a service. The bazars here are epleadid, and the police regulations admirable. Bokhara is a large and populons city, eight miles in circuit, and exceeding any we have met with in our journey. There are many fine colleges and other buildings ; the Uzbeks are a handsome race, but the Jews, (more especially the Jewesces,) carry off the palm of beauty. There is more religion, nore haw and justice, and more crime, than in any place of equal size inAsia; but property and life are safer than in most cities in the world, whether civilized or savage. The people here are much more familiar with the Rossians than with the English, and another Rusaian emlamey is soon expected at Bothdra. People from all parts of the world
except China are seen here. Every body drinks tea, generally after our fashion, but without milk ; there is a kind of tea called banka which comes vi\& Russia from China; it costs 10 rupees, and is very fine flavored, and it is said that a sea voyage injures it.

The barka tea goes from China to Rusaia by a direct road, avoiding Yarkánd, as by being packed up in small canisters it will not bear export by the mountainous route, and by coming here from Orenburgh it thus attains a very high price; the tea trade is immense. We first saw loaf sugar at Khulm, and it is the same as we have at hose. Many people in Bokhára wear watches, all of London mechaniam. In the Bazar we see tea urns with. the red hot iron in the middle to keep the water warm, and many things remind us of Europe.

We have tried horse's flesh, and having beef at the same time, we gave the preference to the former; but whatever Elphinstone says about horse's flesh being the food of any part of the people, it is at least very rare, and beef is far from frequent.

The climate, that eternal subject, is warmer than is agreeable; in fact it is sultry, but dry, and otherwise delicious, the sun shining out his entire course, and not a cloud in the air. How very different from India at this season! The nights are generally cool, but we find sleeping in the air necessary for comfort ; the usual range of the temperature outside is from 74° to 103°, rising to 106° in the streets: we loathe the air in a room heated to 96° and even 110°, and, although sitting quietly, we feel it rather disagreeable; but in $s 0$ arid a climate, the sensation is less oppressive at this degree of temperature, than at 80° in India, at the same season. The most singular part of the climate is the intense cold of winter, which freezes such a stream as the Oxus. The blocks of solid ice in the bazars here indicate the severity of the weather, and can only be explained by the extreme dryness of the air.

There are disturbances at Urganj, and their army has marched to attack the Persians on the line of our route; we therefore know nothing of our prospects : but it strikes me we shall be forced to take the road to Meshid. Burnes and myself are now quite recovered. I have received no letters since the middle of March, and the only dawk which has reached us since crossing the Indus, we got at Khulm, and by it came Nos. 1 and 2 of the Journal of the Asiatic Society ; it will please the Editor to know, that his work spreads itself over such distant regions. I have picked up some coins here, bearing Greek inscriptions and heads, and something like masonic insignia upon a small axe ; but I am too distant here to venture to send the originals, though I may impressions."

Bokhara, 15th July.
> II.-On the Manufacture of Saltpetre, as practised by the Natives of Trkalt. By Mr. J. Stevenson, Supt. H. C.'s Saltpetre Factories in Behar.

The soil of Tirhoot almont every where contains a large proportion of saline matter, such as nitrate of potass (saltpetre), nitrate of lime, sulphate, and mariate of soda, \&c.* but in general the sulphate of soda is most abundant: The saltpetre (as well as the other salts) lies in patches as it were, some parts being more productive than others, according as carbonate of lime and sand alternately predominate. By analyzing the different soils, I have found those places most productive of nitre to contain a redundancy of the former ; and on the contrary, where the soil was unproductive, I found a redundancy of the latter substance. I am therefore naturally led to the conclusion, that carbonate of lime is one of the principal agents in the formation of this article. This will also account for the district of Tirhat being more productive of nitre than any other place in India, for almost half of its soil is calcareous; an average sample of it, collected from various places where saltpetre abounds, and carefolly analyzed, gave me the composition as follows. 100 parts being operated upon.
Metterinoolublein the three mineral acids, Silex, 50.0
Matter soluble in ditto, Carbonate of Lime, 44.3
Matter soluble in water, $\begin{cases}\text { Sulphate of Soda, } & 2.7 \\ \text { Muriate of do......... } & \mathbf{1 . 4} \\ \text { Nitrate of Lime, } & 0.9 \\ \text { Nitrate of Potase, } & \frac{0.7}{10.0}\end{cases}$
This analysis does not agree with Dr. John Davy's, but be it remembered, that scientific gentleman operated upon saltpetre earth from the factories, which of course contains more saline matter than the general soil.
In the month of November, the loneahs or native manufacturers of saltpetre commence their operations, by scraping the surface off from old mad heaps, mud buildings, waste grounds, \&c. where the saltpetre has developed itself in a thin white efflorescence, resembling frost rind. This saline earth being collected at the factories, the operator first subjects it to the processes of solution and filtration. This is effected by

[^4]a large mud filter, lined on the inside with stiff clay. It is a round hollow basin, in shape resembling the top of a well, from 6 to 8 inches in diameter. A false bottom is formed of pieces of bamboo, laid close, and resting upon pieces of brick. This leaves an empty space of a few inches above the solid bottom, for an outlet to the filtered liquor. Over these bambús, a covering of strong close wrought grass mats are laid, which complete this simple form of filter. The operation then proceeds with the process, by spreading over the mats a thin layer of vegetable ashes, generally from the indigo plant, upon which the earth to be subjected to the filtering process is laid, and trodden down level, and to the desired solidity, by the operator's feet. This requires great attention on the part of the man who performs it: for if too solid, the water will pass through too slow; on the contrary, if too soft, the water will pass through too quick; for the solution of the saline matter to take place, and the full products would not be obtained. After this point has been adjusted, water is poured gently upon the earth to the depth of four or five inches, according to the size of the filter and quantity of earth used, (one of six feet diameter will filter 20 maunds of earth.) The whole is then suffered to remain tranquil for several hours, during which time the water gradually passes through the earth, dissolving the saline matter in its passage, and filtering through the mats, drops into the empty space between the solid and false bottoms, and is conveyed by means of a spout of bambú, or a hollow tile, into an earthen receiver, made large enough to hold the full quantity of filtered liquor, and half sunk in the ground for the purpose.

The saltpetre liquor thus obtained is more or less coloured with oxide of iron and decomposed vegetable matter. Its specific gravity also varies with the quality of the earth operated upon. An average from a great number of filters gave me $\mathbf{1 . 1 2 0}$.

The second process is to evaporate the saltpetre liquor to a crystallizing state, which is effected in earthen pots fixed in two rows, over an oblong carity dug in the ground, the interstices between the post being filled up with clay. An aperture at one end of the cavity serves for an egress to the smoke; another at the opposite end is used for the introduction of fuel, which is generally dry fallen leaves gathered from the $a m$ topes (mango groves): such are the simple materials used in this part of the manofacture. The boiling is continued till the liquor is evaporated to the crystallizing point, which is ascertained by the operator taking from time to time a small portion of the liquor from the pots, and setting it aside to cool in small earthen dishes, like a common saucer. After the liquor has cooled, and the crystals formed agreeable
to the practice of the operator, the fire is stayed, and the liquor remored to large shallow earthen dishes (which are used instead of crystallizing coolers), placed in rows, and sunk to the brim in soft earth. At the end of about $\mathbf{3 0}$ hours, the process of crystallization is finished. The crystals of saltpetre are taken out of the coolers, and put into baskets to drain, after which they are removed to the store-house, ready for sale.

Daring the operation of boiling, it occasionally happens that too much heat has been used, and the pots are in danger of boiling over. To prevent this, the operator has a very simple remedy, which our more scientific operators might not be ashamed to take a lesson from-a bunch of dry jungle grass is fixed at a right angle, to the end of a stick; this is dipped into the liquor, and held up over the pot, and the liquor, which it had absorbed, falls down in a shower (cooled by the air) into the vessel it had been taken from. The temperature being thus reduced, the evaporation proceeds more steadily, and the accidental boiling over is prevented. The mother liquor, remaining after the crystals of saltpetre bave been removed, is returned to the evaporating pots, and mixed with a fresh portion of the liquor from the filters, for a second boiling, and crystallization. The extraneous salts, such as sulphate and muriate of soda, which the filtered liquor from the earth always contains, are partly found at the bottom of the pots, (the muriate of soda in particular,) and partly. in the mother liquor, remaining after the process of crystallization. But to separate them more effectually, the manufacturer passes the liquor from the boilers through a piece of coarse cloth, placed in a basket; and when the liquor has drained through, the greater part of the extraneous salts are found on the cloth. To do this effectually, it is necessary, that the liquor should be at the boiling point, otherwise the saltpetre liquor would not leave the sulphates and muriates, but would form an anhydrous mass.

The muriate of soda, or common salt, is rendered more pare by a subsequent boiling. It is then called by the natives pakwa nimak, and is sold in the bazars as an article for culinary purposes. The remaining extraneous salts-sulphate of soda, nitrate of lime, \&c. are returned to the earth, to undergo a change by decomposition against another season. The mitrate of lime is decomposed by the carbonate of potass, which the vegetable ashes, used in the process, contain. When solutions of these salts come in contact with each other, a mutual decomposition takes place. The nitric acid of the lime combines with the potass, and the carbonic acid of the potass combines with the lime. Thus two new salts are formed, viz.' nitrate of potass (saltpetre), and carbonate of lime. In this manner, the old earth, which has already produced saltpetre, is regenerated, and rendered productive against other seasons. The native
manufacturers are aware of this fact, but not being able to account for it on scientific principles, they say, that saltpetre generates or developes saltpetre; but I dare say that most scientific men will concur with me, that the above idea of the natives is next to a physical impossibility. Owing to the porous nature of the earthen crystallizing vessels, a part of the saltpetre liquor oozes through the bottom, and is absorbed by the earth on which the utensils are placed, occasionally they are broken, and the contents of course falls into the earth below. This earth is again subjected to the process of filtration, and the practice of the manufacturer, in order to obtain what had been wasted in the above manner. Thus the loneahs proceed from season to season, without the least deviation or alteration in their manufacture. No persuasion, however reasonable, by way of improvement, will cause them to alter the plans which their forefathers had in practice ; and it is probable, that the methods used at present were the same three thousand years ago.
The saltpetre obtained in the above manner, which I have attempted to describe, is a very impure article, termed by the natives dhoah, and is sold at the rate of from two to three rupees a maund. It generally contains from 45 to 70 per cent. of pure nitre. The following analysis was tried from an average of several hundred maunds of what was stated to be of good quality, and brought three rupees eight annas per maund. 100 grains operated upon.

Insoluble matter, sand, and mud, 5.0
Sulphate of soda, 9.1
Muriate of do. 8.0
Total impurity, . 22.1
Nitre, . 77.9
100.0

This may be taken as a fair sample of the quality that the loneahs produce in general, but when it passes from their hands to the saltpetre merchants, it is frequently adulterated with sand, mud, and dirty salts of various kinds, to such a degree, that it scarcely contains 50 per cent. of pure nitre. A sample of this adulterated article from 15,000 maunde gave me the following result:

Insoluble matter, sand, and mud, 22.7
Sulphate of soda, 23.8
Muriate of do. 4.2
Total impurity, . 50.7
Nitre, . 49.3

To produce the article called by the natives kalmee (crystallized in long prisms, meaning the best kind of saltpetre), the dhoak is re-dissolved and crystallized; the percentage of nitre will then amount from 85 to 95 , pare; but this is only done by the opulent native merchants who supply the Calcutta bazar.

In conclusion, I have only to observe, that the above methods of manufacturing saltpetre, ased by the natives of this country, although rade, yet are very simple, and more effective than most of our scientific chemists, at first sight, would suppose. No manufacture in Earope can equal it in point of cheapness and simplicity; and when it is considered, that these simple people have no knowledge whatever of chemistry as a science, it is surprising how well they manage to make the rough article. At least, such were the ideas that struck me during the many hours (and I may add pleasant ones) that I have spent in obeerving the simple, but not altogether ineffective, plans and operations of this industrious manufacturing people.

The above notices claim no merit, except that of trath. They are the result of observations and notes taken on the spot, during a residence of two years in the district of Tirhút; province of Behar.

Tirhuit, 7th December, 1832.

IV.-On the Greek Coins in the Cabinet of the Asiatic Society. By James Prinsep, Secretary.
 hr?

Having in the first volume of the Journal described the Roman Coins of the Society's Cabinet, with such explanations as might, I hoped, be of ase to those who were untutored in the myateries of numismatology, so that, by the aid of the drawings, they might be able to recognize the type of Roman fabrication in any antique specimens which they were likely to discover on the continent of India, I now propose to follow up the subject, as promised in my former paper, by extending my examination of thè Society's Cabinet, through their series of Greek and Persian coins, (leaving the Indian Coins for a futare occasion;) and I believe that although the specimens of the two first are far from being numerous in our collection, still the drawings of them will be found sufficient to furnish tolerable guides for the aseistance of the student in discriminating the coins of these countries at different periods of their history.

I cannot say how many out of the whole have been found in India ittelf; many on the contrary appear to have been brought from Persia.

Both Grecian and Persian coins however are met with frequently in India, and it is very easy to know them when once their forms have been presented to the eye. Several were brought by Col. Wilson from Persia, who kindly permitted me to take drawings of them ; Lieut. Conolly obtained a few in his overland journey to India : and Lieut. Burnes has favored me with one or two specimens of a number of coins collected by him in Ancient Bectria, a country but recently opened to the investigation of the antiquarian.

It is from this unexplored part of Asia that we may confidently expect a multitude of Grecian antiquities gradually to be developed. Travellers of all nations are already flocking thither to trace the steps and discover the monuments of Alexander's Indian conquests. The most successful in this interesting line of research, partly from the advantage of his rank in Maha-raja Ranjit Singh's service, has been General Ventura, who, imitating Belzoni at the Pyramids of Egypt, instead of conjecturing and speculating upon the origin of the celebrated Tope or mound of Manikyala in the Punjab, set boldly to work in 1830 to pierce into its solid mass by digging. He was rewarded by the discovery of numerous coins and other relics which had lain untouched for perhaps twenty centuries*. A Russian antiquary I understand had previously amassed a vast collection of Greek coins in the same country. But it is by no means in the Punjab alone that we are to look for antiquarian riches: the north-western provinces of India offer as large a field of enquiry-and if the coins of Kanouj and Oudh are less interecting from the nature of the characters in which their legends are graven being wholly unknown, they should nevertheless be regarded as more curious because they speak this unknown language and remain the only records of kingdoms and revolutions whose existence is but faintly discernible on the page of history.

It is principally to instigate those who have opportunities of forming oollections in the upper provinces, that I have drawn up these notes, and I cannot adduce a more powerful motive for studying and searching, than the example and success of that indefatigable investigator of history and antiquity, Major Tod, who thus describes his method of forming a collection in the lst vol. of the Trans. Roy. As. Soc.
"For the last twelve years of my residence in India, (amongst Mahrattas and Rajputs,) the collecting of coins as an auxiliary to histo-

[^5]ry was one of my pursuits: and in the rainy season I had a person employed at Mathara and other old cities to collect all that were brought to light by the action of the water while tearing up old foundations, and levelling mouldering walls.

In this manner I accumulated about 20,000 coins of all denominations; among which there may be not above one handred calculated to excite interest, and perhaps not above one-third of that number to be considered of value: but among them there is an Apollodotus and a Menander, besides some rare medals of a Parthian dynasty, probably yet unknown to history."

The coins of Greece are divided by numismatologists into two principal series : the civic, and the monarchical. The former comprehends all the moneys of the different states of Ancient Greece, bearing the names of their cities and people, and the symbols and devices emblematical of them, or the figures of the tutelary deities under whose especial protection they considered themselves placed. The monarchical series begins with the Macedonian dynasty, or about 500 years before Christ, continuing throughout the kings of Macedon, and, after the division of Alexander's empire among his generals and successors, subdividing itself into the several branches of the Seleucian or Syrian, the Egyptian, the Bactrian, the Parthian and Armenian dynasties ; besides, which may be enumerated the Pontine kings and several of minor importance.

The civic coins, of which the Hunterian Cabinet at Glasgow contains $s 0$ magnificent a collection, are generally supposed to be more ancient than the monarchical series; they are mostly of ruder fabrication, but the figures of animals and gods are sometimes executed with great ciill : the period of the highest proficiency in the arts is, however, universally acknowledged to be the age of Alexander, or the third century before Christ : the coins of this distant age, even the meagre and scattered specimens which we have picked up in India, are so exquisitely fnished as to furnish models to artists and scalptors of the present day, while they almost defy their best powers of imitation.

The inscriptions found upon the earlier coins are generally the rude initials of the names of cities or people, becoming more complete as we descend in the series: the names of chiefs or principal men and priests are introduced sometimes at a later period, but as no dates are given it is impossible to assign any exact age to most of the civic coinage. Throughout the Macedonian series the names of princes are introduced, and history affords chronological data for their classification. The inscriptions are generally written in straight and parallel lines, differing in
this respect from the legends of Roman coins which are peripheral, as are those of the imperial Greek coins, which are merely translations of the latter.

It has been urged that the Greek coins although inferior to the Roman, because they afford no record of important events or of dates to assist in the elucidation of history, yet have an intrinsic value of their own, from the service they have rendered to Geography in preserving and exhibiting the names of a multitude of cities and colonies, and by the frequency of their occurrence, or by their superior workmanship, throwing light upon the relative importance of states. Other local peculiarities are marked by the devices they bear, the origin of many of which is easily traced in the history or mythology of this classical nation : thus, the emblem on almost all the coins of Athensis an owl, the bird of Minerva: for Corinth, we have, according to Pinkerton, the winged horse : a wolf's head for Argos; a bull's head for Bootia; a minatour's head and the labyrinth for Crete ; a horse's head for Pharsalia; a lion for Marseilles; a tortoise for Peloponnesus; a sphinx for Scio; three legs joined for Sicily; a horse for Thessaly; a crescent for Byzantium, the origin of which deserves mention from its having since become the badge of Mohammedanism. When Philip of Macedon besieged the place, and was going to storm it in a cloudy night, the moon shone out and discovered his approach, so that the inhabitants observed and repulsed him. The Turks upon entering Constantinople found this ancient badge in many places, and suspecting some magical pover in it, assumed the symbol and its power to themselves*.
The general demonination of the silver money among the Greeks was the drachma, or eighth part of an ounce, which according to Pinkerton was about ninepence, or a penny more in value than the denarius: from the drackma were derived the half, doable, and quadruple, or hemi drachma, didrachma, tetradrachma, \&c. The smallest silver coin was the obolos, but that was also, and generally, a copper piece.
After these few introductory remarks I will proceed to notice the coins in our possession, beginning with those of the

Greek Cities.

Plate I. Fig. 1. A silver coin in the Society's Cabinet.
Obverse. A lion walking with head erect. Double triangular symbol \& and stars,
Reverse. Jupiter sitting. Legend illegible; tetradrachma: weight 250 grs .

- Pinkerton, i. 241.

The lion oceurs but seldom on the coins of Greek towns in the Hunterian col. lection, and no where with the obverse of Jupiter. It is found on the coins of Messana in Sicily, and Velia in Italy (TEAHTON); also in some of Smyrna but by the figure of Jupiter it is more probable that this coin belongs to the Alexandrine series.

Fig. 2.-A silver coin, brought from Persia, by Col. Wilson.
Obverse. Head of Minerva with helmet, facing the right.
Reverse. Pegasus flying towards the right.
It is impossible to say, for want of letters or signs, to what town this coin belongs. Many used the same devices, as Leucas, Cleone, (Hunter 100,) Corinth, \&c.

Fig. 3.-A silver coin, belonging to Col. Wilson.
Obverse. Man astride upon a dolphin.
Reverse. Man riding on a horse.
This device is very common indeed on the coins of Taras, or Tarentum, in Italy, (Hunter 305.)

Fig. 7.-A small copper coin, purchased from an Armenian in Calcutta, bearing on one side a handsome head of the city, with a turret-crown. On the reverse-a Griffin, with something in her mouth. Above-the inscription is of three lines, of which the letters LCA...

> ANT TIOXO
> HTE
are visible. It may probably be of Antioch, in Syria.

Macedonian Coins.

Fig. 4.-A silver drachma of Alexander the Great. (As. Soc.) wt. 62 grains.
Obverse. Head of Hercules, beardless, covered with a lion's skin, coming under the ear like a horn.
Reverse. Jupiter seated, holding an eagle in the right hand : a staff in the left, along the left side AAEEANAPOT, and below AIIMES. (Bafinems).
Pig. 5.-Another, similar, but of half of the size, hermidrachma. Another, tetradrachma, (220 grs.,) of similar device. As. Soc.
Fig. 10.-Another, legend illegible. Ditto.
The bead of Alexander himself occurs very rarely on the coins of his reign :they are known by the ram's horn on his forehead introduced as a mark of his discent from Jupiter Ammon : the ram's horn is quite different from the lappet of the lion's akin in the present specimens, which might at first mislead the student.

Fig. 8. Obverse.-Head of Hercules in the lion's skin.
Reverse. Aclub, with the inscription AETKADIRNTIMO日EOS.
Fig. 9.-Another coin, of the same device, with AETKADI ON AAMrAOz. Both in possession of Col. T. Wilson.

- These two coins were struck at Leacas, a town near the celebrated promontory of the same name in Acarnania, whence Sappho precipitated herself into the sea. The Hunterian Cabtiset contains a multitude of coins of this place, but none with these names of Timótieos and Lamulos, or Damulos.

Syrian Coins: (Fig. 11.)
Next to the Alexandrine series, in point of time, and of merit, rank the coins of the princes of Syria, the descendants of Selencus Nicator, who, upon the partition of Asia among the officers of Alexander, took posseseion of Syria, and subjected to his sway all the provinces up to the Indus. Of the Seleucidæ kings; I lately obtained one silver coin from a Babylonian Jew; it is represented in Fig. 11, and is in beautiful preservation ${ }_{i}$ the head, in high relief, and of exquisite workmanship, wears the fillet or diadem, which belonged exclusively to rpyalty, and was not even assumed by the Roman emperors, until the reign of Divcletian. On the reverse, is a sitting figure of Ceres, with a cornucopia in. her left hand, and a sceptre (or torch?) in her right, She sits on an ornamantal chairs the leg of which is formed of a winged Cupid with a Dolphin tail. Beneath is a symbol compounded of the letters \mathbf{A} and \mathbf{T} which is supposed to stand for Antioch. The inscription is distinct bazianegz \triangle hmhtpiot pinateaqor nikatopoz, which refers to Demetrius II. Nicator, who reigned 145 years before Christ. It is a tetradrachma.

Fig. 6.-A small silver drachma in the Society's cabinet. Head, in good relief, with simple band.
.B. c. 292: Jupiter seated on a solid altar, holding thunderbolt, or priest sitting on the veiled stool. Down the sides BAEIAEOX \triangle HMHTPIOX.
This coin of Demetrius is recognized to be Seleucidan, from the figure of Appollo sitting upon a peculiar altar described by Pinkerton as "a hamper inverted. Some think this seat is that upon which the priest of Appollo at Daphne, near Antioch, used to sit to return'oracles. It was placed over an aperture of the floor of the temple through whieh the gale of inspiration was thqught to raise." A Demetrius ocears in the Macedomian series-and also amang the Bactrian princes.

Egyptian Series.

The coins of the Ptolemæan dynasty equal, in beauty and interest, the others of Macedonian origin : the silver pieces are very numerous, the brass and copper pieces exceed in dimensions all other antiques : they weigh about two ounces. The Eagle almost always appears as the reverse of the Egyptian kings; the date of the reign is also marked on the silver in Greek numerals preceded by L or λ iva a Aurros.

M- Naー

All of the silver specimens in our possession seem to belong to the same Ptolemy, from the marked physiognomy and projecting chin.
Fig. 12.-A silver tetradrachma, brought from Egypt by Mr. Drew.
Obverse. Head, with curly hair, bound with a diadem.
Reverse. The Eagle of Jupiter standing on a thunderbolt, with the inscription mtonemaiorbayineazinalif(anno 18).
A coin of Ptolemy the First of Egypt, or it may be of Ptolemy the Fifth, B. C. 204, * Pinkerton says his coins have mostly the letters IAA or 1A, explained to signify Puphos or Salamis, both cities of Cyprus, which island was part of the Esyptian monarchy. The weight of all these coins is about 212 grs ;

A large copper coin of one of the elder Ptolemies, bearing HTOAEMAIOTBAIIAESE. Same head and eagle. The copper coins seldom had any date. Weight 740 grs . J. P.

After the subjection of Egypt as a Roman province, the Emperor's head always appears on the obverse; the eagle remaining still the most common device on the reverse. Fig. 14 is a drawing of the reverse of two coins of Nero in my possession: the legend is ATTOKPA (for caracparapos imperatoris) with the date lina (anno 11.)

Fig. 16.-Is the reverse of a Greek coin under the Roman Emperor Trajanus Decius, (A.D.250.) It represents the metropolis of the Samosasan colony, as Cybele, with her turretted crown sitting on a cliff overhanging the ocean; inher hands are an eagle and a spike of corn, at her feet a horse, and around her the legend $\$ \mathrm{~A}$ Camocatesn mht kom Flavionem Samosatensium metropolis Commagenes. On the obverse around the head of the emperor is the inscription artokp.. Tpaianoc Ceb.
According to Pliny Samosasa was a town of Commagenes on the Euphrates. It wnsenled Frevia when taken by Coseennius Pcetus and Vespasian. The coin is noticed in Baodarius' work on the medals of the Emperors. The Society procured it from an Armenian, with other Roman coins, and I have here introduced it as a better example of the Grecian colonial coinage than that of Prusa in my former plete.

Parthian or Arsakian Coins.

The Parthian monarchy was erected by Arsaces, who filled the office of satrap in Bactria, in the year $256 \mathrm{~m} . \mathrm{c}$. . He had opposed the designs of Theodotus, who had first revolted from the third Syro-Macedonian monarch, and had raised the Bactrian provinces into an independent kingdom. Being unsuccessful, he fled to Parthia, where he expelled the governor, and declared himself independent. Vaillant, the numismatologist, has written a copious history of this powerful dynasty ; and has endeavoured to classify the coins of the 29 Arsacidæ lings : but it is generally acknowledged that there is too much of the fanciful in his appropriations, and most antiquarians have given up the attempt. The greater number of the Parthian coins have the same name, APIAKOT, with different epithets,-king of kings, the great, beneficent, lover of the Greeks, \&c.: the heads however, are very distinct and numerous.

The most rational mode of arrangement is, to place those which are best executed first, (for Greek workmen were doubtless then employed.) And, as the execution falls off, and the Greek characters become obscure, we may suppose the dynasty to progress towards its absorption into the Persian empire, in the reign of Alexander Severus. A. d. 226. There is a remarkable distinction in the head-dress of these princes; beginning with the simple band or diadem of the Greek monarchy, it gradually changes into a deep turban, and at length becomes a high-mitred cap, like that of the Persian monarchs.

We have two specimens of the larger silver Arsakian coins, and several of the smaller ones: the latter, upon which the characters begin to deteriorate rapidly, I have placed in Plate II. with the Persian coins.

Fig. 13.-One of two silver tetradrachms in the Society's collection.
Obverse. Head of Arsaces I. (dubious) facing the right; with broad diadem and straight hair.
Reverse. Victory offering a crown to the king, seated, with the legend baCinesC baClaenn erepietor aikaiot emibanot daenahnot; the third word apCakot is probably excluded by the die being two large for the coin.
Before passing to the rest of the Arsakian coins, I would here introduce

Fig. 15.-One of three copper coins belonging to the As. Soc. They bear on the obverse, a well-executed head, bearded, and wearing a high-mitred cap. The characters and device on the reverse of two of them are nearly obliterated, but sufficient remains to shew the portrait of a female, (probably the wife of the king.) On the third,
which forms the subject of the engraving, some of the letters are distinct, and appear to read zO\$1A or O\$1n (quasi $\theta_{\text {oopicios), and on the left hand are some illegible }}$ characters, (Phoenician ?) differing in each.

Below the portrait are the three Greek numerals VNA or mNA (anno 454,) but of what æra, I am at a loss to conjecture; it may be of the Arsakian or Armenian, but I must leave the point to those better versed in the subject.
To continue the Arsakiar coins :-
Fig. 1. Obverse.-Head with wart on the forehead: hair dressed in rows of curls: plain band, with fillets hanging behind : an eagle apparently with a wreath in its mouth.
Reverse. Figure seated, holding out a bow over the characters [\rightarrow around bazineoz baziaenn apCakot eyepiet aikai EIITANO कIAEAAR.
Colonel Wison had four coins with the same symbol, which Vaillant attributes to Arsaces Vonones XVIII. The eagle may also denote Chosroes (Vail. ii. 195.)

Fig. 5.-Obverse. Head of peculiar features, with pointed beard and hooked nose.
Reverse. Sitting figure in trowsers, with bow, very rudely executed and the legend baciaeoz apCakor emipanotz hinenah
Colenel Wikon has one similar, and both correspond with one in Vaillant, marked Arsaces Mithridates II. (V. i. 69.)

Fig. 6. Head with plain turban and bow behind : same inscription on the reverse, very rudely cut.
Fig. 2. Head with mitred cap, and arched nose, well executed : type, same as fig. 1, bazinenz metanor apzakot eeon ATPOZ NIKATOPos, of better execution than either of the foregoing.
Failiant ascribes the mitred cap to Arsaces Orodes. Col. Wilson had another coin Af similar character.

Another. Mitred head similar to fig. 2, but withoat the hook ornaments: same type, BAZIAE $2 I$ BAZIAESN APZAKOO AIKAIOT ETEPTETOT HIAEMAHNOT.
Pig. 8.-Head with mitred cap, as in fig. 2, with a peculiar symbol behind it: same reverse.
Colosel Wileon has another similar to this in head-dress, it is ascribed to Armces Orodes (Vail i. 145.)

Fig. 7.-Head with deep turban and mitred cap about it, and bow behind, with fillets of rudest fabrication: character quite perverted.

Another. Plain head-dress and device very rude, bainarizi oniiaran ailvno rvirin aixniov .. XnNovc.

In this the knowledge of the Greek letters seems very fast declining, and it is almost impossible to recognize the inscription to be identical with that of fig. 11.
Another. The same, but more legible; under the bow of all these there is a kind of altar formed like the letter \bar{A}

The average weight of the above Arsacidx drachme is 60 grs .
Besides the devices given above, Col. Wilson had one head similar to fig. 1 , with the symbols of the sun and the moon, and a star (fig. 4,) referred by Vaillant to Arsaces Artabanus (I. 221), and another with two small victories, holding wreaths over the head (fig. 3), which is not found in Vaillant.

Sassanian Coins.

The Sassanian monarchy in Persia commenced with the year 228, A. D. when Artaxerxes overturned the Parthian dynasty. It continued until itself overturned by the Mahomedan caliphs in the year a. D. 636. No mode of adjusting the numismatology of this period can be attempted until we are able to read the ancient Pehlevi characters in which their legends are expressed. Perhaps if a considerable collection of these coins was made (and they seem to be very common in Persia), some key might be discovered to the value of the alphabet, for the titles will be alike in all, and the names are known from history. . It seems a great reflection upon the art, that the coinage of the celebrated Noushirvan should not be known even to his countrymen.

Fig. 9.-A silver coin in the cabinet of the As. Soc.
Obverse. The head of the king facing the left, with curly beard, and a large tuft of curly hair : a peculiar crown or cap with two feathers behind : around it a legend in Pehlevi characters, very distinct, but the purport unknown: it is given more clearly in A.
Reverse. A fire altar (mithras), with two priests or defenders, bearing swords or sceptres.
Another coin, similar, and inscription partly identical. (B)
Fig. 10.-Another similar coin. In lieu of the sacred fire on the altar is substituted the head of a king: little of the legend is visible.
In Colonel Wilson's collection are one or two more of a similar character, but the fire is the most common symbol: the legend on one of his (C) differs from the two above given in part, but one word is evi-
dently the same, so that probably that word and the one which precedes it in A and B are all common titles of the ruling monarch, as " King of Kings," \&c. (the Pehlevi reads like the Persian from the right to the left hand.)

Fig. 12.-A crescent head-dress of this form occurs in one of Col. Wilson's coins, in other respects similar to the rest; also upon another coin the emblems represented in fig. 31, as variations of the priest's wand or sceptre.
Fig. 14.-(of Col. Wilson's series,) has characters which might be mistaken for Arabic, also emblems of the moon, stars, and the sacred fire.
Fig. 15.-A small gold coin, of very rude fabrication, brought by Lieutenant Conolly, from Khorassan : the head has a crescented cap, and the commencement of the second part of the inscription agrees with that of figs. \mathbf{A} and \mathbf{B}.
Reverse. The fire-altar, and priests rudely executed.
This coin was noticed in the Glbanings, vol. iii. 295.

Bactrian Coins.

In the reign of Antiochus II. the third of the Seleucidæ, Theodotus, the governor of Bactria, revolted and established an independent monarchy. His capital was the modern Balkh, and his extensive kingdom ineluded parts of modern Kábul, Khorasan, and Bokhára. It is remarked by Major Tod as singular, that, although the Arsacidan money is so pleatifal, antiquarians have seldom met with those of the Bactrian princes, and indeed the names of only nine of them have been rescued from obecurity. So little was before known, that Major Tod himself may be mid to have commenced the development of this new branch of numismatology, and in a worthy manner, -by adding two new medals discovered in India to the only two hitherto known;-one of Apollodotus, found in the site of an old town, Súrapura, between Agra and Ehweh; the other of Menander from Math'ra*: This example has instigated others to the search, and a number of Bactrian or IndoScythian coins are now coming to light in the upper provinces. I have before alluded to General Ventura's discoveries ; and to those of Messrs. Barnes and Gerard, in their route through ancient Bactriana; Col. Swiney of Karnal has also been successful in collecting and examining, and we may therefore soon hope to have the subject thoroughly elucidated. Such coins as were in the Society's cabinet, I have already depicted in the seventeenth volume of the Researches, to illustrate the learned remarks of Mr. Wilson, which should be perused by those who are now eager to pro-

[^6]secute the inquiry. I have introduced into the present plate a few of the same figures, with a view to shew the general appearance of these curious coins.

Fig. 17.-Is taken from a cast made from the sealing wax impression of a gold coin found at Manikyala by Gen. Ventura.
Obverse. A standing figure with right-arm outstretched, and a kind of glory round the head : letters not decypherable.
Reverse. Figure of a warrior holding a spear in the right-hand, and apparently (from comparison with more perfect specimens of a similar coin) presenting an offering on an altar : the name illegible.
Fig. 18.-Is a drawing made in a similar manner from another of the Manikyala gold coins.
Obverse. The Persian head-dress and flowing hair are here apparent, bat on the reverse the seated prince has rather the Indian costume. The characters on both sides are quite distinct, and have some similarity to Greek, but they have not been yet interpreted. There is a curious symbol upon all this class of coins, resembling a grid-iron or key, with sometimes three sometimes four pronge.
Messrs. Reinaud and Saint Martin of Paris (Journal Asiatique 1831) read part of the inscription on the obverse NANOBAOOT PKIKOT, and on the reverse MANAOBA.... TO but nothing is gained therefrom. They ascribe the coin to Greek or Asiatic Princes who inherited the amehority of Alexander's successors in the countries watered by the Indus.

Fig. 19.-A small copper coin, sent to me in a letter by Dr. Gerard, from the neighbourhood of Manikyala.
Obverse. The head of a king, with a kind of glory.
Pevorse. An Equestrian figure, with the flowing ribbons of the Persian diadem: the characters are here decidedly Greek, and appear to form the usual title of Bariגcus Barriam.
Fig. 20.-Is a copper coin resembling the last, procured by myeelf at Benares.

The greater portion of the coins found at Manikyale are stated by Lient. Burnes, to whom a copy of the plates of Mr. Wilson's Eesay was sent by dak, to have figures of a Raja dressed in a tunic secrificing on an altar, on the obverse; and a figure standing by a bull on the reverse (As. Res. xvii. pl. ii. figs. 26 to 30): others are found with the impress of an elephant, and a kind of dagger (a female figure ?) But as the inscriptions on these are rather Indian than Greek I have not inclinded them in the present collection, and beg to refer the reader to the Asiatic Researches and to Col. Tod's Essay.

Muhammedan Coinage of Persia.

To complete the sketch of Persian coins, it seems necessary to offer a few brief remarks on the coinage of the Muhammedan powers which sucsceded the Sassanian dynasty,

At the period of the promulgation of the religion of Muhammed, the money of the lower Roman empire was current in all the neighbouring conntries, and it was not until the Khalifat of Abd-ul-malek, in the year of the Hejra 76 (A. D. 695), according to Marsden, that a distinct coinage was instituted with a view of superseding the corrency of Greek, or Byzantine, and Persian, gold and silver.
The circumstances that led to this event are thus detailed by the Arebian writers.-"The Khalif having adhered to the practice of com. mencing his epistles, addressed to the Greek Emperor, with the Mussulman formulary sentence, declaring the unity of the Godhead, and the ministry of the prophet; the Christian monarch took offence at what appeared to him an insult, and threatened that if it were persisted in, be should retaliate by introducing into the inscriptions on his coinage, with a view to its being circulated throughout the dominions of the former, words not likely to be acceptable to the professors of Islamism*." This impolitic contention produced the effect that, might have been expected, and Abd-ul-malek determined to be beforehand with him in blazoning the creed of the faithful upon a new coin of his own fabrication, and he procured the ablest artisans from Damascus to cut the dies. Many of the first Muhammedans were however scandalized at al. loning the sacred name of God to be profaned by the contact of impure hands.
The names of the Arabic pieoes of money are uniformly inserted in their marginal legend, and are all taken from the coins of the lower Roman empire. Thus the copper piece was called ${ }^{\text {jems from follis; the }}$ silver denarius, which though properly a silver coin, was used generally to denote coins of other metals, as the denarius aris and the denarius auri, or curens.

The Society's cabinet does not possess any of the early Muhammedan coins; but one brought by Lieut. Conolly from Persia (fig. 16, P1. II.) will serve as a general apecimen of all those of the Ommiah and Abbas Khalife. They contain the date and place of fabrication, but not the name of the prince. The coins of the Samanian dynasty in Persia differ but little in appearance: but they bear the name of the sovereign mader that of the prophet. The Sultans of the Seljuk dynasty, who

- Marrsden's Numismata Orientalia xvi.
arrested the whole of-Asia Minor from the Empire in the 11th century, struck the emblem of the sun in the constellation of the lion upon the obverse of their coin, and these devices have, since become, well known as the chivalric order of distinction in Persias its origin is referred by Marshman to the horoscope of Gheat-ud-din. Kai Khustú, who began to reign in 1236. The earliest mention of it is in Tavernier's Travels, 1676: The kings of the Turkman or Ortokite dynasty, in the 13th century, introduced theads on their coin in imitation of the Syro-Macedorrian kings, inotwithstanding the supposed prejudice: of the faithful against, such devices. The Persian term shoh, rex, occurs for the first time on the coin of 'Kutb-ud-din:Ghaut, 'A. H. 580. Thercoins of this period are so irregular, that Christian marks and names are sometimes visible on them : signs of the zodiac were also frequently.introduced. The Fatimite dymasty restored the primitive ferm :and puity of the Kufic inscriptiots: Their coins have generally mpre than ane concentric circle of inscription. They: also exhibit the severallondities of Arabia, Syria; Egypt, and Sicily.
The coins of the :Il-Khanian or Moghul dynasty of Rergia are known by the title of Kaan, Khan, and Sultán Ahzem, in connection with the name of the sovereign. The writing is generally coptained in an ornaq mental or 'scalloped frame, sach as is now common. in the repine-of Persia, Nipal, and other oriental countries.

These very general remarks will be sufficient to afford a clue to the classification of the coins of Persia, when the legend may not be sufficiently legible to determine them:: the subject has boen most aply expounded by Mr: Marsden, in the work already quotedfrom; and to it ail must refer who would paraue this branch of numismatic study.
< Fig. 16:- L A 'sitiver coin of the Khalife of: the second century of thie : \quad Hejra, bearing on the area of the obverse the upal formula in the Kufic, character :

لا للة اللا	Non est Deus prater
اللفوحبدلا لإشريلف له	Deum uxicum cui non est socius.

In a circle around which is inecribed

In nomine Dei cusa est hac drachma in Wasit. Anne.129, nomo et vicesimo et centesimo. (A, D. 746.)
Y: On the reverse it has the usual inscriptiona - Dtus uneus, Deus

\int Friesch dd

الصهلميلدولم	ceternus, non gignit, et
بولد	non generatur et non
لمكفوا	ei compar umus.

On the margin it has a quotation from the Koran (Sura ix. 33.)
 المشوكون
Muhammed est legatus Dei, qui misit eum cum doctrine et religione vera, quo eam extolleret super religiones omnes si vel refragarentur associantes.
In Hallenberg's Numismata Orientalia are described several coins of the come age, the nearest in point of date is one of 126 Hij . (1. d. 743.) Merwan, the son of Muhammed, \&c. and 14th in descent from Ommiah, came to the Khalifat in A. B. 127 ; and was killed in 132, being the leat Khalif of that race.
Warit, the town at which the coin was struck, was so called, says the same authority, from being half-way (middle) between Basra and Kufa, it was built by Ibn-Gjuzi in 75 Hij . and remained the seat of the Khalifs and of the coinage until the Abbasidse succeeded to the Ommian Khalifs, when the capital was established at Mohamadiah (or Begded) as proved by coins struck in the year 137 Hijra.
In the third volume of the Gleaninas, Plate XXIII. are depicted four Persimn gold coins, also brought from Persia by Lieut. Conolly, which appear to belong to the Seljuk dynasty. In fig. 3, the words ul-malek are legible, but it requires some experience in the Kufic character to decypher the remainder.
IV.-Eclipses of Jupiter's Satellites.

Observations by Walter Ewer, Esq. at Chaprah.

V.-A method of preparing Strychnia. By J. T. Pearson, Esq. Assistant Surgeon.

The enormous price of 120 rupees having been paid at the Hon'ble Company's Dispensary for a single half ounce of strychnia; it became my duty to attempt to prepare it, by a process, more expeditious and less expensive, than that recommended in the formulary of Magendie*; and which, at the same time, should be equal to the demands made upon the department. I hope thant both these objects have been effected by the following method:

Infuse a determined quantity of Nux Vomica in boiling distilled water, until it becomes soft; take it from the liquid, bruise it coarsely in a large metal mortar, and treat it with successive infusions of boiling distilled water, till it becomes nearly tasteless. Strain the liquids, and having mingled them together, boil with calcined magnesia for half an hour, and collect the precipitate upon a filter of fine muslin. When the precipitate has become free from the liquid, wash it gently, twice, as it lies on the filter, with cold distilled water, and afterwards dry it upon a water bath.

Treat the precipitate, dried as above-mentioned, with successive portions of boiling alcohol, sp. g. .838, or stronger, until it becomes quite exhausted, then mix the whole of the filtered alcoholic liquid, and evaporate in a water bath, till a thick crust forms upon the surface; set it aside to crystallize for twelve hours; pour off the mother waters, and collect and dry the strychnia upon filtering paper.

In this state, the strychnia is in small, but by no means microscopic, irregular crystals, of a light-brown colour; and it may be purified by redissolving and re-crystallizing it in boiling alcohol, or by pouring over it portions of rectified æther.

[^7]By the foregoing process, sixty-five grains of strychnia were obtained from four pounds of Nux Vomica, at a cost of three rupees: a saving at the rate of more than two hundred rupees upon a single ounce. It was much purer than that purchased, as mentioned in the beginning of this paper; and a dose of half a grain, given to rabbits, killed one in a minute and half; and another in five minutes; whilst a small dog, after having taken a grain and half fell in fourteen minutes and half, . and died at the end of twenty-five. The delay in the death of the second rabbit, which did not take place until a second dose was in the act of being administered, may perhaps be attributed to the strychnia having been given in crystals instead of in powder; a state in which the difficulty of its solubility in watery secretions would of course be greatly increased. After this, I need scarcely add, that strychnia, like arsenic, morphia, corrosive bublimate, and other strong poisons, should never be given but in solution; it being impossible in any other maxner accurately to measure the dose.
Note.-I wish it to be understood, that for the foregoing process I do not my any claims to originality. I may however mention that beyond a knowledge that Robiquet's process for morphia had been pursued with strychnia, the details of which I have not met with, it is new to me. Should you think the subject worthy of attention, I propose to give you, in a future paper, my views of the rationale of the process, together with the results of more extended trials now going on under my superintendence at the Hon'ble Company's Dispensary.

VI.-Proceedings of the Asiatic Sociely. Wedneeday Evening, 9th January, 1833.

The Hon'ble Sir Edward Ryan, President, in the chair.
After reading the Proceedings of the last regular meeting and of the apecial meeting of the 19th December, the Society proceeded to ballot for the officers of the ensuing year, when Sir C. T. Metcalfe, Bart., Sir John Franks, and the Rev. Principal Mill were elected Vice-Presidents.

Mr. James Prinsep was unanimously elected Secretary.
The Rev. Dr. Carey, Mr. J. Calder, Mr. J. Tytler, Rev. Mr. Proctor, Baboo Ram Comul Sen, Mr. J. R. Colvin, Mr. D. Hare, and Dr. J. Pearson, were elected Members of the Committee of Papers.
Mr. Clemishaw and Baboo Radhacant Deb, proposed at the last meeting, were elected Members.
The Hon'ble Sir R. W. Horton, Governor of Ceylon, proposed at the lest meeting by Mr. Wilson, seconded by Mr. J. Prinsep, was upon the favourable report of the Committee of Papers, unanimously elected an Honorary Member.
Sir Benjamin Malkin, Recorder of Penang, was proposed by the President, seconded by Mr. Prinsep, as an Honorary Member, and referred to the Committee of Papers.

Upon the Report of the Native Secretary, that since the retirement of Mr. Colebrooke, in the year 1830, from the office of Agent to the Society in England, no new appointment had taken place ; it was resolved, that a letter be written to Mr. Wilson, requesting him to act as Agent, and to take charge of any property or money belonging to the Society in England.

Upon the suggestion of the Secretary, it was resolved, that an extract from the Proceedings of this Society, containing the Address presented to Mr. H. H. Wilson, by the Society, on the occasion of his departure from India, and his reply, be printed to accompany the Seventeenth Volume of Reaearches, just published under his superintendence.
Read a letter from H. M. Parker, Esq. Officiating Secretary to Government, announcing, that Government had complied with the application for freight to England of 100 copies of the Seventeenth Volume of the Researches.

The accounts of the past year were submitted, exhibiting the following Balance in the Society's favor on the 31st December, 1832.

The Balance 11,397126 is unfortunately involved in the failure of Mesars. Mackintosh and Co.

The sums due by the Society are as follows:
To the Military Orphan Press, for Seventeenth Volume of Re-
searches,
4,286140
Mr. J. Prinsep's Bill, for Plates of the Physical Transactions, House
Repairs, \&c., passed by the Committee of Papers, 1,023 15 I
Establishment for December, and sundries, 24900
Total, Rs. 5,559 131
Rewolved, that the accounts be referred to the Committee of Papers, to determine upon the best mode of liquidating the present demands.

Mияеиm.'

1. Read a letter from the Private Secretary to the Right Hon'ble Sir R. W. Horton, forwarding two antique coins for examination.
2. Three small Buddha images, presented by Baboo Ram Comul Sen, in the name of Mr. Wilson.
3. Specimens of Coal from the Kasya Hills, presented by Mr. Cracroft.

Some hundred maunds of this Coal have lately been sent on trial to the Caleatta Mint, where it has been found of a quality far superior to any from the Burdwan

Colliarien, for Ragine and Reverberatory furnaces, in the ratio of 5 to 4 , The compreition of the Coal tried at the Aseay Office, was,

Volatile matter or gas, 38.5
Carbon or coke, 60.7
Earthy impurities or ash, .. 0.8
100.0

The ash is wonderfully small : specific gravity of the Coal 1.275.
4. Specimens of the Sandstone of Sikrigali, with vegetable impresaion of ferne, \&rc. by Dr. Langstaff.
" The sandstone appears to correspond with that from Chira Punji with vegetuble remains. This rock forms the bluff termination of the ridge immediately adjoining the river: below it, and I believe interstratified with it, is the perfectly horizontal stratum of silicious schist with impressions of ferns and mosses, and appareatly the remains of shells.
" In the same situation are blocks of the hornblenderock, and basalt, abounding from Monghyr to Rajmahal. Although the trap formation is contiguous to the madstone, the latter does not seem to have undergone any disturbance of its horirontal position, which would argue its formation to be more recent than the trap."
5. A letter from Dr. Spilsbury, announcing the dispatch of a specimen of fowil bone from Jabalpúr.

Library.

A copy of his work on the "Muhammedan Law of Inheritance," presented by N. B. E. Baillie, Eeq.
Ditto, of the and edition of Wilson's Sanscrit and Engligh Dictionary, by the author.

Alad a letter from M. Burnouf, the Secretary, forwarding the following works from the Asiatic Society of Paris :

Burnouf's Vendidad Sadi, parts 5th to 9th.
Cemin,-Almanach Philanthropique, 1 vol.
Leramsear and Ratz,-Tableau d'Elemens Vocaux de l'Ecriture Chinoise.
Browet deane,-Chronique Georgienne, 1 vol.
Dedongchamp's Mansve Dharme Sestra, 3rd part.
A. L. Cheary's Secountale, 1 vol.

The following Books from the Book-sellers.
Niebuhr's History of Rome, and vol.
Lardner's Cabinet Cyclopedia;-the United States, and vol.
Literary.
A Paper on the Origin and Classification of the Military Tribes of Nipal, by B. H. Hodgson, Esq.

A Note by the same gentleman, on the Law and Legal Practice of Nipal, in matters of adultery or connection between a Hindoo and an outcast.

Note on the Ceylon Coins, by the Secretary.
The two coins transmitted by His Excellency, the Governor of Ceylon, belong to the class described by Mr. Wilson, in the seventeenth volume of the Researches, and depicted in Plate V. figure 109 to 113, which are atated, like the present coins, to have been found by Colonel

Mackenzie at Dipaldinna. No. 3, according almost exactly with the present copper coin, " is a drawing of one found at Kandya in Ceylon."

Mr. Wilson does not attempt to explain them further, than they evidently belong to a Hindoo dynasty, either on the island of Ceylon, or in the south of the peninsula. The letters are distinctly Hindí in all, although it is difficult to make out their purport. The word " Sri" is also evident in all of them.

Description.

No. 1. A gold coin, weighing $\mathbf{6 0}$ grains.
Obverse. A male figure, seated in the Indian manner, with dhotí. Left hand raised, and face looking to the left: on the side, the Nagari characters खो हंबे बर, Sri Lankeswar?
Reverse. A rude standing figure, with a flowing robe, right hand extended over two emblems $\boldsymbol{\psi} \boldsymbol{\pm}$
Left hand supporting a crown or globe? Beneath a scroll, with circles or flowers on the right.
No. 2. A copper coin, very similar, but more rude. The inscription on the obverse is, त्रो खन्या द्यमघ, Srig nya $d y$ m th? On the reverse, the standing figure as before.
In Davy's Ceylon, page 245, will be found a drawing of an antique gold coin, called a Dambadinia Rhatra (rhatra, gold), which was found in the neighbourhood of Dambadinia, in the Seven Korles, a place of royal residence (no doubt identical with Dipaldinna of Col. Mackenzie.) The drawing of this coin is precisely similar to those of Plate V. and to the one now before the Society, and so is the copper coin alluded to by Davy as the Dambadinia chally (chally, means copper.)

Davy does not seem to have comprehended either the device or the characters on his coin, for he has reversed the engraving of the side bearing the inscription, and he supposes both to be mere hieroglyphics. To an eye accustomed to such objects, however, the standing and sitting figares are very evident, as are the Nagari characters, although their purport is not so clear: indeed, of the half dozen, to which we can now refer, no two seem to bear the same name, nor are we acquainted sufficiently with the ancient history of Ceylon, to be able to fill up the doubtful names on the coins from any well certified list of princes of the Hindú dynasties in Ceylon of the Soorea-voansé (or Súrj-bansí) race.

VII.-Miscellaneous.
 1.-Hot-spring at Pachete. By C. Betts, Esq.

As a correspodent of the Journal is desirous of knowing the localities of any hotsprings met with in India, I beg to put on record this notice of one found by me in the river Damuda, near the Tántotya village, and about six miles distant from the Paehete hills. In the cold season, when the river is very low the thermometer plunged into it rose to 190° Farb. The spring is slightly chalybeate.

2-Extraordinary Banyan Tree at Kulow Nagty Hally, near Bhwoma Naik Droog. in the territory of Mysore.

This tree assumes to the traveller's eye the appearance of a very beautiful grove, which in reality it is.
The centre tree is about fifty or sixty feet in height, and its branches cover an area of seventy-six yards in one direction, and eighty-eight in the other, while the drops now dependent from, or rather supporting, its gigantic branches, amount in number to one hundred and twenty-one, of which some are of enorinous size. The place exhibits on all sides vast branches, broken off, which have been evidently once connected with thirty trees, now disunited from the centre stock; but the original connexion can still be sufficiently traced to render unnecessary the testimony of the rillagers, who state that they and their fathers have been in the habit of disuniting these trees by separating the intermediate parts for the construction of solid cart wheels, for which, from their size, they are well suited. On measuring the transversediameters of the whole area, they were found to contain more than 100 yards each way. This single tree thus affording a circle of foliage and shade exceeding 300 English yards in circumference.

> 3.-Discovery of the Silhet Coal Mines.

Mr. James Stark discovered, early in 1815, some coal mines on the lower hills of SThet, and worked them sufficiently deep to send down samples to the Government through Mr. Dacosta. By directions from Mr. A.Trotter, then Secretary, Public Department, about 50 maunds were sent to the foundery in Fort William, the same quantity to the gun-carriage yard at Cossipore, and an equal quantity was tried in the Mint, as also 25 maunds at Mr. Jessop's. The reports on these samples proving farorable, Mr. Stark submitted proposals for supplying Government with coals, at 1 rupee 8 annas per maund, to any extent required, of the quality of the samples sent, and even superior ; these being declined, he next obtained the indulgence of Government to import into Calcutta duty-free, for five years. The first thousand maunds having arrived in Calcutta, and remaining on hand unsold, he abandoned the mines. 5.-Questions proposed by the Burmese Heir Apparent.
"* The Philosopher Burmese Prince is an extraordinary man. He is self-taught, and although of naturally good talents, he is very timid, and much alarmed that his turn for scientific subjects should be known to the King and Ministers. A gentleman who has also a turn that way, and has seen him frequently, declares him to be a wonderful man, and if in any other country but this, where he could without fear follow the bent of his mind, he would soon prove himself a person of superior acquirements. He is anxiously looking out for a Comet that is to appear this month, and which I believe by the calculations of some French Astronomer is to destroy the earth. He has a very good Telescope-a Thermometer-a Barome-ter-a Stomach Pump, and I believe an Air Pump-all of which he is obliged to keep shut up. Sabjoined are some questions put by him to a gentleman here, which it is hoped some one may be able to solve for his satisfaction.

1st. He has observed, that the last three Comets have appeared in the same sign in the beavens, that the Moon's node was in at the time; is this accidental, or has the node any connection with Comets ?

2nd. On what data does Sir Isaac Newton found his hypothesis of the heat of a Comet being 900 times greater than that of red-hot iron?

3rd. Is not the height of the atmosphere increased at new and full moon in the same manner that the waters of the ocean are raised, but to a much greater extent? If so why does not the Barometer indicate it by rising ?"

VIII.-Progress of European Science.

PRACTICAL AsTRONOKT.

Under this head may be comprehended all proceedings intended to bring as better acquainted with the phenomena of the heavenly bodies through the medium of observation and experiment :-the labours of astronomers in their observatories; the construction of new instruments; of new tables to facilitate calculations; of new maps of the heavens, \&c. to which may be added pendulum experiments and the varions geodetical operations on a grand scale, destined to the determination of the earth's figure. Of the latter branch of our subject, we have on a former occasion taken a cursory review, adverting to the survey now in progress in our own neighbourhood. In our last number also we anticipated the present notice by inserting an abstract of the contents of the new Nautical Almanac, which itself marks the progress of astronomical science, by the new wants that it is found necessary to supply to the practical astronomer to saive the waste of his time in intricate calculations. We will now advert to the increased means set at work in the world for the pursuit of this noble and heart expanding-study, taking as our guide the annual reports of the president of the Astronomical Society : for in the present day, thanks to the systematic division of the sciences among their proper societies, information on each separate branch can be obtained at once without spending much time in searching through scattered notices in journals of general science.
Mr. South, in his address on the anniversary of February, 1830, congratulated the Society on the prosperous appearance of the astronomical horizon. He attributed with justice to the influence of the institution over which he presided, a part of the unusaal activity prevalent, as well abroad as at home, in prosecuting observations, and in perfecting the theories and tables of celestial phenomena.

He noticed the establishment of no less than two new observatories endowed by the British Government : one at the Cape of Good Hope, ander the Rer. Mr. Pallows; the other, the Paramatta Observatory, originally founded by Sir Triomas Bxissanz in New South Wales, now converted into a permanent public institution. The East India Company had been equally active : they had remodelled their observatory at Madras, furnishing it with new instruments and appointing to the charge of them Mr. Taycor, an experienced astronomer from the Greenwich Observatory. An atterapt had before been made to found an observatory at Bombay, which had failed through the bad management of the astronomer nominated there. At the anniversary of hast February, the came illustrious president noticed the foundstion of another obeervatory by the Company, in the Island of St. Helena, under the charge of Mr. Jounson : and pari passu, the British Government had presented a $3 \frac{1}{2}$ feet transit, by Troughton, and other valuable instruments, to the private observatory of M. Dasadie, on the Island of Mauritius, whither also a number of excellent instruments had been carried by Captain Lloyd, Surveyor General to the colony. Monsieur Dabadie's observations on the Comet of 1830 have brought thin well-merited reward, not to himself alone, but generally to the zealous exertions of this scientific little island, which can boast of more than its due proportion of naturalists and literary men. Aatronomy is well adapted to be the atudy of an insulated quiet seat of contemplation like this isle, or St. Helens, and some questions of great practical importance, suoh as that of the refraction on the ocearic horizon, might here be more succesofully inveatigated than any where elbe.

Caperin Krwe, R. N. also is mentioned mproceeding to Now South Wales, prorided with saperior imetranseats for his own we.
Here is a goodly list of the astronomical eminearies from our own island, and yet it is doubtless fall of omissions: for the amateura nuat be more numeran in this thas in any other science. Nothing of course was yet known in Enghad of the appointment of Captain Hambrer as astronomer to the King of Oude. Trom the magnificence coaspicuous in all oriental undertakinga, we may safely progeotiente, that the Lucknow Observatory will become a richly endowed estaWirhmant, if the life of the founder be spared to complete it. We eannot pause to sollow the lint of illestrious obeerrers enumerated in Great Britain itself, at CamMidge, Dablin, Greenwich, Kew, London, aad Edinburgh : nor of those on the contrient, where the setivity of the new observatories of Brussele, Cadiz, Cracow, and Genera, are stated to be already rivalling the older eatablishments of Paris, Berlin, Moscon, Flovence, and Vienna. Now let us see what has been produced at these rival obeervataries, for that is the beet way to judge of their relative and positive merits.
The Greenwich Obeervatory has lately issued a oatalogue of 720 otars : selected and sedeced from the catelogue formerly published by the Astronomical Society. This fundamental catalogse has now reached a degree of accuracy unexampled in astromomical history, and bids fair to preserve the credit of "the British Catalogwe" of the good old times of Flamstrad.

The Paris Obeervatory seems to have been dormant for a long time. A new trancit and a splendid equatorial by Gambey have once more set it in activity, and an excellent rule of the Inatitate has imposed apon the superintendent the necessity of never being more than a year behind hand in publishing the results of his laboura.

Profemor Beasen. has been employed upon pendulum investigations, and has come to the mortifying conclusion, that the corrections employed by British experimentwliste are by no means eorrect : Mr. Francis Baily aleo has demonstrated the exintence of certain imperfections in the apparatus which point out the necessity of freah inquiries before the atandarde of weights and measures, upon which such care has already been speat, can be considered as finally settled!

Profescor Ewcre has eatitled himself as much to the gratitude of astronomers in generel, as to the medal so justly awarded him by the Astronomical Society, for the Berline Ephomeri, which bears his name. While the Nautical Almanac has been gradmally petsogreding, and the Connoissance des teme stationary, the Berlin Almanac hess soddenly stept in adrance of both, and so full are its contents, and so excellent its arragement, that, as Mr. Sovtr says, " with it an observatory scarcely wants a single beok ; without it, every one." The new Nautical Almanac will be one of the fraits for which we are indebted to Encers's example, and we hope it may prove, sccording to the President's promise, "as suporior to Encre's, as Encri's is now saperior to it."

The Royal Aceademy at Berlin has earried into complete affect its plan for a miante wervey of the hoaven, and for the formation of a new set of celeatial charts. Three pertione of this useful and valueble nedertaking are already published : viz, the 10th bour in AR by profeasor Gdest of Coburg, the 14th bour by the Rev. T. J. Riveary of Chiolebuest, and the 18th hour by Pedre Grovamini Imemizanit of Fiorsuce, and M. Capoocr of Naples. The catalogres contain a list of all the stars (reduced to the year 1800) within 15° of the equator down to the 10 th magnitude : and when complete, will be a most valuable acquisition to the practical astronomer.
Of the lebours of one member of our own Royal Observatory, we must take a fuller review : we allude to thome of Mr. Ricisardson on the comotant of aberretion.

In extracting for this parpose the words of Mr. Soutz's addrese or preseating the anthor with the gold medal, we are in fact giving a most lominous and inter? esting review of the history of this subject, so clovely connected with the demonstration of the Copernican system.
"Three hundred years have now clapeed since Coprenicus proposed to the world that system which bears his name; and if we except the labours of Tycuo Braine, who, besides a catalogue of 800 stars, made attempte to determine the altitude of the pole-star at different seasons of the year, little was done by practical observation to support or refute the ideas of Copzrinicus till the time of Galilso. Observations of the eclipses of Jupiter's satellites induced him to propose them as a means of determining differences of longitude, whilst his discovery of the phases of Venus removed a serious objection to the truth of the Copernican system, and which Coprenicus himself predicted would be removed, though he had not the means of doing so himself. About the year 1665, Huygrns, by his invention of the pendulum clock, gave to astronomical observations an accuracy bitherto unknown; and Cabsini, by means of the excellent glasses of Campani, accumulated a vast mass of observations of the eclipees of Jupiter's satellites, and deduced from them tables whereby astronomers could predict their occurrence. .
"Notwithstanding the powerful arguments advanced in its favour, the Copernican hypothesis was not generally embraced; for in the year 1669, nearty a century and a half subsequent to its promulgation by Coprenicus, even the celebrated Hoor, to use his own words, 'would not absolutely declare for it".' To settle the matter, therefore, this extraordinary man, feeling that the instruments of TrCHO, although magnificent beyond all others, were, from the nature of their construction, and from their being unprovided with telescopic aights, incompetent to detect minute alterations of sidereal positions, and knowing that the laws which governed refraction were so little apderatood \dagger as to render all observations in which that element was materially inrolved, liable to errors greater probably than the quantities he was in search of, invented the zenith sector. It was erected at Gresham College, and consisted of a telescope, 36 feet long, a divided arc, and a plumb-line. The atar selected for obserration, and with reference to which, indeed, his instrument was entirely constructed, was one which passed within two or three minutes of the zenith of Greshan College ; it was visible in the day-time throughout the year, and was γ Draconis: by observing its zenith distance when the earth was in opposite points of her orbit, be found (as be erroneously concluded) a sensible parallax, amounting to about 20 seconde, and, consequently, determined that the Copernican system was the true one!.
"In the mean time, the eclipses of Jupiter's satellites, thanks to the facilities of predicting them, afforded by Cassini's tables, had been assiduously observed; and in the year 1675, the discordances found between the predicted and the observed eclipeses enabled the celebrated Rozmer to demonstrate that light was not inatantaneously propegated, and that the discordances between the tables and the observations might be considered as the measure of its velocity.
"The year of Rommer's discovery was further marked by another epoch in astronomical history, namely, the fonndation of the Royal Observatory. Flaustiad,

* An attempt to prove the motion of the earth from observations made dy Roncer Hoors, F. R. 8. pp. 5 and 7 .
+ Idem, pp. 10 and 11.
\ddagger Idem, p. 2.

Fith his meral qdadrant, detected a change of place in the pole-star, amounting to 35,40 , or 45 seconds, attributed it to parallax, and regarded it as confirmatory of Hoor's discovery. Indeed, the observations of Hoox, as well as of those who preeeded him, although nominally in search of parallax, had for their object little ebe than the confirmation or verification of the Copernican system; and this arrived at, there seems to have been but little disposition to repeat them.
"Hence it wes that the brilliant discoveries of Nswron having placed the securacy of the Coperaican system beyond all possibility of doabt, the investigation of parallax was not resumed till the latter end of November,' in the year 1725, at which time Molynsux erected his 24 -feet zenith sector, by Grabax, in his observatory at Kew'. 'On the 3rd of December, $\boldsymbol{\gamma}$ Draconis was, for the first time, observed as it passed near the zenith, and its situation carefully taken with the instrument; and again, on the 5th, 11th, and 12th, when, no material change in the star's place having been detected, further observations seemed needless, since it was a time of the year when no sensible alteration of parallax could soon be expected.' Bradley, however, being on a visit to his friend Molyngux, was 'tempted by curiosity to repeat the observation on the 17 th , and perceived the ztar pacs a little more southerly than when it had been observed before :' suspecting that the apparent change of place might be owing to erroneous observation, it was observed again on the 20th, and he found the star still farther sonth than in the preceding obeervations. This sensible alteration surprised himself and Molymsux, in as mach as it was the contrary way from which it would have been, had it proceeded from an annual parallax of the star; but being incapable of accounting for it by want of exactness in the observations, and having no notion of any other carse from which such apparent motion could proceed, they suspected that some change in the materials of the instrument itself might have occasioned it. Under this apprehension, they remained some time, but being at length fully convinced, by repeated trials, of the great exactnesss of the instrument, and finding, by the gradual inerease of the star's distance from the pole, that there' must be some regular cease which produced it, they examined nicely at the time of each observation how anch it was ; and about the beginning of March,1726, the star was found to be 20' more southeriy than at the time of the first observation. It now, indeed, seemed to have arrived at its utmost limit southward; fer in several observations made shout this time, no sensible difference could be detected in its situation. By the middle of April, it appeared to be returning towards the north, and about the besjimaing of Jume, it passed at the same distance from the zenith as it had done in December, when it was first observed. From the quick change in the star's decliantion about this time (it increasing a second in three days), they concluded that it would now proceed northward, as it before had gone sonthward of its present situstion; and it happened as was conjectured; for it continned to move northward till September following, when it again became stationary, being then near $20^{\prime \prime}$ more northerty than in June, and no less than $39^{\prime \prime}$ more northerly than it had beea in Merch. Prom September, it returned towards the south, till it arrived, in December, at the very same situation it had been at that time twelve montha, allowing for the diference of declination 'on account of the precession of the cquisox.'
" Sech is a brief hietory of the Kow observations ; commenced, indeed, for the determisation of sensible parallax, but which, as subsequently in the hands of Hra-

[^8]scesm, led to a very different resolt. In reading it, we are sta lows whetiver mone to admire the mode in which the obeervations were condweted, or the modert tisassuming manner in which they are recorded : no possible source of error fer allowed to pass without the most rigid examination-no theory suffered to emberrame the observers in their observations; the slightest anomaly becmane the gableet of suspicion, till in presumed anomaly was found the most perfect regularity.
"That observations so conducted, leading to results so unexpected, could be abandoned till the law which governed them should be unfolded, was impoesible. Bet Bradegy rejected all inquiries into the cause till the effects were accurately determined ; and feeling that the apparent motion was oblained by observations only of one year-by one inotrument-and by one star,-he erected at Wanstead, aided by his friend Grabax, on the 19th of August, 1727, his zenith sector of $12 \frac{3}{\frac{1}{2} \text { feet }}$ focus, formed, indeed, upon the same general plan of Molynzux's, but furnished with a divided arc of $6 \pm$ degrees on each side of the zenith point, for the purpose of enabling him to ascertain, by direct observation, whether other stars than 9 Draconis would he similarly affected. The instrument's situation, when adjasted, ' might be securely depended apon to half a second,' and its telescope corld be directed to 'not less than 12 stars, bright enough to be seen in the day-time;' throughout the year : the same changes were observed as had been previously dotected with Molinnexx's instrument. Inflexible, however, in his resolution act to generalise till sufficient means were collected to lead him to a 'probably jum conclusion,' the year of probation was suffered to be completed before 'rie observations were examined and compared:' then it was that he satisfied bimself of the general laws of the phenomena, and then, and not till then, did the endeavour to find out their cause. Convinced that the apparent motion of the stare which he had observed was not owing to nutation-persuaded, that a change in che direction of the plumb-line with which the instrument was rectifed was insuatioient to have occasioned it-and having appealed unsuccessfully to refraction, -he perceived, 'that if light was propagated in time, the apparent place of a fixed object would not be the same when the eye is at rest, as when it is moving in any other direction than that of the line passing through the eye and the object; and that when the eye is moving in different directions, the apparent place of the object would be different.' He therefore announced his discovery in these werds : 'That all the phenomena proceeded from the progrescive motion of light and the earth's annual motion in its orbit,' or, as he afterwards calied it, aberration of light.
" But he who determined its existence determined aloo its constent, and froulik at $\mathbf{2 0}{ }^{\prime \prime}$; giving us, therefore, the interval of time in which light travele from the sun to the earth, as eight minutes and seven seconds, differing from that delmeed by Rosmpz nearly three minutes of time, a circumatance not at all to the dienedit of Romysn, considering the imperfect knowiedge of the theory of Juplter's catellites at the time he made his important discovery.
"The observations, however, which led Bradery to the discovery of aberration, and to the determination of its constant, being as yet unpubtished, have given tise to insinuations certainly ungenerous, and probably unjust. Impelied by more tomourable feelings, our illastrious associate Brassi, alluding to the observations of γ Draconis made by Bradley when the sector was removed to Greenwich, says", - Caeteriem Bradrlil observationes Wansteadiance bidereri posenat àsection mur

* Fandamenta Astronomíe, p. 124.
 the coup reperive ipoa Bandizu autographa.' It will, therefore, be highly gratefall to him, and to astronomers in general, to be informed from this chair, that the mammeripts. of. the Wanstead obecrvations are found !-that to the honour of the Unirenity of Oxford, tweaty-three abeets of them are already printed; and that the volunae will be presented to the public with as little delay as possible, under the auperintendeace of Profeseor Riga dd.
" Till within these few yeara, the constant, as determined by Bradisy, was universally employed in all our astronomical reductions ; recently, however, astronomers have re-inveatignted it. Drlamspe, from the eclipses of Jupiter's satellites regurda it $20^{\prime \prime}, 25$. Beasin, from Bradiey's Observations made at the Royal Obzervatory, after he was appointed Astronomer Royal, has deduced for the constant 20",68. Lindenau, by comparisons of Bradley's, Maseitifne's, Begsel's, and Pond's observations of Polaris, has obtained for it $20^{\prime \prime}, 61$. Beinkley, from his awn observations, considers it as $20^{\prime \prime}, 37$. Whilst Strauge, by his observations, draws almont the same inference, namely $20^{\prime \prime}, 35$.
"Sach were the results most entitled to our confidence, when Mr. Ricrandson, in the hours allotted to him for repose or recreation, undertook those labours which form the subject of our present consideration, and of which the following is a brief outline. A second mural circle by Jones, after the model of that of Taoverfor's, having been erected at the Royal Observatory, in the April of 1825, corseenponding.obeervations with the two instruments were carried on simultaneously; they wene confined, indeed to a few stars, but every precantion to render them as accurate as possible was adopted. Thus, the index error of each instrument was mortained by ebserving the same star alternately, by direct vision and reflection; each pair, thesefore, giving to its respective instrument one horizontal point perfeetly independent of astronomical tables, the final accuracy of the determination of the iodex error being directly as the number of pairs observed. Throughout the chervations, the place of each star was arrived at by roference to the six microscapes of each circle; care also being taken to equalise, as nearly as possible, the tem. perature of the observatory with that of the external air, so that errors to any exbant, erining from pertial expansions or erroneons divisions of the instrument, were effectimily exchuded.
" From anch unexceptionable date, fourteen stars were selected by Mr. Richasdsor an the fitteat for his purpose, being those the least affeoted by refraction, and the and alfect by aberration, so that the errors of observation might have the miaiman infanence upon the results. Upwards of 4000 observations he separately sincmesod, and in no instance was the actual aberration of each observed star leas then $11^{\prime \prime}$; and the conclusion to which he has arrived is, from Trougrton's cirthe that the Constant .of Aberration is $20^{\prime \prime}, 505$; whilst by Jones's, it is $20^{\prime \prime}, 502$, the one differing from the other but three-thousandths of a second.
- "Hoor, in saarching for parallar, was mialed by his instrument. Bradlery, in -hactiog it wan nmaccessful, but discovered aberration. Hoos's instrument wen the work.ef his awn hands ; Brapliy's was the work of Gramam. Sensible that man of his atronomical glory was referable to the accuracy of his instrument, the manteur atronomer of Wanstead was ever ready to acknowledge it ; and when 00 comider that one hundred yearn' improvement in astronomical manipulations ma slar the constation of aberration as determined by him but one half recond, we

"Our Graban is amongat us; to him we are indebted for the immaments with which results thus important have been obtained, and also for the mode of aning them, through which the maximum of accuracy has been soquived. One of them, was made with his own hands, the other under his direction; and it is not two much to say, that the disciple has shewn himself worthy of his master. The bemefits which Edwand Troughton has conferred on soience are too well knowe to need enumeration. His Majesty the King of Denmark, not insensible to the inoportance of science, and feeling that for much of the accuracy to which astronomy and navigation have arrived, we are indebted to the genius of our revered meraber, has recently acknowledged his gratitude to him, by the presentation of his gold medal, inscribed with the word 'Mristo.' Never was inscription more appropriate. May he live long to enjoy this token of respect ! alike honourable to himeelf and to the princely feelings of its royal donor.
"On looking over the constant as determined by each star, nothing definitive, as Mr. Ricanadson justly observes, can be concluded, as to whether light emitted from different stars is propagated to us with different degrees of velocity : the idem is not irrational, but its validity future astronomers must determine."

Before concluding our imperfect sketch of what have been the lebours of astronomers in Europe, we must not overlook the works of our countrymen in the Eart. The Madras Obeervatory has been newly modelled, it is true; but in its olden atace, under the indefatigable Goldingham, it was turned to the best purpose, as is proved by the creditable volumes published from time to time under great disedvantage from the want of a good printing establishment. A volume of the observations in 1831 is just announced to the public, and we know that they have been reduced and arranged with great care by Mr. Tayloz, who, although now commencing a new career with more powerful and perfect means at his command, knowe how to appreciate the talents and care of his able predecessor.

Among the deaths of eminent astronomers noticed at the lant annual meeting were those of the Rev. F. Fallows, late astronomer at the Cape of Good Hope; Capt. Foster, R.N;-M. Pons of Marlia, and the Abbe Gregoire. Mr. Pallows we appointed to the Cape early in 1821, and he reached it in the 12th August.
" His first undertaking was an approximate catalogue of 275 principul atars, published in the Phil. Trans. 1824. From the description of the instraments employed, it will be seen, that they were of a very humble deacription, viz. a portable transit of only twenty inches focal length, and a very indifferent altitude and aximuth instrument by Ramsden, ill divided, and unstable in its adjustments, being indeed originally constructed as an equatorial. It is probable that the length of time which must necessarily elapse between the design and completion of a first-rate observatory, in a foreign station, was not fully taken in to account, either by the Government or the astronomer, otherwise the temporary instruments would, doubtless have been of a very different class. The plan of the observatory was recefved by Mr. Fallows in the latter part of 1825, and he immediately proceeded to carry it into effect. A site was selected about three miles from Cape Town, and Mr. FalLows lived in a tent on the spot, to determine the lines of the brilding and to superintend the workmen. The foundations were dig out before the clert of the wertss arrived to relieve him from this task.
" In the beginning of 1829, the transit and mural circle were fixed in their places, and we might now have anticipated a season of enjoyment for the Cape astromomer, but for some cause hitherto unexplained, the circle to which he had looked forwasd with pride and exultation proved for a long time a source of bitter uneasiness. Somp
pant of this mant dembetios be attributed to the shattered atate of the observer's bealh; bot the fact, that ' the index error of two opposite microscopes was ever naibile in different parts of the instrament, while with three microscopes, at 120° dintance from each other, or with the whole six, the index error was nearily constast,' vas suficiently startling to harrass a person of less sanguine and zealous temper. Finally, Mr. Fallows was of opinion, that some pemanent injury had been recived by the circle and axis, from a fall which the package received whilst it was resoring from the hold of the ship at the time of landing, bat that the mean of the six microecopes might be fully depended upon, since high and low stars, when oberved direetly and by reflexion, gave the same position of the horizontal point. Before be had come to this conclusion, which seems to have been some time in the middle of 1830 , sickness deprived him of the services of his assistant, Capt. Ronald, and Mr. Pallows was left, unaided, to do the best he might with a transit and maral circle. He was reliered from this dificulty by the affection and intelligence of Mra. PaLlowh, who offered to undertake the circle observations while he was engaged with the transi, a very little instruction sufficed to render her perfectly competent for this tack : and the Cape aetronomer had like Hivesius, the pleasure of finding his best asiutant in the partaer of his affections. Some of his letters, written at this time, exprea a atrong hope and confidence that he should at length be able to justify the high expectations which had been formed of the observatory, and that his work would bear a comparison in accuracy, though not in extent, with that of any other extablishment.
"But the labours of the obseryatory were too much for a constitution already moch enfeebled by previous, jllaess. He had suffered very severely from a coup de sokeil, soon after his arrival at the Cape, while fixing the small transit ; and besides some less serions complaints, experienced a dangerous attack of scarlet fever in the suamer of 1830 , from which he seems never to have fully recovered. In the beginning of 1831, his bealth wes viaibly impaired, but he could not be induced to leave the obvervatory before the equinox. Towards the end of March, he became incapable of alruggling any longer with the disease, and went to Simon's Town : but it was now too late, and be breathed his last on the 25th July, 1831, in the forty-third year of his age."
Mr. T. Hempesson, well known as one of the most active and enlightened cultivators of astronomy, has been appointed to aucceed Mr. Fallows, with Mr. Miadows, as his assistant.
Captain Fortre (known as the companion of Capt. Parery in his voyage to the morth pole) was anfortunately drowned while descending the River Chagres, in a casce, towards his ship the Chanticleer, then lying at anchor. He had nearly completed his experimental voyage, the object of which was to swing Kater's convertible pendenum sear the equator, and in various places in the southern hemisphere. He had perfocmed this task at fourteen different places, and had amsssed a series of 1017 ebecrations, arranged with such system in printed registers that there will be litule dificalty in digesting the results.
M. Pons belonged to the observatory of Marseilles, where he became known from his meady atteation to the diecovery of comets: indeed in the beginning of his career be was pat at the head of an observatory at Lucea by Maria Louisa of Boarboo, with provision that he should receive 100 dollars from the Queen's purse for erery comet he might discover !
Meteorelogical Observations made at the Assay Office, Calcutta, for the month of Jamuary, 1033.

JOURNAL

07

THE ASIATIC SOCIETY.

No. 14.-February, 1833.

I.-Note on the Origin of the Kala-Chakra and Adi-Buddha Systems.

 By Mr. Alex. Csoma de Körös.The peculiar religious system entitled the Kála-Chakra is stated, generally, to have been derived from Shambhala, as it is called in Sanscrit, (in Tibetan " bdé-kbyung," vulgd "dè-jung," signifying " origin or source of happiness,") a fabulous country in the north, the capital of which was Calapa, a very splendid city, the residence of many illustrious kings of Shambkala, situated between about 45° and 50° north latitude, beyond the Sita or Jaxartes, where the increase of the days from the vernal equinox till the summer solstice amounted to 12 Indian bours, or 4 hours, 48 minutes, European reckoning.
The Kala-Chakra was introduced into Central India in the last half of the tenth centary after Christ, and afterwards, vil Cashmir, it found its way intoTibet; where, in the fourteenth, fifteenth, and sixteenth centaries, several learned men, whose works are still extant in that country, published researches and commentaries on the Kála-Chakra system; amoag these authors the most celebrated are Puton, or Bu-stom, Kuytur, or mKhas-grob and Padma Carpò, who lived respectively in the three centuries above-mentioned.
Padma Carpo (on the 68th leaf of his " Origin of (the Buddhistic) religion" k Chhos-kbyung (vulgd "Ch'os-jung," consisting of 189 leaves,) thus describes the introduction of the Kala-Chakra into, or at, Nalenda (or Nalendra, a large religious establishment in Central India), and the doctrine which it contained:
" He (a certain pandit called Tailu or Child) then came to Nalanda in Central India, (S. Madhyam, Tib. drus, or valgd U.) Having dexigned
over the door of the Bihar the ten guardians (of the world), he wrote below them thus:
"He, that does not know the chief first Buddha, (Adi-Buddha), knows not the circle of time. (Kála-Chakra, dus-kyi hkhor-lo, in Tibetan*.)

He, that does not know the circle of time, knows not the exact enumeration of the divine attributes.

He, that does not know the exact enumeration of the divine attributes, knows not the supreme intelligence (S. Vajra dhara jnydra, Tib. rdo-rjé hdsin-pahi ye-shes.)

He, that does not know the supreme intelligence, knows not the Tantrica principles (Tantra Yánam.)

He, that does not know the Tantrika principles, and all such, are wanderers in the orb of transmigrations, and are out of the way (or path) of the supreme triumphator (S. Bhagaván Vajra dhara, Tib. b,chom-ldan-hdas rdo-rje hdsin-pa.)
" Therefore, Adi-Buddha (Tib. mchhog-gi dang-pohi Sangs-rgyas) must be taught by every true bLáma (S. Guru, a superior teacher, religious guide), and every true disciple who aspires to liberation (or emancipation) must hear them." Thus wrote he:
" The venerable (the lord) Nárotapa (Narottama?) being at that time the principal (S. Upadhyaya, Tib. mkhan-po) of the Bihar; he, together with five hundred pandits, disputed with him, but when they saw that he excelled them all in disputing, they fell down at his feet, and heard of him Adi-Buddha; then this doctrine was much propa-gated."-See leaf 68, by Pádma Cárpo.

Here follows the text of the above quoted passage by Paidma Ca'rpo, both in the Tibetan and Roman characters.

[^9]

De nas dous Nalandar byon, gtsug-lag khang-gi sgo gong-du rnampe bchu dvang ldan bris, déhi gsham-du: " Gang-gis mchhog-gi dangpohi Sangs-rgyas mi-shes-pa dés ni dus-kyi hkhor-lo mi-shes.so; Ganggis dus-kyi hkhor-lo mi-shes-pa dés ni mtshan yang-dag-par brjod-pa mi-shes-so; Gang-gis mtshan yang-dag-par brjod-pa mi-shes-pa dés rdo-rje $h d s i n-p a h i-y e ́ s h e s-k y i ~ s k u-m i-s h e s s o ; ~ G a n g-g i s ~ r d o-r j e ́ ~ h d s i n-~$ pahi yéshes-kyi sku mi-shes-pa dés snags-kyi thég-pa mi-shes-so; Gang-gis snags-kyi thég-pa mishes-pa déthams-chad ni hkhor-va-pa sté lchom-ldan-hdas rdo-rje hdsin-pahi, lam dang bral-vaho. De-lta-vas-na mchhog-gi dang-pohi Sangs-rgyas ni bLímá dam-pa-rnams-kyis bstan-par-bya-zhing, thar-pa don-du gnyer-vahi slob-ma dam-pa-rnams-kyis mayan-par-byaho," zhes bris-pa.

Jovo Nírotapa dé dus déhi mkhan-po yin-pas, dé la sogs-pa Pandita lna brgyas brtsad-pas phul-du phyin-par mthong-nas zhabs-la btuddé dang-pohi Sangs rgyas nyan-pas chhér dar-var gyur-pa yin-no.

No mention is made of the Kala-Chakra, nor of Adi-Buddha, by ancient writers in India, till the 10th century, except in the first volume of the rGyut class in the Kah-gyur, where it is evidently an interpolation from true historical works of later ages.

Since the passage above exhibited is an authentic text for the name of Adi-Buddha, while it furnishes a general idea of the Käla-Chakra system, I have thought proper to bring it to the notice of the Society, and hope it will be of some interest.
11.-Journal of a March from Ava to Kendat, on the Khyendwen River, performed in 1831, by D. Richardson, Esq. Assistant Surgeon of the Madras Establishment, under the orders of Major H. Burney, the Resident at Ava.
20th January, time 5 h .20 m . distance 10 miles ; direction N. 40° W.; at noon, started from Ava; 12 h .25 m . crossed the river, which, with waiting on the northern bank for two horses and some coolies from the Myo Woon of Tsa-gain, detained us till 2 h .45 m . when we again proceeded, and at 3 h .25 m . passed Pa-be-dan, or Blacksmith's Village, of from seventy to are hundred houses, all inhabited by blacksmiths from Tsa-gain, (the city on the northern bank of the river opposite to Ava:) to this place the houses are nearly continuous. At 3 h . 35 m . pass Kyouk-tsheet, nearly the same number of houses; the inhabitants employed in making marble images for the pagodas, and other religious edifices. At 4 h . pass Magee-tzen, a village nearly the
same size as the others : about 4 h .30 m . pass within a furlong cast of the Kourg-menoo-dau-gyee pagoda, to the S. W. of which, about half a mile, is a swamp of some extent, and to the east of it, and of the road, another, called $Y e-k, h a$, the waters of which are extremely bitter. 5 h .20 m . halt at $T 8 a-y e$, a large village; the road throughout the day has been level and good : about two and a quarter miles west from the foot of the Tsa-gain hills;-the soil light and sandy : nearly the whole country, on both sides of the road, has been under cultivation, and the cholum* and paddy stubble is now covered with many hundred black eattle, in high condition. No Tes had been built for us here, though orders to that effect had been issued by the Lhwot-taw many days.

21 st . Time 3 h .5 m ., distance nine miles ; direction N. $20^{\circ} \mathrm{W} . ; 9 \mathrm{~A}$. M. leave Tsa-ye; 9 h .30 m . pass through Padoo, a large village, perhaps 160 houses. 12 h .5 m . halt at Kek-ka, about 90 houses (in the Zarat) ; appearance of the country much the same as the latter part of yesterday's march. Cattle numerous, water sufficient, and cultivation extensive, but slovenly in most places, with the exception of the spots where grain is sown, which is about a foot high, green and vigorous, and the fields well cleared: the jungle has been only partially grubbed out, and the paddy, sesamum, and cholum sown amongst the remainder. The road to-day level, and still light and sandy, has run along a plain, betweea the Tsa-gain hills to the eastward, running about N. $20^{\circ} \mathrm{W}$. distant three miles, and a ridge of elevated ground to the westward, running nearly in the same direction, distant about eight miles. Great part of this plain is, and the whole might be, brought under cultivation.

22nd. Time 7 h . distance 21 miles, direction N. $20^{\circ} \mathrm{W} . ; 8$ A. a. leave $K e k-k a$;- 8 h .50 m . pass Thughe, a small village, perhaps 20 houses :- 9 h .20 m . pass Pay Thughe, about 60 houses : -9 h .45 m . pass Own-ngay-bouk, about 70 houses:-10 h. 20 m . Kamday, small village ; in the palmyra tope, preparing to make sugar :- 11 h .10 m. Embay taung-cong;-11 h. 40 m. En-bay, rather a large village :-1 h. 20 m . They-yoin, small village, some remarkable pagudas :-3 h. 8 m . halt at $H e$-len, large village, about 150 houses. The road light sandy, as before, as far as They-yoin, from which commences a rich loamy clay, and the crops of grain seem from the stubble to have been heavier. The range of hills, to the westward of which we have been marching, terminated at $K e k-k a$, and exposed to view a second range somewhat higher than the first; the highest called Seew-koo-taung, perhaps 1500 or 2000 feet, bounding the Shan country, running nearly in the same direction

[^10](N. $20^{\circ} \mathrm{W}$.) and distant from the road perhaps 15 or 20 miles. After leaving En-bay, ap to which place the caltivation of all the common graia of this country was almost uninterrupted, with large and numerous herds of cattle and villages at short distances, -the horizon to the westward was bounded by apparently a thin strip of palmyra trees, running some way north, then coming round to the eastward, increasing in numbers, crossing the road, and running on towards the hills; immediately within these, to the westward, is a grassy, apparently marshy, plain of some miles, and immediately on the borders of this, about quarter of a mile from the road, small clusters of huts called Taha-doun, from the occupation of their inhabitants, who are salt-makers; and between these and the road, the paddy grounds, from which the salt is also obtained, continue to He-len.

23 rd . Time 8 h . distance 22 miles; direction N. $40^{\circ} \mathrm{W} . ; 8 \mathrm{~A}$. м. leave $H_{e-l e n, ~ i m m e d i a t e l y ~ a f t e r ~ w h i c h, ~ c r o s s ~ f o r ~ a ~ f e w ~ m i n u t e s ~ s o m e ~}^{\text {s }}$ high broken ground, at the foot of which cross some marshy grounds in the salt fields ; at $\mathbf{8} \mathbf{h . ~} \mathbf{3 0} \mathrm{m}$. the paddy fields and cattle of the village; -9 h .30 m . grassy plain with open jungle ; 9 h .45 m . jungle closer: - 10 h . pass a small village of 10 or 12 houses, called Tha-men-khyettshain, or cooked-rice shop, where three people may dine well for $\$$ of a tikal ; the inhabitants of this place belong to Mout-tsho-bo, and come out here, and to some other villages of the samenametn this neighbourhood in the fine monsoon, to keep these shops ;-10 h. 30 m . a small village or salt station with its paddy ground and cattle; 11 h .50 m . arrive at Mout-tsho-bo, famous as the birth place of Aloypra, a walled city of two miles square : the walls principally of bricks, partly of a kind of slate, are still in pretty good repair, though the city was at one time, since Alompra, entirely abandoned, and has only of late years been re-occupied; it is said to contain 1000 houses, which I should think rather under than over the true estimate, though there are extensive paddy fields, (amongst whieh many of the descendants of Aloupra are living by their labor) to the northward and westward, between the inner brick walls and the onter wall, or earthen mound, round which is the ditch. To the sonthward, there is no earthen wall, and the ditch is close to the brick walls. The inner small fort or rather palace enclosure (for it is without flanking defences of any sort, as indeed, is the large one to any extent), is entirely without inhabitants. The old palaoe nearly all down, and overgrown with long grass and creepers; it must have always been confined, as the Lhwot-tiou and platform for the gong for atriking the hours are divided from it, within the same enclosure, by a brick wall. The large pagoda called Shwe-ta-za, or Nae wadi see
thoo Koung-mhoo-dau, is of considerable size, but no gilding is now visible on it. 12 h .20 m . start, and at 1 h .25 m . pass out of the Kathee gate of the outer wall; the ditch, which on the south side is empty, and might be crossed without notice, is here in tolerable repair, and between the gateways to the right, full of water*. 2 h .35 m . a small village (Thamen-khyet-tshain). 3 h . pass $K a-d a u n$, a village of 50 or $\mathbf{6 0}$ houses : at four, halt at Kya-yowa, a village of about 200 houses. The first part of to-day's march has been less under cultivation than the same distance during any former part of the route from Mout-tsho-bo ; hitherto it has been almost continued : cattle and water abundant, the road good throughout : the eastward hills have been visible all day, but extremely distant in the afternoon: no high land visible to the westward, many of the villages surrounded with cocoanut trees, and the palmyra numerous throughout, notwithstanding the extensive production of salt. For the last two days, I have not tasted any water at all brackish. Of the salt, three different kinds are obtained-the red, the bitter (probably containing a portion of sulphate of magnesia), and the white; the two former are entirely used in mâking Gna-pee or Balachong ; the latter only is good and fit for culinary purposes.

24th. Time 7 h .10 m . distance 19 miles,-direction N. $65^{\circ} \mathrm{W}$. 8 s. м. leave Kya-yowa; 9 h. 15 m . pass the second Kya-yowa, of which there are three established by Bundools when he was Myo Woon of Debay-en, and governor of the northern provinces: to pass a small grassy lake, and the third Kya-yowa;-10 h. 30 m . pass Men-daun. In the jungle to the north of this, which is scantily inhabited, there is a herd of 50 or 60 elephants, which are exceedingly destructive to the crops in this neighbourhood. 12 h .45 m . came on the banks of the Moo river now easily fordable on horseback, but of much greater extent and depth in the rains. There are now two streams of nearly equal size, with an extent of perhaps 100 yards of land between; the whole from bank to bank cannot be less than 400 yards. Crossing which river and waiting at $Y e-00$, a large village on the western bank, for some fresh horses, detained us till 2 h .5 m . and at 3 h .15 m . halt at Pha-lan-goun. Paid my respects in the evening to the Debay-en Myo Woon, (a relation of the Queen's,) who is a Mengyee, and in addition to his Myo Woonship, also governs the northern provinces: he is a man of about 45 years of age, of intelligent and rather prepossessing appearance ; he was engaged in the usual important duty of witnessing a ppoe (or natch) on the occasion of calling Thadoo

[^11]to a new pagoda, many of which edifices and some magnificently gilded, with Phoun-gyee houses and tanks attached, have been constructed by him, and his predecessor, proclaiming the richness of his government.
The hills to the northward were visible till noon, since which I had not seen them : inhabitants, cattle, cultivation, and water, plentiful; and the roads good for any description of carriage at this season.
25th. Halt at Pha-lan-goun, which is a large scattered village of probably 150* houses ; the govertior of thenorthern provinces has now his residence here. The city of Debay-en, from which he takes his title, is situatedabout six miles to the south-westward; it is nearly depopulated, and the wallsentirely out of repair. He (Myo Woon) furnishes from hisgovernment (which extends now, since the removal of the Myo Woon of Mout-tsho-bo from the Tsa-gain territory, to the Khyendwen), $\mathbf{3 6 0 0}$ soldiers and six b6s or officers. $\mathbf{3 0 0}$ of them have been exercising with muskets last evening and to-day, assisted by some natives of British India, six of whom left Ava three months ago, receiving 25 tikals each; they say, they have been drilling recruits to the northward, and are now about to return to Ava.

Grain is here plentiful, and tolerably cheap; paddy sells at from 15 to 20 titals per 100 baskets; cholum, 10 tikals per 100 baskets, and the sesamum oil $\frac{1}{4}$ tikal the vis, and palm sugar (a large quantity of which is made here, and sent to the other parts of the country, even exported at Rangoon; the season for entering on the manufactory commences the end of next month), I understand it sells for 15 tikals the 100 vis. Though cattle are so plentiful here, I am told that as much as 80 tikals is sometimes. given for a good caste bullock, with the proper marks; but cows and the common bullocks sell from 5 to 8, or 10 tikals; and for common draught cattle, from 10 to 15 . Got some coolies and horses here.

26 th. Time 4 h . distance 12 miles; direction N. $60^{\circ} \mathrm{W}$. left Pha-lan-goun at 8 h .55 m. p. m. Pass Sedi Mee, a village of 30 houses;-9 h. 25 m . Way They, of the same size; - 10 h .10 . m. Yowatheet, about 100 houses, which is called Yowama, or chief village, from which many little nameless villages in this neighbourhood are offsets.-11 h. 25 m . cross a small nala, and $8 \mathrm{~h}, 12 \mathrm{~m}$. halt at Myago. The whole march to-day has been one uninterrupted sheet of cultivation; the soil, rich clayey loam, the crops heavy and close, and the whole country studded with palm trees, round which the paddy is sown with no more loss of room than the size of their trunks. The trees most namerous in the jungle are the Theet-tse, which were in full flower on my return on the 19th February.

[^12]27th. Time 9 h .15 m . distance 25 miles,-direction N. $80^{\circ} \mathrm{W}$.; i h .35 m . leave Myagoo ; at 8 h . pass a amall village, where sugar is made; 9 h .30 m . another small village, of 5 or $\mathbf{6}$ houses,-small stream. 12 h . cross the wide bed of a nameless mountain stream, in which the streana of water at this season is not ankle-deep; from this there is a slight gradual ascent;-at 4 h . pass the village Yova-ngay, 20 houses; 4 h .50 m . halt at Benthee in the jungle. No village, and very little water; the road has been as good as usual, but entirely in the jungle. Since 9 h .30 m . with the exception of the little village of Yonod-ngay*, we have seen neither inhabitants, cultivation, nor cattle, and the palmyra has entirely disappeared; the jungle has been open, principally composed of E nt trees; some teaks of fair size, and a great number of Theet-tse trees.

28th. Time 6 h .30 m . distance 19 miles; direction S. $60^{\circ} \mathrm{W} .7$ h. 30 m . leave Benthee; 8 h .15 m . pass the end of a deep ravine, running N. from the road. Since noon, yesterday, have been ascend-ing;-now (8 h .45 m .) descend \ddagger into the broad bed of a river (without a name), along which in deep sand, the road runs all the way to Thoun-bouk, when it falls into the Khyendwen, and along which a small stream of water finds its way, occasionally on the sarface, occasionally lost in the sand; the banks, which are of soft sandstone, vary from 20 to 100 feet, often perpendicular; sometimes on both, sometimes only on one side of the river, the other being low, covered with jungle, as the high banks are to their edges. In width the river varies from 40 to 120 yards, or more; and in the sand are many larger rolled masses of granite and sienite; but I saw no other rock in situ but the argillaceous sandstone, of which the whole of the bank is composed, and which is in a state of decomposition wherever it is exposed to the action of the atmosphere. 11 h . Kimdogue, a small village, with 10 or 12 houses, some cattle, baffaloes, and cultivation about it; there is a ravine, running away to the N. W. and a small stream comes down from the westward, running apparently in much the same description of bed as that down which we have come, which joins here; and the ground is more

[^13]swampy (with long grass) than any part of the country since leaving Ava; the road is however atill very passable for any common carriage: 1 r. M. low range of hills, $\mathrm{S} .70^{\circ} \mathrm{W}$. distant six miles, running $\mathrm{S} .20^{\circ}$ bed of the river, which is now a continued stream, and march along its banks till two :-halt at Thown-bouk, a village of abont $\mathbf{2 0}$ or $\mathbf{3 0}$ houses on the E. ; leave the banks of the Khyen-dween. The road we have come to-day is the only one by which commumication is held with the capital; even in the rains, though the torrent is so impetuous during and immediately after heavy rain as not to be fordable, yet it soon runs off and never sends a continued body of water into the K hyen-dwen for any length of time.

29th. Time 4 h .15 m . distance 12 miles, direction about $\mathrm{N} .75^{\circ} \mathrm{W}$. 8 h .30 m . send the baggage by the river, by which greater part of the communication to the N. W.is carried on; we leave Thoun-bouk; for a few minutes we traivel through a thick jungle, then ascend a low but steep hill, down the descent of which we are obliged to dismount and lead the horses. At 9 h .10 m . in sight of the $K h y c n-d w o n$, and proceed along the broad bed of a mountain torrent in deep white sand, with high perpendicular banks ranning off in ridges from the stream:9 h .35 m . enter the jungle, and immediately ascend another hill; pass along a narrow ridge, and descent very steep; continue crossing steep ridges of low sandy hills, covered with jungle, and winding amongst them in the dry beds of torrents, till 12 h .15 m . When we pass a small village in a cultivated plain :- 12 h .30 m . cross a small stream about knee-deep, in which the horses suddenly sink up to their girths in the sand, and we are obliged to dismount, to allow them to extricate themselves; they crossed with some difficulty. 12 h . 45 m . at Mouk-ka-dau, a village of perhaps 80 or 100 houses, close to the banks of the Khyer-dwers. About one day to the north of our march to-day, are a considerable number of cassia trees. In the bed of most of the streams and on many of the hills also, saw numerous (calcareous) woody petrifactions, but could hear of no fossil organic remuins in this neighbourhood; there are two pretty large boats on the stocks here, and teak timber of good size cut in the neighbourhood, ready for the construction of others.

30th. Time 6 h .20 m . distance 17 miles; direction N. $30^{\circ} \mathrm{W} .3$ 7 h .50 m . leave Monk-ka-dax, and in a few minutes descend slightly into the valley of the stream in which the horses swamped yesterday :-pass along a bad and swampy road through paddy fields, into which the water has been turned for cultivation; cross and recroes the stream till 9 h .45 m . when we proceed up a. small branch more to the westward, with high mandstone banks on the west-
ward and jungle on the eastward side, along which we proceed till 11 h. 25 m . when the water is lost in the sand; halt till 12 ; then to $P a$-doo-yee, where we halt at 3 h .15 m . in a small bamboo $Z a$-yat in the jungle: the road has much the same character as yesterday, with the addition that some of the ravines close to the road have a considerable appearance of danger ; both sides of the first stream, along which we passed till 9 h .45 m ., are well cultivated and inhabited, with many buffaloes and some black cattle. We followed the cart road of the valley till 11 h .25 m . when we left it to the eastward; the jungle principally composed of $E n$ trees, with a considerable number of teak and Theet-tse trees: we have seen numerous marks of deer, wild hogs, and cows throughout the march ; passed some small pieces of petrified wood, but not nearly so abundant as yesterday.

31 st . Time 7 h .45 m . distance 20 miles-direction N. $35^{\circ} \mathrm{W}$. at 7 h . 45 m. . . M. leave $P a$-doo-ye, and proceed along a jungle path in all respects the same as that we have followed for the last two days, till 4 p. m., when we pass some paddy fields with a few buffaloes belonging to the small village of Balet, which consists only of 4 or 5 houses, at which we halted at 4 h .25 m . Some high hills to the westward of the Khyen-dwen, within a few miles of which this village is situated. One visible from this, bearing N. $80^{\circ} \mathrm{W}$. distant 15 miles-direction of the range is about N .10 W .
lst February. Time nine hours; distance 25 miles; direction N. 20° W.; were nearly losing some of the horses in the night by a tiger, which has done a good deal of mischief between this and the next stage; $5 \mathbf{h}$. 50 m . leave Balet by a sandy road, on the side of a small stream, with paddy fields along its banks, till 8 h .30 m . when we halted at Ma-tsex to breakfast; had cold dew or fog all the morning, so heavy as to fall from the trees, as after a shower. We have had daring the night ever since entering the jungle, and it will continue it is said till the beginning of the rains, which set in here about the middle or end of this month. 10 h .25 m . leave Ma-tsen, by a pretty good buggy road along the edge of the stream we have followed from Balet, and which here runs in a valley of about a mile in width. This valley is nearly all under cultivation, with a good many black cattle and buffaloes; it is bounded on the west by a low range of hills, and to the east by high hills running off in ridges to the northward; the little villages in this valley go by the general name of Ma-tsen, and are said to amount in all to about 400 houses. 12 h .30 m . leave the valley, and cross some steep, but low hills, by a rugged path, in rather thick jungle, till 1 h .20 m .; pass a small village. From this to Nauthee the
course of the river is exceedingly circuitous amongst low ragged hills, across which our path has lain : after passing three small villages, each in its little valley by the stream, which is here perhaps two and half feet deep, at 4 h .45 m . halted at Nanthee, a village, 40 or 50 houses, with extensive paddy fields, many black cattle, and a few horses.

2nd. Time 5 h .40 m .; distance 16 miles; direction $\mathrm{N} .20^{\circ}$ E. $\mathbf{7 h} .50 \mathrm{~m}$., leave Nanthee, and proceed along the banks of the stream in a little valley, two or three miles in width, in which the Nan. thee villages are scattered in the same way as were those of Ma-tsen yesterday; road partly good, till 9 h .30 m . when we entered the jungle, and the path assumes the same character as the jungle of the last few days, from 1 h .30 m . till 2 h .30 m . when we halted at Kendat : the road is level, and the country open and cultivated to the N. W. as far as the Khyen-dwen river; immediately on the western side of which, distant about six miles, the rugged hills of the Masipúr territory rise to some height, and run away in confused and broken ranges to the N. E. close to the edge of the river. Kendat, the present residence of the Khambat or Kendat Woon, (for the. former title is still given him by the Burmans, though the town from which he takes it, is at present subject to Manipúr ;) is a long, narrow jungle-wood stockade close to the east bank of the river, containing perhaps 12 or 1400 inhabitants, situated in a long narrow swampy valley, lying along the river, about 15 or 20 miles in length and averaging one-half or two miles in width, with a strip of swampy ground, which appears at one time to have formed the bed of the river running to the eastward of it. The number of cattle is smaller in proportion to the number of inhabitants than in the villages nearer the capital. Bad as the road is from Thoun-bouk to this, I am assured, that Aloupra once travelled it in a carriage ! and that it is the best, perhaps the only one by which any number of people ever come in this direction, I have little doubt. It is called by all the poor people in the villages, who cannot be suspected of any motive to deceive, and who could not have been warned to do so, Lan-ma-dau-gyee, or great royal road (king's high way), and is I dare say very passable to a Burmese army, who have no commissariat, and whose artillery is not the most extensive, and is often moved by manual labor, assisted by elephants.

10th. Waiting to this date for the arrival of Captain Grant from Masipúr, who joined me this evening ; have seen a good deal of the Kambat Woon, since my arrival here; he tells me the Payen-dwen or amber mine, so called, is in the bed of this river, about 40 days from this place; but that the amber is found most abundant, about four miles inland, on the eastern side of the river, where it is obtained in pieces sometimes
one and a half foot or more in length, and images of Godama are formed of it; its price increases with itssize and transparency, but good amber may be bought on the spot for one tikal and a half a viss, and I am assured that the best would not cost five tikals.

The principal deposit of coal, which is found here in large quantities, in the bed of the river, is about 12 or 14 miles above this, in the small valleys, on both sides of the river. It is of that species denominated lignite, and some of it is so highly bituminized as to be converted into jet. In some specimens, whilst the outside contains this large proportion of bitumen, internally there is very little; the longitudinal fracture is dull, the woody structure perfect, and some of the fibres retain slight elasticity; the transverse fracture has in all instances some degree of lustre in situ; it is formed in sand, and soft sandstone rock, in large pieces, retaining the form of the trees, from which it was originally formed: the Burmans say it is useless as fuel, going out unless used with a large quantity of wood.*

17th. Having been provided by the Khambat Woon with three boats, we started this day at noon, on our return to Ava. The river which rums here to the southward and westward is wide, probably 600 yards; but the water is at this season confined to a narrow channel on the western side. In 1829, the river rose higher than has been remembered here, and the same was the case with the Me-ping, and rivers in north Laos, where a good deal of damage was done, and the crops, in many places, totally destroyed. Six p. M. halt at Matsein, the largest of the villages of that name; the river has been very circuitous throughout the day; the banks generally high sandstone hills, covered with jungle to the water, which is so shallow, where it extends nearly across the bed of the river, that the boat has grounded once or twice; the villages four in number, generally small; no cultivation visible on the immediate banks of the river.

18th. Seven h. 20 m. A. m. leave Mat-sein, and at 6 h .30 m. p. m. halt at Oo-yowa; passed eight villages on our route to-day, some of them (as Kea-dret, which we passed at nine o'clock,) larger than any of those we passed yesterday; at 11 h .40 m . a small river falls into this from the north-eastward, which the people in my boat say is the Myocttha. The pature of the country has been nearly the same as yeaterday, viz. high hills, often nearly perpendicular towards the river ; covened with jungle, till 3 p. m.; since which the hills have retired from the river, and the country has been more level, but covered with jungle; we have passed a good many fishing stakes, and several parties of fishermen hutted on the sands.

[^14]19th. Seven h. 15 m . leave $00 ;-10 \mathrm{~h} .30 \mathrm{~m}$. the river gives off a branch nearly as wide as the main stream. 10 h .45 m . pase the city of Men-gen, about 150 houses with gardens, tastefully dispersed along the banks of the river: where also are the boats of the village, (for a village it is now,) amounting to about 100 or upwands, many of them good sized. 12 h .20 m . the branch mentioned at 10 h .30 m . here rejoined the main stream. 3 h .35 m . Mouk-ka-dan, and at 5 h . halt at Thoun-bouk, where the horses had arrived about a quarter of an hour before us; we passed six villages to-day, including Men-gen and Mouk-ka-dau; all small, but the two named; the course of the river was very circuitous, and the hills (which are of sandstone, soft and friable at the upper part and more compact near the bottom) again close to it, but to-day frequently only on one side, the other being level.

20th. From this we returned by the same route we travelled in the way up, making longer marches, and reached Ava in six days. We had heavy rain the first three marches, from which the people look on the rains as set in, and are in many places preparing the ground for the paddy. The lest three days, however, it cleared up again, and the sun was exceedingly powerful till our arrival at Ava, where we halted on the 25th, at noon.

Should it ever be necessary to move a force across this part of the country, the way in which I have returned is the only practicable one. From Ken-dat to Thown-bouk, the road is impassable for all sorts of carriage, but boats may be had on the river: from Thoun-bouk to Ava the road is good; water, cattle, grain, every necessary in greatest abundance.

It may be worthy of remark here, as a little clue to the feelings of the people towards us, that I was very well received by the Debayen and Kambat Woons; that after the third day's march, tes or little temporary hoeses were invariably erected for us as had been ordered by the Koon-gyees, and the people voluntarily appeared to pay us more attention in proportion as we receded from the capital. On my return, the lower orders were universally anxious to learn the result of my Mission, with the object of which they all appeared acquainted ; and on being told that every thing was quiet and right, I was always greeted by the exclamation of "thedoo," "thadoo*," (counting beads at the same time)-an expression which entitles the person making it to a portion of the merit arising froma a good work, whilst it increases, or, at all events does not diminish that accroing to the performer of it.

[^15]Remarks on the Route Protraction, Pl. V.

The Irravaddy and Moo rivers, in this sketch, have been copied from the Map of Ava in Mr. Crawford's Mission, and the Khyen-dween river from Lientenant Montmorency's Survey, as given in Lieutenant Wilcox's Map of the countries to the E. and N. E. of Bengal. The position of Kendat and Mouk-ka-daw, as well as of Ava, being fixed according to the above authorities, an attempt has been made to lay down Mr. Richardson's route, so as to correspond with those points. The following table will show the direction and distance travelled on each day, as computed by Dr. Richardson, and the corrections, on account of the windings of the road, and alterations made in order to reconcile his route with the situation of Mouk-ka-daw and Kendat.

Dr. Richardson's Compatation. Correction and Alteration.
1st day, 20th Jan. From Ava to Tea-ye, N. 40 W. 10 miles, N. 40 W .8 milee
2nd do. 21st do... To Kek-ka, N. 20 W. 9 do.... N. 20 W. 7 do.

3rd do. 22nd do.. To He-len,........ N. 20 W. 21 do.... N. 20 W. 16 do.
4th do. 23rd do... To Kya-yown,..... N. 40 W. 22 do.... N. 40 W. 17 da
5th do. 24th do... To Pha-lan-goun, .. N. 70 W. 19 do.... N. 70 W. 16 de.
6th do. 25th do... To Mya-goo, N. 60 W. 12 do.... N. 60 W. 101 do.
7th do. 26th do... To Ben-thee, S. 80 W. 25 do.... S. 80 W. 20 da
8th do. 27th do... To Thoun-boak,.... S. 60 W. 19 do.... N. 10 W .17 do.
9th do. 28th do. . To Mook-ka-da, .. N. 80 W. 12 do.) a N. 40 W. 9 do.
10th do. 29th do... To Padoo-ye, N. 30 W. 17 do.
1lth do. 30th do... To Balet, N. 35 W. 20 do. H . 0 W. 15 do.
12th do. 3lst do... To Nan-thee, N. 20 E. 25 do. ${ }^{2}$ N. 15 E. 17 do.
18th do. lst Feb. To Ken-dat,....... N. 10 W. 10 do.... N. 15 W. 9 da
Total, 221 miles. Total, 176 miles.
The most important deviation from Dr. Richardson's computation was found necessary to be made, in the direction of the route from Ben-thee to Thoun-bouk. Captain Baker, who visited Mont-tsho-bo in 17 hours, 55 minutes, estimates Ava to be 45 miles distant, and states that hestopped and landed at Khoun-meon, (Kyouk-myoung,) on the Irrawaddy, and that this place is 12 miles due east from Mout-tsho-bo.-(Dalrymple's Oriental Repertory, vol. i. 147, 169, and 176.) Kioum-young, in Mr. Crawfurd's Map, is due east from the position given to Mont-tsho-bo in Dr. Richardson's route, which makes this city 40 miles from Ava. But it would appear, that the Irrawaddy, in this part of its course, must have a direction 14 miles more to the westward, than what is marked in former maps. Dibayen, Dr. R. learnt, is only six miles to the S. W. of Pha-lan-goun, and not so near to the Irrawaddy as before supposed. The situation of the great lake, or Kan-dau-gyee, also must be different. Dr. R. understood, that water can be let into the ditch of Mout-tsho-bo fort from that lake.

Dr. R. on his return from Kendat, came down the Khyen-dven in a boat in three days to Thoun-bouk, and thence to Ava he travelled by the same route as before.

ITR Tasin lith.
III. -Trisection of an Angle. By Col. Nasmyth Morrieson., Proposition 1st, Theorem.

If, from the vertical angle of a triangle, having one of the angles at its base double of the other one, and the vertical angle greater than half a right angle, a straight line be drawn to cut the base, making an angle with the greater side of the triangle adjacent to the vertical angle, equal to the lesser angle at the base; and if from the vertical angle as a centre, at the distance of the lesser side of the triangle adjacent to the vertical angle, a circle be described; the circle, and the line drawn from the vertical angle to cut the base, and the base of the triangle, have one common intersection.

Let ABC (fig. 1) be a triangle, having the angle BAC, one of the angles at its base double of the angle BCA, the other angle at its base, and its vertical angle ABC greater than half a right angle; and let the straight line BD be drawn from the vertical angle ABC, to cut the base AC in D, making with CB, the greater side of the triangle adjacent to the vertical angle, the angle, CBD equal to BCA, the lesser angle at the base (23.1); also from B as a centre at the distance BA, the lesser side of the triangle adjacent to the vertical angle, let the circle ADE be described ; the circle ADE , the line BD , and the base AC intersect one another in one common point D.

Because, by construction, the angle DBC is equal to the angle DCB, the side BD is equal to the side CD (5.1), and D is the point of intersection of BD and AC. Again, because BDA, the exterior angle of the triangle BDC, is equal to the two interior and opposite (32.1) and also equal angles DBC, DCB, therefore, BDA is double of DCB, that is ACB ; but, by construction, the angle BAC is double of ACB, therefore BAC is equal to BDA (6 ax); and because the angle $B A C$ is equal to the angle BDA, the side BD is equal to the side BA (5.1); wherefore the circle ADE described from the centre B , at the distance BA passes through D , the extremity of BD , or D is the point of intersection of the circle ADE and the line BD; but it bas been already shewn that D is the point of intersection of $B D$ and AC, consequently the circle ADE intersects, in the point D , the line AC ; therefore the circle ADE, and the straight lines AC and BD intersect in one common point D. Q.E.D.

Proposition 2nd, Problem.

To draw the base of a triangle, so that, of the interior angles at the base, one shall be double of the other, the vertical angle of the triangle being a given rectilineal angle greater than half a right angle.

Let ABC (fig. 2) be any given rectilineal angle greater than half a right angle. Having placed it. for the vertical angle of the triangle ABG, it is required to draw the base AG, so that of the interior angles it shall make with BA and BC, at the base of the triangle ABG, the one shall be double of the other.

From the centre B at any distance BA describe the circle ADE; again, from the centre B at twice the distance $B A$ describe the arch of a circle $F H$, cutting $B C$, in F; also from the centre A at three times the distance BA, mark the point C in the line BC; divide the segment FC into three equal parts ' (9.6) ; make FG equal to one-third part of FC (3.1) ; through Gdraw GH at right angles to BC (11.1), meeting the arch FH in the point H ; join BH and $\mathbf{G A}$; the line GA is so drawn that BAG, one of the angles at the base of the triangle ABG, is double of BGA, the other angle at the base.

Because the two straight lines BH and AG and the circle ADE intersect in D , the two sides BD, BA of the triangle ABD , being radii of the circle ADE , are equal to one another (11.def.) ; also BH, which is equal to $B F$ (11.def.) and double of BA or BD, is bisected in D; again, because BGH is a right angle sabtended by BH , it is an angle in half the circle, having BH for its diameter and DB for its radius (31.3); and because GD joins the vertex of the right angle BGH and D, the point of bisection of the diameter, it is equal to DB (11.def.). Now because DG is equal to DB, the angle DBG is equal to the angle DGB (5.1); and they are the two interior and opposite angles to BDA, the exterior angle of the triangle BDG, therefore BDA is equal to them both (32.1), and double of either of them, that is, it is double of DGB ; but the angle BAD is equal to the angle BDA, because BD is equal to BA (5.1), therefore BAD, that is BAG, is double of DGB, that is, AGB. Wherefore the base AG is drawn so that the angle BAG, one of the angles at the base of the triangle ABG, is double of BGA, the other angle at the base. Which was required to be done.

Note.-The truth of the above demonstration rests upon the straight lines BH and AG and the circle ADE having one common intersection; but as the circle and any two right lines have not of necessity one common intersection, it may perhaps be objected to, on the ground, that though it states the fact, it does not prove the intersection of the circle ADE and the right lines BH and AG in the common point D. To remove that objection, the following demonstration is given.

The construction being the same as above, instead of joining GA. proceed thus :-join BH, and let BH cut the circle ADE in the point \mathbf{D}; join $G D$ and $D A ; A D, D G$ are in the same straight line, and $A G$, the

$r=$ racion lis.
base of the triangle ABG, is so drawn that BAG one of the angles at the base is double of BGA the other angle at the base.
AD and DG are in the same straight line; for through D draw DK, making the angles KDA, KDG equal to one another (9.1) ; take any point L in the line KD, and from the centre L at the distance $L D$ describe the circle DNMK ; if necessary, produce DB to meet the circle DNMK in M; join MK ; and make the angle MND in the segment DNM of the circle DNMK. Now the angles KDG, KDA are either together, equal to, or greater, or less than two right angles ; if greater, then KDG is greater than a right angle, and GD being produced in the direction of D , will fall within the circle DNMK on the opposite side of KD from DG (Cor. 16.3), which it does not, therefore KDG is not greater than a right angle : neither is it less than a right angle, for then DG would fall within the circle DNMK (16.3), which it does not; therefore KDG must be a right angle : and because at the point D the extremity of the diameter DK, DG makes a right angle with DK, therefore GD touches the circle DNMK (Cor. 16.3), and because DM, drawn from the point of contact D, cuts the circle DNMK, the angle MDG is equal to the angle DNM in the alternate segment MND (32.3). Again, because the angle KDA is equal to the angle KDG, it is a right angle, and also touches the circle KMND (Cor. 16.3); and because DM, drawn from the point of contact D, cuts the circle DNMK, the angle MDA is equal to the angle MKD (32.3); and because KDNM is a quadrilateral figure, described in a circle, the opposite angles MKD, DNM are equal to two right angles (22.3), therefore the angles MDG, MDA, being equal to the angles DNM, MKD are also equal to two right angles ; and since at the point D, in the straight line MD or BD, the two straight lines DA, DG, upon the opposite sides of MD, make the adjacent angles MDA, MDG, equal to two right angles, AD is in the same straight line with DG (14.1) : and the figure AGB being contained by three straight lines, is therefore a rectilineal triangle (16 def.) Now BD is equal to BA, being radii of the same circle ADE (11 def.), and because BH is a radius of the circle of which FH is an arch, it is equal to BF and donble of BA or BD, and bisected in \mathbf{D} by the circle ADE ; also because BGH is a right angle, subtended by BH, it is an angle in half the circle, having BH for its diameter and DB for its radius (31.3); and because GD joins the vertex of the right angle BGH and D, the point of bisection of the diameter, it is equal to DB (11 def.) Now, because DG is equal to DB, the angle DBG is equal to the angle DGB (5.1), and they are the two interior and opposite angles to BDA, the exterior angle of the triangle BDG, therefore BDA is equal to them both (32.1), and double of either of
them, that is, is double of DGB; but the angle $B A D$ is equal to the angle BDA, because $B D$ is equal to $B A$ (5.1), therefore $B A D$, that is BAG, is double of DGB, that is, AGB. Wherefore the base AG is drawn so that the angle $B A G$, one of the angles at the base of the triangle ABG, is double of BGA, the other angle at the base. Which was required to be done.

Proposition 3rd, Problem.
To divide any given rectilineal angle into three equal angles.
Let ABC be any given rectilineal angle, it is required to divide it into three equal angles.

Consider whether the given angle is greater or less than three half right angles. First, let the angle ABC be less than three half right angles. Take any point D in $A B$, and through D draw $D E$, parallel to $B C$ (31.1); then the angle BDE is the angle to be placed as the vertical angle of the triangle BDL; which having obtained, draw the line BL in the same manner as was done in the diagram for the foregoing proposition No. 2 ; and bisect the angle ABL by the straight line BO (9.1). The straight lines BL and BO divide the angle ABC into three equal angles.

Because DE is parallel to BC, and LB falls upon them, the angle DLB is equal to the angle LBC (29.1); and because the angle DBL is double of the angle DLB, as demonstrated in the 2nd proposition above written; therefore the angle DBL is double of the angle LBC; also because the angle DBL is bisected by the straight line BO, the three angles DBO, OBL, LBC are equal to one another.

Secondly. But if the given angle ABC be greater than three half right angles, bisect it by the straight line BN (9.1); and take any point D in $A B$, and through D draw DE, parallel to BN (31.1). Having thus got the vertical angle for the triangle BDL, viz. BDE, draw the line BL, as was done in the diagram for the foregoing proposition No. 2; and bisect the angle LBC by the straight line BO (9.1); the atraight lines BL and BO divide the given angle ABC into three equal angles.

As before, because the angle DBL is double of the angle LBN, it is two thirds of the angle DBN ; but because the angle DBN is one-half of the angle ABC , and that two-thirds of the half is one-third of any given whole, therefore DBL is one-third, and the remaining angle LBC is two-thirds of the whole angle $A B C$; and because the angle LBC is bisected by the straight line BO, the three angles ABL, LBO, OBC are equal to one another. Wherefore the given angle $A B C$ is divided into three equal angles by the straight lines BL and BO. Which was required to be done.
IV.-Short Description of the Mines of Precious Stones, in the District of Kyat-pyen, in the Kingdom of Ava.
[Tranalated from the original of Pr'ziz Giusippe d'Anato.]
The territory of Kyat-pyen* (written Chia-ppièn by d'Amato) is situated to the east, and a little to the soath of the town of Mon-lha, (which latter place is by observation in latitude $22^{\circ} 16^{\circ}$ North,) distant 30 or 40 Burman leagues, each league being 1000 taa, of seven eabits the taat; say 70 miles. It is surrounded by nine mountains. The soil is uneven and full of marshes, which form seventeen small lakes, each having a particular name. It is this soil which is so rich in mineral treasures. It should be noticed, however, that the ground which remains dry is that alone which is mined, or perforated with the wells whence the precious stones are extracted. The mineral district is divided into 50 or $\mathbf{6 0}$ parts, which, beside the general name of " mine," have each a distinct appellation.
The miners, who work at the spot, dig square wells, to the depth of 15 or 20 cubits, and to prevent the wells from falling in, they prop them with perpendicular piles, four or three on each side of the square, according to the dimensions of the shaft, supported by cross pieces between the opposite piles.

When the whole is secure, the miner descends, and with his hands extracts the loose soil, digging in a horizontal direction. The gravelly ore is brought to the surface in a ratan basket raised by a cord, as water from a well. From this mass all the precious stones and any other minorals possessing value are picked out, and washed in the brooks descending from the neighbouring hills.
Besides the regular daty which the miners pay to.the Prince, in kind, they are obliged to give up to him gratuitonsly all jewels of more than a certain size or of extraordinary value. Of this sort was the tornallina (tourmaline ?) presented by the Burman monarch to Colonel Symes. It was originally purchased clandestinely by the Chinese on the spot; the Burmese court, being apprized of the circumstance, instituted a strict search for the jewel, and the sellers, to hush up the affair, were obliged to buy it back at doable price, and present it to the king.

[^16]You* may ask me, to what distance the miners carry their excavations? 1 reply, that ordinarily they continue perforating laterally, until the workmen from different mines meet one another. I asked the man who gave me this information, whether this did not endanger the falling in of the vaults, and consequent destruction of the workmen ? but he replied, that there were very few instances of such accidents. Sometimes the miners are forced to abandon a level before working to day-light, by the oozing in of water, which floods the lower parts of the works.

The precious stones found in the mines of Kyat-pyen, generally speaking, are rubies, sapphires, topazes, and other crystals of the same family, (the precious corundum.) Emeralds are very rare, and of an inferior sort and value. They sometimes find, I am told, a species of diamond, but of bad qualityt.

The Chinese and Tartar merchants come yearly to Kyat-pyen, to purchase precious stones and other minerals. They generally barter for them carpets, coloured cloths, cloves, nutmegs and other drugs. The natives of the country also pay yearly visits to the royal city of Ava, to sell the rough stones. I have avoided repeating any of the fabulous stories told by the Bnrmans of the origin of the jewels at Kyat-pyen.

There is another locality, a little to the north of this place, called Mookop, in which also abundant mines of the same precious gems occur.

Note.-While I am writing this brief notice, an anecdote is related to me by a person of the highest credit, regarding the discovery of two stones, or, to express myself better, of two masses (amas) of rubies of an extraordinary size, at Kyat-pyen. One weighed 80 biches \ddagger, Burmese weight, equivalent to more than 80 lbs .! the second was of the same size as that given to Colonel Symes. When the people were about to convey them to the capital to present them to the king, a party of bajdits attacked Kyat-pyen for the second time, and set the whole town on fire. Of the two jewels, the brigands only succeeded in carrying off the smaller one; but the larger one was injured by the flames : the centre of the stone, still in good order, was brought to the king. I learned this from a Christian soldier of my village of Mon-lha, who was on guard at the palace when the bearer of the gem arrived there.

[^17]
V.-Note on Saline Deposits in Hydrabad. By Assistant Surgeon J. Malcolmson, Madras European Regiment.

From the interest which these possess, and the discussions they have excited, without any precise information as to their geological position, I believe the following notice will be interesting.
The summits of most of the detached hills and minor ranges north of Cuddapah are composed of a sand-stone, stratified in a perfectly horizontal manner. It is often white, and the grains are large; but towards Tripetty, where it meets the granite, it is very compact and white, and it is a good deal inclined to the east. The red soil of the district is loaded with salt, which is manufactured by the natives, principally for their cattle; but as it is prohibited by the Government on account of the revenue from the salt monopoly, it is seldom extensively worked in the districts I visited. The range of hills through which the Benar river passes at the ancient fortress of Gundicottah is formed of this sandstone; but inclined towards the east at a slight angle, and by no means regalarly. This is separated by a narrow valley from hills exhibiting the horizontal strata on their caps, and the remains of these could be clearly traced on insulated conical hillocks, and had all belonged to one vast sheet. Below the sandstone caps, a clay slate, easily broken down, is foond, and the lower strata over the country is a stratified blue limestone. In the slope of the hill of Gundicottah are springs of very pare water, very profuse, and forming small rivulets, tumbling over the rocks in fine cascades, but evidently deriving their source from no great distance, as in a day or two after the rain we had, the streams were much diminished where they emerged from between the strata. The Benar and these streams have formed cliffs round the fortress of $\mathbf{2 0 0}$ or $\mathbf{3 0 0}$ feet, all of sandstone, but at the very bottom, a deep ravine. I found one or two clay slate strata of about an inch thick interposed; and a few miles below, the blue limestone appeared in the bed of the river. At a place eight or ten miles lower, the same rock abounds over the plains, and in the town is a salt well celebrated from its use in washing cloths of fine colors manufactured there, and to the fixing of which it is essential. I descended the well, and with some difficulty broke of specimens of the rock, which was deep blue slate-like stone, as if the clay were passing into the limestone, and between the thin slabs were layers of salt. The specimens were lost, but I hope to procure others. The salt was in great part composed of muriates of soda aod carbonate of soda, but they were not examined. Carbonate of soda eflloresces on the surface not far off, and this on being melted with
powdered quartz in the manufacture of bangles affords, attached to the glass, a hard solid pure white coat of muriate of soda, $\frac{3}{4}$ of an inch thick. Copious springs abound in the blue limestone, and those I saw were sweet, and probably flowed from the neighbouring sandstone. In a cavern in the lime opening above by a great longitudinal fissure, like that of Duncombe park, after a rapid descent of perhaps $\mathbf{3 0}$ or $\mathbf{4 0}$ yarde, I found further progress stopt by a stream of water running over a quartz sand. When the water was low, the natives told me they could go further, but at that time it reached within half a foot of the roof of the contracted extremity. The sand was probably derived from the cap of the adjoining hill. The sides were rough, with stalagnite exceedingly like the kaxkar found in great beds lying on the limestone. It is probable that the stream is not long subterraneous, as numbers of small fish approached the torches. The natives gave them a name, but I regretted I could not catch one for examination. Saperstitious stories led me to examine this, and other likely places for organic remains, and I think it probable, such may yet be found. In the sandstone are the celebrated diamond mines of Banganopilly. Shafts being sunk through the rock, till they reach the conglomerate containing the numerous species of minerals which experience has shewn to be associated with the gem, this is excavated and sent out of the mine to be broken up in search of the diamond. This conglomerate does not occupy a complete stratum, but generally varies in thickness. The sandstone in many places has been subjected to violent forces injecting, between its layers, a reddish iron-looking sandy rock, which has bent the thin strata above and below out of its place, and at others forced a way through the numerous vertical divisions of the stone, and appears to have flowed in a semifluid state over the surface, and to have carried along with it angular fragments of the rock, whick are fixed in it like plums in a cake. In one or two instanoes, the fragments seemed to have been broken, but not removed from their original situation; the lines of separation being filled with the same matter that flowed out. The end of a neighbouring hill is covered with round stones, several feet in diameter, hard, black, and apparently composed of trap, and called in the language of the country " black balls." The trap rocks are not known to exist within 50 miles. Amongst the "diamond stones," as they are called, there is one of a jet black, and very hard, suggesting that it might be of a carbonaceous nature ; and the appearances of the action of fire would favour an hypothesis of the carbon of this mineral being changed by that action into the diamond. This is a mere fancy, but it soems sufficient to direct
inquiry. The Chiaúr mines are in general formed by the destruction, by water, of hills, such as Banganopilly. The blue limestone has also experienced violent changes, forcing the strata into vertical and curiously contorted shapes, but in general it is little disturbed. I did not find nor hear of the remains of shells, although I looked anxiously for them; but there were, in many situations, numerous tubular perforations usually full of a kankar like matter mixed with iron, and very subject to decay. They were often arranged in rows, and sometimes lost in the stone gradually. If these are justly regarded as peculiar to lacustrine deposits, the absence of shells is singular ; but at Ellore, I have seen the trap perforated by similar shaped calcedonies, most properly compared to tobacco-pipe stalks. These rocks abound with curious minerals and phenomena, but these are the principal facts I observed connected with the question of the relations of the sandstone. I met with a blue limestone perforated as above, in the Guatoor Circar, ranning into the white lithographic marble of Mazopilly, on the Kistmah, and probably in some way connected with the diamond deposita of the district. The identity with the Hindustan sandstone appears from the number of variegated marks and of grits in the beds; from its use for architectural purposes, in being horizontally stratified; in the strata being sometimes unconformable;-in its being in the neighbour. hood of saline deposits of the same kind, and in both containing diamond mines and various iron ores;-in its passing into quartz rock, and being interstratified with clay slate, though rarely. If there is no misprint, it differs in lying on instead of being covered by a blue limestone, without fossils: vide Gleanings, vol. iii. p. 213.
P. S. The clay slate is sometimes wanting, and the sandstone then lies on the blue limestone as at Pushpagarry, immediately above the Chinter diamond mines; and here there are larger grits than in most other places, and small veins of quartz. Below the mines, the limestone is much contorted and dislocated. The limestone is not one of the diamond stones of the miners, although it abounds with the gem in the beds of Chinúr. Nor is there any trap rock amongst them, although Werner asserts they are found in Orisea at the foot of trap mountains. The subject of the origin of the "terreins de transport," in which they are found, is demonstrated by the aseociated stones in my possession ; but it appears very doubtful, whether they are of diluvial origin. as asserted by Buckland, using the word as opposed to alluvial. See Reliquia, page 220, and Bronguiart's Traité.
VI.-An Experimental Inquiry into the Means employed by the Natives of Bengal for making Ice. By T. A. Wise, Esq. M. D. (Read 3rd October, 1832.)
A large quantity of ice is used during the cold season in Bengal, for purposes of luxury, which is supplied by natives at a comparatively cheap rate, from their employing a process by which they can make a large supply at a moderate expence. As very imperfect accounts have hitherto been given of the means they employ, and as most erroneous opinions are generally received regarding the causes by which the required degree of cold is produced, I hope a short account of the principal ice-manufactory in Bengal will not be considered unworthy the notice of the Society.

A particular field in the neighbourhood of the town of Hooghly has been many years in requisition as the place for making ice, and is said by the natives to be the only one in this part of the country in which it can be produced in any considerable quantity : this seems the more reasonable, as the trials to make ice at Serampore, Calcutta, \&c. may be considered to have failed when the quantity is compared with that obtained at Hooghly. This peculiarity may be owing to the elevation, exposure, and distance of the latter from the sea. The soil of the field in which the ice is made is a black loam upon a substratum of sand; it is more elevated than the surrounding country, is liable to partial inundations in heavy rains, and is skirted on the south, east, and north by trees, and on the western and northern directions has an open plain for some extent.

The manufacturing commences towards the end of November, and generally continues until some time in February. These periods vary in different years, owing to such circumstances as the quantity of water upon the ground at the close of the rains, the early or late cold season, its length, \&c.

The best months for making ice are the latter part of December and the whole of January ; and during November and February, there are generally only a few nights in which ice is made in any quantity.

The natives commence their preparations for making ice by marking out a rectangular piece of ground, about 120 feet long, by 20 broad, in an easterly and westerly direction, from which the soil is removed to the depth of two feet. This hollow is smoothed and allowed to remain exposed to the sun for some time to dry, when rice straw in small sheaves is laid in an oblique direction in the excavation, with loose straw upon the top, to the depth of a foot and a half, leaving its surface half a foot
under the level of the ground. Numerous beds of this kind are formed, with a narrow path between them, in which large earthen water-jars are sank into the ground for the purpose of having water near, to fill the shallow unglazed earthen vessels in which it is to be frozen. These dishes are nine inches in diameter at the top, diminishing to $4 \mathbf{4}^{\circ} 6$ inches at the bottom, $1_{18}^{\frac{2}{8}}$ deep, and fis of an inch in thickness; and are so porous as to become moist throughout when water is put into them.
Daring the day, the loose straw in the beds above the sheaves is occasionally turned up, so that the whole may be kept dry, and the waterjars between the beds are filled with soft pure water from the neighbouring pools. Towards evening, the shallow earthen dishes are arranged in rows upon the straw, and, by means of small earthen pots tied to the extremities of long rods of bamboo, each is filled about a third with water. The quantity, however, varies according to the ice expected; which is known by the clearness of the sky and steadiness with which the wind blows from the N. N. W. When favourable, about eight ounces of water is put into each dish, and when less is expected, from two to four ounces is the usual quantity; but, in all cases, more water is put into the dishes nearest the western end of the beds, as the sun first falls on that part, and the ice is easier removed from its solution being quicker. There are about 4590 plates in each of the beds lately made, and if we allow five ounces for each dish, which presents a surface of about four inches square, there will be an aggregate of 239 gallons, and a surface of 1530 square feet of water in each bed.
In the cold season, when the temperature of the air at the ice-fields is under $50^{\circ *}$, and there are gentle airs from the northern and western direction, ice forms in the course of the night in each of the shallow dishes. Persons are stationed to observe when a small film appears upon the water in the dishes, when the contents of several are mixed together and thrown over the other dishes. This operation increases the congealing process. A state of calmness has been discovered by the natives to diminish the quantity of ice produced; and this is confirmed by the fact well known in our laboratories, that water may be gradually cooled down many degrees below the freezing point without congealing, provided it be kept perfectly still. When the sky is quite clear, with gentle steady airs from the N. N. W. the freezing commences before or about midnight, and continues to advance until morning, when the thickest ice is formed. I have seen it ${ }_{\mathrm{r}}^{\mathbf{\gamma}} \mathrm{t}^{\text {th }}$ of an inch in thickness, and in a few very favoarable nights, the whole of the water is sometimes frozen;

[^18]when it is called by the natives solid ice (pakka baraf); when it commences to congeal between two or three o'clock in the morning, thinner ice is expected, called paperi; and when about four or five o'clock in the morning, the thinnest is obtained, called phúl baraf. The freezing is frequently retarded in its formation during the night by the wind rising to a breeze about 11 or 12 p. M.,-by clouds, \&c. and the ice in consequence does not begin to form until towards morning.

In the most favourable nights, the dishes are generally found encrusted with ice, both on their inner and outer sides, which adheres to the rough surface of the plate with such a degree of firmness as to require it to be partially dissolved before it can be separated from the dish. I have often seen the natives wait until the sun was two hours and a half above the horizon, before they could remove it.
Seven or eight persons, generally women, are allowed for each bed, who with semicircular blunt knives remove the ice and water into earthen vessels. placed near them, which are moved along as they proceed in their work. When these vessels are full, they are emptied by men employed for that purpose, into conical-shaped baskets placed upon the jars between the ice-beds which retain the ice, and allow the water to flow into the water-jars. When the baskets are filled, their contents are conveyed to temporary ice pits, which are about six feet deep, by four in diameter, and are lined with mats. The ice is covered with straw, and allowed to remain until evening, when it is again taken out and placed in large pits. These consist of circular holes in dry situations from 10 to 12 feet deep, by 8 or 10 feet in diameter. These pits are well lined with mats, and when nearly filled, some more straw and a shed of the same material is placed over the ice. These non-conductors of caloric are not sufficient to prevent the influence of the neighbouring media, and a slow solution of the ice is the consequence, the water of which is conveyed by a small hole, below the level of the pits, to a well near it, from thence it is occasionally removed.

During the colder months, the ice is conveyed in the evening, in bags of coarse country cloth, to boats in which it is pat in bulk, and defended from damp and heat, and is sent to Calcutta daring the night, the dis. tance being about 40 miles; but, as the wastage is very considerable at the beginning and towards the end of the season, when it is most required and bears the highest price, it is then conveyed thither in baskets lined with straw and mats, and arrives before sun-rise.
The ice which is not immediately required remains in the pits while the ground is dry, where it slowly dissolves, especially along its sides ; but as soon as rain falls in any considerable quantit its high temperature quickly diseolves what remains.

Repeated trials have been made at different times to accomplish the desirable object of keeping the ice during the hot season; but so great is the first expense, and so small a quantity of that produced yields any return, that hitherto every trial has proved unsuccessful, and has entailed a heavy loss on the speculator. For the two last seasons, another attempt has been made to keep ice, but although every precaution was employed to guard against the influence of the sarrounding media; so powerful was it found during the last season, when the trial was for the first time properly made, that the experiment proved unfavourable, or only partially succeeded. The ultimate success of the measure must now however depend in a great measure on the encouragement it receives in Calcutta, through which the best hopes may be held out of introducing one of the greatest luxuries in a tropical climate during the hot-season.

When the ice bed is examined after a favourable night, the straw exposed between the plates and their sides is found covered with hoarfrost, and near the water on the inner side small irregular nodules of ice appear.

When the night has been very favourable, so as to freeze a considerable portion of the water, numerous small globules of air, naturally combined with water, are disengaged during the freezing process, and are found swimming upon the surface of the water, while others remain attached to the bottom of the plate.

The separation of air from the water increases as the congelation advances, and retards its progress more and more, as the proportion of ice is greater, antil nearly all the water is congealed, when a large globule of air is left at the lower and central part of the ice.

By expelling the air naturally contained in the water, by boiling, an increased quantity of ice is produced, but the expence of doing so is too great to admit of its being generally employed. On an evening in the cold season, I boiled some water for a short time, and found next morning more ice, but apparently as much air as in the neighbouring dishes.

When the wind attains a southerly or easterly direction, no ice is formed, from its not being sufficiently dry, not even, though the temperature of the air be lower than when it is made with the wind from a northern or western point. The most favourable direction of wind for making ice is the N. N. W. diminishing in power as it approaches the morth and west : in the latter case, more latitude is allowed than from the N. N. W. to the north. So great is the influence of the direction of the wind on the ice, that when it sometimes changes in the course of a night from the N. N. W. to a less favourable direction, the change not
only prevents the formation of more ice, but dissolves what may have been formed. On such occasions a mist is seen hovering over the ice-beds, from the moisture upon them, and the quantity of humidity contained in the wind. A mist in like manner forms over deep tanks during favourable nights for making ice.
Another important circumstance in the production of ice is the degree of wind. When it approaches a breeze, no ice is formed. This is explained by such rapid currents of air indicating a considerable difference of temperature between the situation from whence it passes, thus removing the cold air before any accumulation has taken place in the ice-beds. It is for these reasons that the thickest ice is expected when during the day a breeze has blown from the N. N. W. which thoroughly dries the ground, and towards evening and during the night diminishes to gentle airs, which steadily proceed from the same quarter, so as to allow the full influence of radiation and the impressions from the clear sky.
The ice dishes present a large moist external surface to the dry northerly evening air, which cools the water on them, so that, when at 61°, it will in a few minutes fall to 56°, or even lower. But the moisture which exudes through the dish is quickly frozen, when the avaporation from the external surface no longer continues to produce much effect.

To detect the influence of evaporation in producing ice, one of the dishes was placed in the evening upon a patch of grass, five feet above the level of the ice-beds, so as to be exposed to the full influence of the sky and the cold northerly wind. This was the most favourable situation for promoting evaporation. The night proved a favourable one for the formation of ice, and in the morning the dishes in the beds were covered with it, but the dish upon the elevation had lost weight during the night, and had no ice upon its surface ; the water soon after sun-rise was at 46°, on another morning the water stood at 50°. This experiment was varied by placing a brass vessel of the same size and form as the common plates upon a sprinkling of straw on an elevated piece of ground near the ice-beds. In the morning it was found about the same weight, without any ice, although the plates on the beds were covered with thick ice. On the same morning one of the porous earthen vessels similarly situated, and covered on its ander side with tinfoil, presented the same result.

As a further proof of the cold not being produced by evaporation, I next carefully weighed a number of the unglazed dishes in the evening and again in the morning, when I found that they had gained con-
siderable weight, which was owing to the absorption of moisture on the surface of the water exceeding the loss by evaporation from the external surface. The quantity of cold water which is sprinkled over the dishes is not sufficiently large to explain the great increase in the weight of the dishes, which I found was about the same when no water had been thrown over the bed. Glazed vessels of different colours were placed amongst the unglazed, which in the morning were found to have thicker ice, and to have gained more weight than the common dishes.

In eight experiments with the common unglazed ice-dishes, the average gain in weight, was 68.5 grains; and of five experiments with smaller black-glazed slightly porous dishes, this average was 110 grains. As the surrounding media must have a great influence on the formation of ice, I noted their different temperatures. The air at the iee-fields was always found warmer in the evening, and much colder in the morning, than at the neighbouring village of Bandel, where the ground is more sheltered by trees, from the direct influence of the sun's rays. The average of a number of experiments in favourable weather for making ice, gives, at Bandel, 70 degrees in the evening, and 56 in the morning; and at the ice-fields 72° in the evening, and 46° in the morning.

The temperature of the different substances in the neighbourhood, or forming part of the ice-beds, was examined a little before sun-set and soon after son-rise : on a clear evening and favourable morning, they were found to be as follows:-

> Morning. Evonim.

The air 5 feet above the ice-beds, 42° to $46^{\circ} \quad 72^{\circ}$
Water in the large jars between the ice-beds,. 44 to $60 \quad 68$
Water in a deep tank in ice-fields, 57 77
Ground in the neighbourbood, immediately under the surface,57
Straw in the ice-beds, 3 or 4 inches under the surface, 42 to 46 48

Ditto, of a thatched hut in the ice-fields, obliquely exposed to the sky,............................. . 44 61

The temperature that generally prevails on nights fitted for the manufacture may be learned from the following table, for which I am chiefly indebted to Mr. Herklots, Fiscal of Chinsurah.

Absbact of a Table of 11 years' Observatione on the Temperature of the Air at Chinsurak between the dason of day and swn-rise, dwring the season of Ice manvfacture, by Mr. Herklots, Fiscal of Chinowrah. The thermometer at the Ice-fields generally stood 6 or 7 degrees lower; but this is not shewon, except in the last year from Dr. Wise's Observations.

Note. In lieu of the more copions table given by Dr. Wise, we have condenoed thie own and Mr. Herklot's Observations into one table, which in fact sbews all that beare upon the queation of Ice-making, namely, the general temperature ander which it can be formed, and the prevailing wind.-Ed.

The result of the observations of last season, as shewn in the above table, proves that it is not by the temperature alone we are to judge of the number of nights in which ice is produced, for, owing to the frequent and heary falls of rain and the number of cloudy days last season, there were very few nights in which ice was formed, although the temperature mas for an unusual number of mornings at the degree required for producing it. The average number of nights in one season in which ice forms is from 25 to $\mathbf{3 0}$; of these there are about 18 favourable, in which the air is cold, the thermometer at Bandel under 54°, or, at the
ice－fields， 48° ．The very cold nights are from six to eight in one season， or in which the thermometer is below 48° at Bandel，or in the ice－fields， 42．The careful record of last season shews there were 27 nights on which ice was formed，of which only three nights were very favourable， seven favourable，and 17 less so．

As the influence of straw in producing the necessary degree of cold must be considerable，the following experiments were tried．One of the common unglazed dishes was placed at the bottom of one of the ice－ beds，with a very small quantity of straw between it and the earth，and another dish of the same kind was placed in the same way without any straw under it．Next morning I found ice had formed upon the water in the dish which was put upon the straw in the ordinary way，but there was none on the dish which had been placed without，nor on another at the bottom of the ice－beds；the water in the dish upon the sprinkling of straw being at 50° ，and the other upon the earth at 52° ． Soon after sun－rise on the same morning，the water in an ice plate， put upon the walk between the ice beds，stood at 46° ，and in the large water jar between the beds at 60.5° ．

As a further proof of the influence of straw in producing the degree of cold necessary for forming ice，a register thermometer was placed upon the straw with its bulb exposed to the sky near the side of one of the beds，after several of the plates had been removed，when it was found to indicate as follows ：－

Date．	Time．		Tempera－ ture．			胃	霞		Tempera－ ture of the air 4 feet above the beds．		Difference be－ tween the air at the surface of the straw \＆ 4 feet above it．	
	$\frac{5}{2}$	曾	若	\pm					号	$\dot{0}$	获	\square^{∞}
1832							－	－	$\stackrel{1}{ }$			
Jan． 20.			28		covered	26			47	65	21	
	$7 \mathrm{~A} . \mathrm{M}$ ．			70						61		60
23.	$7 \mathrm{~A}, \mathrm{x}$ ．	，	34	$\stackrel{3}{59}$	d	29.5			47 48 48	，	17．5	6
									48			

This table presents a high maximum and very low minimum tempe－ ratare，which is to be explained by the non－conducting and powerful radiating property of the straw，\＆c．and，in the morning，in part to the production of hoar－frost．

As the kind of dishes employed must have a considerable influence on the temperature of the water they contain，I employed the following means to detect the influence of the material of which the dishes were formed．A morning was selected when the wind had suddenly changed
towards daybreak to the \mathbf{S}. W. direction, when the air was mild and moist, and ice had formed on very few of the dishes placed upon the straw. Soon after sun-rise a mist appeared over the ice-beds. The air was at 53.5°, and the temperature of the straw 42°. The temperature of the water, which in one of the common unglazed dishes in the evening was 56°; in a black glazed one was 58°; in a white glazed one, 59°; in the morning the temperature of the water in one of the common unglazed dishes, with a film of ice on its surface, was at 34°, in the dish next it without ice 35°. The water in a white saucer had a thin sheet of ice upon its surface and was 35°, and in a deep white cap, without ice 39.5°, in a black glazed cup 36°, in a deep one of the same material 38°, and in a flat glazed plate 36°. On another morning of the same kind, a black coloured copper vessel had no ice, while a white painted brass vessel was covered with it.
The influence of brass dishes in conveying away the heat was made evident by the ice being thicker than on the other dishes, and extending from the under edge of the plate of ice upon the surface of the water for some distance along the inner surface of the brass dish. (February 2.) The ice was thick, and numerous small triangles were found a little to one side of its centre, which were not completely closed at their apices, and around this central point the ice was bulged out and thin, and, on examining its under surface, numerous crystals were found to have formed at the raised part where the ice was thinner ; from whence they shot obliquely towards the centre of the water, underneath the apper plate of ice, where a small aperture was situated.

On the 2nd and 3rd of January, (1832,) there was only a thin film of slightly irregular ice on the surface of the brass dishes without any appearance of ice apon the water, in most of the plates, which with the exposed portions of straw, grass, \&c. were moist. The water in the dishes which had not frozen near the sides of the beds, stood at from 32° to 33°. In a dish put upon another with water in it the upper stood at 32°, and the under at 33°. From these experiments the water appears to be influenced by its depth, exposure, and the materials and colour of the dishes employed for making ice.

In Bengal the day is always hot, and the tendency of caloric to arrive at a state of equilibrium would soon render bodies on the surface of the earth of the same temperature, were it not that each has an aptitude to receive and a power to discharge caloric, which is influenced principally by the nature of the surface of the body and its temperatare. The degree of heat will vary with the power of the body, which may, however, be influenced by the evaporation from it by winds and air
heated by coatact with the earth becoming specifically lighter and riso ing oe the atmosphere. By the continual operation of these canses an scoumulation of caloric in the earth is prevented during the day, and $\approx s 00 \mathrm{as}$ as the sots, the increase of heat is checked and the night is generally cool under a clear and sparkling firmament even during the hottest season. This is in consoquence of the generality of bodies on the face of the earth radiating caloric in large quantities, especially when exposed to the clear aky, as they receive few rays from the neighbouring bodies in return for what they radiate into space. So powerful are these causes in producing a great degree of cold, that in very favourable mornings drops of dew may sometimes be found congealed in Bengal upon thatched roofs, and upon the leaves of some plants during the cold weather. The cooling process advances more rapidly than could be supposed by one who has not experienced it himself, and proved the justness of his feelings by the aid of the thermometer. In the open plain in which the ice is made, I have seen the temperature of the air four feet above the ground fall in the time the sun took to descend the two last degrees before its netting from 70.5° to 57°.

Pieces of glass and tin were placed under the comamon dishes in the ice-beds: in the morning they were carefully examined, and their under warfaces were covered with large drops of moisture. A piece of glass eight inches long and seven broad was placed on the evening of the 24th January, 1882, under an ice plate among the other dishes upon the straw in the beds, after it had been weighed; next morning, the dish was found to have gained 120 grains in weight, and, as there was no ice, the water was found to stand at 34°. A dish placed upon a plate of tin similarly situated with the last, gained 60 grains, and the water stood at 38°. On the 26th January, there was very listle ice upon the plates, and a piece of glase and another of tin of the mane aire as the last were placed ander two dishes which had been accurately weighed. In the morning the dish upon the tin had very little ice upon its aurfane, and had gained 70 grains ; the dish upon the glass had no ice and had gained 160 grains.
(17th January, 1832.) This evening the following varieties of dishes were placed among the common dishes. A brass dish of the aame shape and size as the common unglazed dishes weighed the same evening and moraing. On another morning the experiment was repeated with the same resalt. The ice however was thicker and more equal throughout on the brass dishes than on any of the others; as water boils more readily in metal, so it freezes more readily-hence little
appearance of crystallization was observed, and near the centre of one of the plates of ice a small triangular opening was left. The ice was sooner detached from the dish by the heat of the sun, and a thin rim of ice several lines in breadth was found descending along the metal beyond the under surface of the ice.

One of the common dishes, lined with a coating of gam-lac on the inside, weighed the same evening and morning:-another coated on the outside had less ice, and more crystals, and lost a quarter of an ounce by weight; and one lined with tinfoil on the inside was of the same weight evening and morning.

The ice on these dishes was thicker, presented fewer crystals, and had less air in the interior; more especially on the one lined with lac on its inside. The brass vessels had less bubbles than the common dishes, probably from the air flying off as it was detached from the water, as it had less hold on the smooth surface; and on the two lined on the inside the ice was easily detached from the plates.

The application of these results to the explanation of the manner in which ice is formed in Bengal becomes sufficiently evident. The infuence of the soil and the elevation of the dry ground, its inland situation and free exposure to the sky, and the quantity of dry straw presenting a large mass of a bad conductor of heat, which penetrates but a short way into it during the day*;-and as soon as the sun descends below the horizon this large and powerfully radiating surface is brought into action upon the thin porous vessels,-themselves powerful radiators.

The night air descends to the earth's surface by the removal of the heating cause, and deposits a portion of its moisture upon the powerfully radiating and therefore cold surface of the straw and the large moist surface of the dishes. The cold dry north-west breeze of the day dries the ground, and declines towards the night into moderate airs, which pass slowly over the dishes and prevent the accumulation of caloric on their surface from the deposition of moisture.

The combined influence of the above agents seem sufficiently powerful to account for the degree of cold required for forming ice, as the above experiments appear to me to prove.

[^19]VII.-Proceedings of the Asiatic Society.

Wodnceday Evoning, e0th February, 1833.
George Swinton, Esq. in the Chair.
After the Minutes of the last meeting had been read, the Society procseded to ballot for Colonel John Briggs, Dr. J. N. Casanova, and Rev. John Macqueen proposed on that occasion, who were unanimously elected Members.

Sir Benjamin Malkin, Recorder of Penang, proposed by Sir E. Ryan, seconded by Mr. J. Prinsep, was upon the favorable report of the Committee of Papers, elected an Honorary Member.

The Secretary announced, that the Committee of Papers had, upon the authority of the resolution at the last meeting, disposed of two notes, value Rupees 5,500 , for the liquidation of the debts standing against the Society.

The Secretary also reported, that in consequence of new arrangements made by him as Editor of the Journal of the Asiatic Soonety, he trusted that he should in future be able to supply that work gratis to the members of the Society. Mr. W. H. Macnaghten remarked that no notification had been circulated to the members acquainting them with the reeolution of the 7th March, and giving them the opportunity of possemang the Journal then allowed to be published under its auspices; he thought that such notice should be issued both with reference to the former volume, and to the future numbers; and it was ordered accordingly.

The Secretary explained to the meeting, that Mr. Wilson, previous to his departure, had reported to Government the completion of Mr. Csoma de Körös' Tibetan Grammar and Dictionary, and had offered to take the manuscripts to England for publication; but that the Honorable the Vice President in Council, being of opinion that the works might more appropriately be published in this country, under Mr. Csoma's own eye, Mr. Wileon had made them over to the Society. He had therefore followed up the subject by a second application to Government on the 30th January, to which the following reply had just been received:

To Jamis Prinserp, Esq. Secretary to the Asiatic Society. Sin,
I am directed to acknowledge the receipt of your letter, dated the 30th ultimo, reporting the inability of the Society to defray any part of the expense which will attend the publication of Mr. Csoma de Kठros' works.
2nd. In reply, I am directed to acquaint you, with reference to the conclading paragraph of your letter, that it was intended by Mr. Swinton's letter to Mr. Wilson under date the 27 th ultimo, to intimate that Goverament would take upon itself the expense of the publication of Mr. Csoma de Körss' works, and I am now directed to acquaint you, that the Right Honorable the Governor General in Council will be happy to sanction the estimate furnished in your letter.

3rd. It is obviously desirable that the work should have the benefit of the learned author's superintendence during its progress through the press, and His Lordehip in Council trusts, that it may be entered upon immediately. I am further directed to tender to yourself the acknowledgments of Governmient for the valuable assistance you have offered on your own part.

> I have, \&cc. \&c.
(Signed) W. H. MacNaemtity,
Off. Chief Secy. to Government.
Council Chamber, 12th Pebrnary, 1833.
The Secretary stated that arrangements had accordingly been made with the Baptist Missiqn Press, to commence upon the Tibetan Grammar and Dictionary immediately.

Read, a letter from Mr. W. Twining, Secretary to the Medical Society, acknowledging the receipt of the 1st volume of the Journal of the Asiatic Society, and vol. xvii. of the Researchea.

Library.
The following books were presented:
3rd vol. of Flora Indica, or Description of Indian Plants, by the late Wm. Roxburgh, M. D. F. R. S. \&c. \&c.-by Capt. James Rasburgh, as the part of himself and brother, Editors of the work.

Proceedings of the Zoological Society for 18s0, 31, and 3s-by the sooivety.
The following works,-by their author Sir J. F. W. Hersehed.
On the Separation of Iron from other Metals.
On a New Method of Computing Occultations of the Pized Sturs.
An aceount of Obserrations made with a twenty-feet Refecting Tclewerpe in
the years 1826-27-28-30, on the Parallax of the Fired Sears.
An account of Determining the Difierence of Meridiman.
Herschel's Mierometwical Measures.
Ditto's Account of the Repetition of M. Arago's Experiments.
Humboldt's Fragmens de Geolegie.-By the author.
Vaillant's Numismata Imperatoram Romanorum, 3 vola and
Agostini on Medals, 1 vol.-by C. R. Prinoep, Eeq.
Nos. 54, 55, 56 of theJour. of the Asiatic Society of Paris.-By the Society.
Meninski, Thesaurus Linguarum Orientalium, 3 vols. and
Federici Borromæi Thesaurus, 1639, vole. 4.-by Baboo Ramcomal Som.
A complete copy of the Calcatta Journal, bound in quarto,-by the Socretary.

Essai sur le Madar (Calotropus Madarii),-by J. N. Casanova, Eeq.
A copy of "Vidvummoda Taranginee," by Maba Raja Kalikiseen Bakahwo.
A copy of the New Testament and the P'salms of David, translated into the Malagasy language, at the Missionary establishment of Tananarivo, by C. Telfair, Esq. President of the Nat. Hist. Soc. Mauritius.

Meteorological Registers for December, 1832, and January, 1833.-by the Surveyor General.

Lemdner's Cabinet Cyelopedia-Chemistry 1 vol.-rocied from the

 Bucheallers.Physioak
Read a letter from Mr. G. Swinton, communicating correspondence bee tween Mr. Robison, Sec. Ed. Roy. Society, and several paper manufacturers; on the subject of the Nipal Paper Stuff.

The experiments tried by the paper manufacturers at home upon the dried pulp of the Nipal paper stuff made up into bricks (as described in the Journal, lst vol. mee 10,) and sent home by Mr. G. Swinton in 1831, do not seem to have been at all successful. The specimens furnished by Mr. C. Cowan to Mr. Robison possess neither the softness nor toughness of the paper manufactured in the valley iteelf, according to the methods detailed by Mr. Hodgson. They are brittle and stiff; transparent, as if impregnated with varnish, and full of gritty brown spots. The colour of the specimen marked "strongly bleached" is still far from being of a good white. It took about 10 lbs . of strong dry chloride of lime, and two lbs. of sulphuric acid, to bleach 90 lbs . of the material, being four or five times as much as is necessary with ordinary stuff, and the texture was doubtless injured thereby. It retained the water very obstinately on the sieve, and shrank remarkably on drying. The thin sheets made in Nipal and sent home in 1829, by Mr. Swinton, were on the contrary exceedingly tough, flexible, though not quite white; they more resembled what is called "India paper," and took the minute impression of a bank sote plate with perfect fidelity.

Mr. Charles Cowan mentions in his notes on working-up the stuff, that it was found to be ae roagh as any material with which he was acquainted, which proves that it hast have deteriorated since. The value of the cakes was estimated by this menufintures at $\mathcal{E 6}$ to 8 per tox, or if fit for cartridge paper, at nearly double. No hopes were entertained of turning it to any more refined purpose.

Read a letter from the same Member on the subject of the Garjan or wood-oil procured in the forests of the Tenasserim provinces, a large quantity of which he had also transmitted to the Sec. of the Ed. Rey. Society, to ascertain its value in the English market.

This oil in in general use among the natives here for mixing with colors, and is chieliy imported from Chitingong, but it would appear on Major Burney's authority to be still more sbomedantly produced in the Tavoy district, and at much lese cost; the bazar price in Calcutta averaging about 9 or 10 rupees per mannd, whereas at Tavoy it may be procured at about one-fourth that price. Both in India and in England it has been found to be a good substitute for linseed oil, for outside work, expecially in light colors, being worth for this purpose about $\mathbb{E} 12$ to 15 per ton.

Mr. Dowie, a currier of Edinburgh, read a paper before the Ed. Society of Arta, on the mode of applying this vegetable oil alone or mixed with tallow to the preparation of leather for shoes, and he considers it as far preferable to fish oil: this application is quite new, and at Mr. Swinton's suggestions some similar trials have since been made in Calcutta, by Mackenzie and Macfarlan, with success. The leather absorbs a great deal of the oil, and the specimens presented to the Society appear to be very soft and tough.

Major Burney deacribes the tree whence the Garjan oil is extracted, as forming hage forests in Tavoy, growing to a great height and size; its native name is Ka-
niyen ; the flag-staff at Moulmein, 92 feet high, is formed of a single Kamfyen tree. Mr. Maingy says, that the oil is much improved by boiling, which gives it drying properties; he has often used it for boats, and has found it excellent in preparing tarpauling. The inhabitants of Tavoy and Mergui do not burn earth-oil like other Burmese, but torches made of this wood-oil and touch wood. The imports into Calcutta for the last three years were as follows:

Read a letter from Dr. F. W. Malcolmson, Mad. Euro. Reg. Hyderabad, announcing that he had fallen in with a box of Dr. Voysey's Geological specimens, which he should forward to Calcutta by the first opportunity.
"Among them are two fossil bones (of which he sends drawings)-descriptions and localities may be found in Dr. V.'s. papers. Fig. 1 is part of one of the long bones of a mammiferous animal (probably a goat or deer); its fibrous structure is very distinct, and presents fine yellow veins when cut and polished : internally the remains of the ridges to which the concellated structure was attached are visible. Fig. 2 is one end view of the same filled with a reddish earth, common near some of the granite rocks in the neighbourbood, and it is filled with small pieces of felspar. It is mineralized with the carbonate and a little phosphate of lime. All the other stones appear to have been collected in this district, and there can be no doubt of the locality from which this was obtained."

Dr. Malcolmson also sends the drawing of a chambered univalve fossil shell, in a white limestone, found among Dr. Voysey's collections.

Read a letter from William Onslow, Esq. C. S. dated Futtehpoor, 6th December, begging the Society's acceptance of some old Roman coins dug up upon his father's estate in England.

The sixty-one coins transmitted consist chiefly of the small brass of Constantine, among which are some of URBS ROMA and URBS CONSTANTINOPOLIS : also two of the Antonines, two of Domitian, one of Tetricus ; the rest are in so decayed a state as not to be decypherable.

Read a letter from Lieut. A. Burnes, dated Bombay 26th Jan. announcing that he had dispatched for the Society some Bactrian coins, collected in his recent journey to the Oxus: also some belemnites and other fossil shells from the deserts.

Specimens of copper ore from Nellore were presented on the part of Mr. Kerr.

The mines appear to lie to the northward of the Pennar river, $36^{\circ} \mathrm{N} . \mathrm{N} . \mathrm{W}$. of Nellore and 37° W. from the sea, near a village called Ganypenta in Arrowsmith's Map.

The copper ore prevails over a considerable tract of country-it consista of malachite, and of black anhydrous oxide of copper with red and yellow ochre imbedded in micaceous schist. Mr. Kerr points out that the ore difers from the English coppers essentially, in being free fiom iron pyrites and other deteriorating ingredients, as lead, antimony, sulphur, \&c. Which make that ore difficult to purify, whereas the Nellore ore becomes quite pure by simple smelting. The specimen of
reduced metal sent with the ores is of a very fine color and highly malleable. Doctor Thompeon, 20 years ago, analyzed the ore and found it to contain, carbonic acid,. 16.7
black oxide copper, 60.75
red oxide iron, 19.5
silica and loss, 3.05
100
Pour different varieties examined by the Secretary contained from 13 to 47 per cent. of red oxide of iron and silex. The appearance of the ore seems to promise ample success to those who have engaged in the working of these mines.

Specimens of the copper ore of Nipal were presented by the Resident Mr. B. H. Hodgson.

This ore is a sulphuret of copper, mixed with a large proportion of ferraginous sulphuret.

A stuffed albatrose, presented by Mr. J. Kyd on the part of Captain Henry Hutchinson of the Ship Lord Wm. Bentinck.

Some fosil bones supposed to belong to the Drenti or the Dodo, from the Ide of France, presented by C. Telfair, Esq.

Also a specimen of the silk produced from the Madagascar worm, by the same gentleman.
This silk is reported by competent judges in Calcutta to be " well reeled in the Italizn method-the thread is harsh, uneven, and gouty, of 14 or 16 cocoons. The specimen appears old and damaged."

Specimens of the Scincus Bojerii and the S. Boutonii (J. Dess.), and the squille de l'I. Maurice, preserved in spirits; also some fossil bones of the turtle discovered in an estate at Flacq, in the Mauritius. By Mons. J. Deejarding.

A letter was read from Monsieur Desjardins, Secretary to the Mauritius Society, presenting to the Asiatic Society, manuscript copies of 24 notes, memoirs, descriptions, \&cc. composed by himself, on various subjects of natural history. Several of them have been published in the scientific journals of Europe.

The first two papers relate to the organization of the Society for the study of natural history in the island, to which allusion was made in the JOURNAL, vol. i.157. There are also the rules and the report of the third anniversary meeting, (we have already received the two former reports.) Of Monsieur Deajardins' contributions to natural history, the following list will give the most flattering proof.

Sar ane couleurre prise vivante a l'Ile Maurice, 1829.
Description physique del'Ile d'Ambre, 1829.
Ditto de la Becasse de Maurice.
Ditto d'une caverne située à la riviere du rempart, 1829.
Ditto des mammiféres de l'lle Maurice.
Ditto des 20 oiseaux de Madagascar.
Sur une annelide du genre Erpobdelle, (Lam.)

Sur trois eapeces de lêzard du genre scinque.
Sur un tandree de Madagascar.
Sur trois espèces d'echassiers (gralla) de do.
Sur une coucou pris à l'Ile de France.
Sur quelques poissons de la cote N. O. de Sumatra 1831.
Description d'un oiseau (scolopax totanus glottis), 1829, \&c. \&co.
Literary.
Mr. Telfair also transmitted by the same opportunity a variety of manuscript essays by Mr. Baker and others, connected with the literature of Madagascar, besides the Missionary publications already noticed.

1. Translation of the fable of the alligator and bedge-hog.
2. Ditto of a song concerning the dead.
3. On the ordeal of the Tangena.
4. Sur les maladies epidemiques de Madagascar.

Portions of some of these papers were read.
Resolved, that the last paper be made overto the Medical Society, and that the best thanks of the Saciety be given to the President and Secretary of the Mauritius Natural History Society.

Thanks were also voted for the other contributions of the evening.
After the business of the evening was concladed, Mr. W. Maonagitreng begged to remind the meeting that this might be the last eocesion.in which they would enjoy the society of the gentleman who now occupied the chair, in this country-nay perhaps for ever! He had eeen his friend in the morn. ing overwhelmed with the fatigues of preparation for embarkation on the morrow, and little thought it possible for him to attend to other engagements ; but his ardent zeal for the cause of literature and anicmee had urged him to devote the very last moment of his residence in this land to the In_ etitution with which he had been connected so long. For the affection and interest thus manifested to the last, the gratitude of himself and of his brother members was most due,-and for the modenty which had marked his services to the Society, and which alone had prevented his rising long since to the highest dignity it could bestow. From the time of his quitting college, Mr. Swinton had been distinguished as an Orientalist, and his unimpeachable conduct had marked him as one of the brightest orna. ments of the Civil Service. Mr. Swinton, he knew, would wish him to spare much eulogium in his presence, but it would be unjust in him and in the Society to allow their associate to quit them without testifying their anxious solicitude for his safe and happy return to his native land.

Mr. Swinton returned thanks for this expreseion of feeling on the part of his associates, which he attributed rather to their partiality than to his merits. He had always felt the warmest interest in the Society, and had endeavoured to contribute to its success, whenever an opportunity occurred. He could but now for the last time tender his sincerest wish for its lasting fame and prosperity, and once more returning his best thanks, he bade them fwrewelh.

VIII.-Systematically arranged Catalogue of the Mammalia and Birds belonging to the Museum of the Asiatic Society, Calcutta. By Dr. W. Warlow.

MA MMALIA.
Ord. Carnassiers.

Fam. Cheiroptera. Gen. Galeopithecus.
Galeopithecus vulgaris. The Colugo.
Fam. Insectivora. Gen. Sorex.
Sorex gigantews, Geoff. Indian Shrew.
Fam. Carnivora. Tribe Plantigrada. Gen. Ietides.
Ietides ater. This specimen was presented to the Society by Col. Farquhar under the title of long-tailed Bear of Malacca, and has been described by Sir S. Raffea as the "Benturong" in the 13th vol. of the Transactions of the Linnsean Society. Sir Stamford is incorrect in his enumeration of the molar teeth, which are not six on each side in both jaws; there being six in the upper and only five in the lower. In every other particular his description corresponds. The exact number of teeth in Ietides I am unacquainted with. Baron Cuvier's account would lead me to the supposition that there are six in each jaw, as in Procyon, whilst 1 find in the Bulletin Universel, that the teeth are 18 in number in each jaw, namely six incisors, two canines, and 10 molars. There can be no doubt of the identity of the specimen with the Ictides ater of Prederick Cuvier, though it may be necessary to separate the latter from the species with which it has been generically connected.

Tribe Digitigrada. Gen. Lutra.
Lutra nair, P. Cuvier, Indian Otter.
Gen. Viverra.
Viverra Bengalemsis, Hardw.

> Gen. Felis.

Pelis hutas, Pearson.

Folis cetus, a variety of the common cat ?
Ord. Marsupialia.
Fam. Dasyuridæ. Gen. Thylacinus.
Thylacinus striatus. Zebra Thylacine. Didelphis cynocephalus, Harris.
Ord. Rodentia.
Gen. Rhizomys, Gray.
Rhizomys Sumatrensis. Bambu Rat, Raffes. This specimen has also been described by Sir S. Raffies, and from his description, Mr. Gray has referred it to his new genus Khizomys, adding however a note of interrogation as to the correctness of the location. It certainly does belong to the genus, but it would be very desirable that a specimen should be sent to Mr. Gray, especially as it is by no means clear that it may not be identical with his R. Chinewsis.

Gen. Hystrix, Subg. Atherina.
Atherina fasciculata. Brush-tailed Porcupine.
Ord. Edentata.
Gen. Manis.
Mamis pontadactyla. The short-tailed Pangolin.

Ord. Monotrema. Gen. Echidna.

Echidna Hystrix. Porcupine Echidna.
Ord. Ruminantia. Gen. Moschus.
Moschus Javanicus. The Kautchil. Gen. Bos.
Bos Bufalus. Monstrous specimens of the Ox and Buffalo.
Ord. Cetacea.
Gen. Delphinorhychus.
Delphinorhychus Gangeticus. Indian Dolphin.
BIRDS.
Ord. II. Incessores.
Tribus 1. Fissirostres.
I. Fam. Meropidæ. Gen. Merops.

Merops viridis. Indian Bee-Eater.
Gen. Alcedo.
Alcedo Bengalensis. Indian Kingfisher. Gen. Halcyon.
Halcyon Smyrnensis. Smyrna Kingfisher.
Gen. Dacelo.
Dacelo gigantea. Great Brown Kingfisher.
Tribus 2. Dentirostres.
I. Fam. Muscicapidæ. Gen. Muscipeta.

Muscipeta cerrulea. Azure Fly-catcher.
II. Fam. Laniadæ Subf. Dicrurina. Gen. Dicrurus.

Dicrurus macrocercus.
III. Fam. Merulidæ Subf. Oriolina. Gen. Oriolus.

Oriolus Melanocephalus.
IV. Fam. Sylviadx. Gen. Jora.

Jora Scapularis.

> Gen. Accentor.

Accentor modularis?
V. Fam. Pipridæ. Gen. Parus.

Parus cristatus. Crested Titmouse.
Tribus 3. Subf. Alaudina. Gen. Alauda.
Alauda cristata. Crested Lark. Gen. Emberiza.
Emberiza Bengalensis.
III. Fam. Covidæ. Subf. Gen. Barita.

Barita Destructor.

- Tibicen.

Subf. Corvina. Gen. Pica.
Pica vagabunda. The Rufous Crow.
Subf. Coraciana. Gen. Coracias.
Coracias Bengalensis. Bengal Roller.
V. Fam. Loxiade. Gen. Cocothraustes.

Cocothraustes vulgaris. Common Grosbeak.

Tribus 5. Scansores.

II. Pam. Psittacidæ Subf. Psittacina. Gen. Psittacua.

Psittacus erythrocephalus. The grey Parrot or Jaco.
Subf. Palæornina. Gen. Nanodes.
Nanodes pulchellus. The Turcosine Parrakeet.
Gen. Platycercus.
Platycercus eximius. Nonpareil Parraknet.
Gen. Palæornis.
Paleornis favirostris. Yellow-colored Parrakeet.
——erythrocephalus. Blossom-headed Parrakeet.
III. Fam. Picadæ. Gen. Bucco.

Buceo Philippensis. Yellow-throated Barbet.
_- Gyanops, Cuv.

Gen. Picus.

Picus viridis. Green Woodpecker.
——tiga. Horsfield.
IV. Fam. Certhiadæ. Gen. Upupa.

Upappa Epops. The Hoopoe.
V. Pam. Cuculidæ. Gen. Cuculus.

Crulus Orientalis.
Coromandus. Colored Cuckoo.
Gen. Centropus.
Centropus Philippensis. Philippine Cuckow.
-_Oigas ?
Tribus 5. Tenuirostres.
V. Fam. Meliphagidæ. Gen. Melitneptus, (Vieill.)

Melitreptus Nova Holandia.
Gen. Orcadion, Vieill.
Oreadion carunculatus. Wattled Bee-eater, Lath.
Gen. Prinia, Horsf.
Prinie familiaris.
Ord. III. Rasores.
I. Fam. Columbidæ. Gen. Treron, (Vinago, Cwo.)

Treron militaris. Saint Thomas' Pigeon. The Green Pigeon. II. Fam. Phasianidæ. Gen. Tragopan, Cuv.

Tragopen Satyrus. The Nipal Pheasant.
III. Fam. Tetraonidæ. Gen. Perdix.

Perdix Chukar, Gray. Chukar Partridge.
Gen. Ortygis.
Ortygis Pugnax. The fighting Quail.
Ord. IV. Grallatores.
II. Fam. Ardeide. Gen. Platalea.

Pletalea lencorodia. The Spoonbill.
Gen. Ciconia.
Ciconia lewcocephala. The Violet Stork, or Manifjore of the Natives.
Gen. Ibis.
Ibis falcimellws. The Green Ibis.

IV. Fam. Rallide. Gen. Parra.

Parra Melanochloris. Indian Jacana.
-Chinensis. Chinese Jacana.

- Africana?

Gen. Porphyrio.
Porphyrio Indicus. Indian Porphyris.
Gen. Crex.
Crex porzana. Spotted Gallinule.
III. Fam. Scolapacids. Gen. Totanus.

Totanus Glottis. Green-shank Snipe.
V. Fam. Charadriads. Gen. Vanellus.

Vanellus macroptera, Cuv. V. Tricolor, Horsf.
Gen. Charadrius.
Charadrius morinellus. The Dottrel.
Gen. Himantopus.
Himantopus melanopterus, Tem. Long-legged Plover.
Ord. V. Natatores.
I. Fam. Anatidæ. Ger. Clangula.

Clangula Histrionica. Harlequin Duck.
Gen. Fulgula.
Fulgula rufina. Red-crested Pochard. Gen. Marcia.
Marcia cana (et Casarca), Brown. Grey-headed Goose. The Brahminee Duck.

- arcuata. Anas Sili, Ham.

Gen. Querquedula.
Querquedula Crecca. Common Teal.
IV. Fam. Pelecanids. Gen. Phalacrocorax.

Phalacrocorax vulgaris. The Cormorant.
V. Fam. Laridæ. Gen. Sterna.

Sterna Hirwndo. The Great Tern.
Gen. Diomedea.
Diomedea exulans. Wandering Albatross.
I am aware that in the preceding list there are a few omissions and there may be some errors, but I have not at present the opportunity of correcting the one or supplying the other. The list should also have comprised the reptiles, of which the Museum contains some very fine specimens.

IX.-Europran Noticrs of Indian Natural Hibtory.
 1.-The Dugong.

The animal sent home preserved in spirits by Mr. G. Swinton, in 1830, to Mr. J. Robibon, Secretary of the Edinburgh Royal Society, was delivered over to Dr. Knox, for dissection. That eminent anatomist writes to Mr. Robrson in the following terms:
"This very splendid gift to science can be appreciated only by those who, having visited inter-tropical climates and warm countries, generally know well the extreme difficulty of procuring, preserving, and transmitting specimens such as the Dugong,
which you have now reocived from Mr. Swinton, and which you have done me the honor to place in $m y$ hands for examination and dissection.

It may not perhaps be altogether uninteresting to that gentleman to be informed, that two portions of the animal have arrived and have been examined, though in a rery cursory way, by me; the shortness of the day and darkness of our climate during the winter months forbidding all attempts at more minute inquiry for the present. These portions are, the head and upper or anterior part of the trunk, iscluding the arms, and seemingly the pyoid bones with the connected soft parts. This portion seems in excellent condition, and will no doubt afford ample scope for disection; the details of which, together with illustrative sketches, I shall so soon a they are properly arranged and finished, put into your hands, in order to be transmitted to Mr. Swinton, this being the very smallest return we can make for his so great kindness in transmitting the specimen.

The other portion is the posterior part of the vertebral column and tail ; but the middle portion, containing all the viscera, I have not yet seen. It will be readily understood by every anatomist and naturalist, and I hope also by Mr. Swinton, that this division of the animal into three portions was the greatest misfortune which could have happened, since it involved the cutting across so many important parts, the division of all the great vessels and nerves, the displacement of almost an the organs, and the destruction of many; so that it is not to be concealed, that the ralue of the apecimen has been incalculably diminished. It would I fear be preanming too much to hope that the Dugong might one day reach us entire, in a good state and untowched; inasmuch as the difficulty of procuring these animals is very great, and when taken would require to be immediately placed in a cask of ardent spirits, and carefully enclosed. But however this may be, I shall bestow every pains in my power to make the most of those portions which have already come to hand, and beg to return you and to the Royal Society my thanks for having placed at my disposal an anatomical specimen deemed by me of so great value."

> 2.-Nepal Specimens.
[Ertract from the Proceedings of the Zoological Society of London, Jan. 24, 1832.] William Yarrell, Esq. in the Chair.
"Specimens were exhibited of various Mammalia and Birds, collected in Nepal by B. H. Hodgson, Esq. Corr. Memb. Z. S., British Resident at Katmandoo. For this exhibition, the Committee was indebted to the kindneas of Dr. N. Wallich, to whom the skins had been transmitted by Mr. Hodgson.

The Mammalia included specimens of a new species of Felis, L.; of two Antelopes, one the Chiru and the other new to science; and of the wild Dog of Nepal. They were accompanied by colored figures, and, except in the instance of the lattere, by accounts of the several animals from the pen of Mr. Hodgson. These accounts were read.

The new species of Felis is described as the Moormi Cat, a name derived from that of the tribe which inhabits the part of the hills in which the animal was taken. It was entirely unknown to the natives, and had consequently no local name. It may be thus characterized + .

* This account will be found to be supplied in the 2nd pt. Trans. Phys. Cl. As. Soc.
+ Mr. Hodguon's description ie given in the Gleanings, iii. p. 177.

The only specimen of this species which Mr. Hodason has been able to procure was a fine mature male, sent to him alive, about two years back, by the Prime Minister of Nepal; it was accompanied by an intimation that the animal presented to him wã the first of the kind ever taken, the people of the country having been by its capture first apprized of its existence in Nepall. It was caught in a tree by some hunters in the midst of an exceedingly dense forest, situated in about the latitude of the great valley : the habitat of the species may therefore be presumed to be the central part of these mountains, or that portion which lies equidistant from the snows of the Himalaya and the hot plains of Hindustan. Though only just taken when it was brought to Mr. Hodgson, it bore confinement very tranquilly, and gave evident signs of a tractable disposition and cheerful unsuspicious temper; so much so as to convince that gentleman that a judicious attempt at taming it must succeed. None such, however, was made, and when the animal, after six months confinement, died of disease, it was still, of course, unreclaimed from its wild state of manners and temper ; in which state it manifested considerable ferocity and high courage, the approach to its cage of the huge Bhoteah Dog exciting in it symptoms of wrath only-none of fear.

In a note appended to his description of this second new species of Felis from Nepal, Mr. Hodgson refers to that of the Fel. Nepalensis, published by Messrs. Horspield and Vigors, in the 'Zoological Journal,' vol. iv. p. 383. The groundcolour of this latter animal is there described as " grey, with a very slight admixture of tawny;" whereas in five specimens possessed by Mr. Hodgson, the tawny prevails over the grey to such an extent that the tawny should be regarded as the ground-colour in the mature animal of both sexes. One adult male is almost as brightly tinted as a Leopard : the females are paler than the males. He adds that the common species of wild Cat is frequently met with in Nepal of the falleat European size, and so like to the Occidental type as not even to constitute a variety."
The new species of Antelope distinguished by Mr. Hodgson as the Bubaline Antelope, has been already made known to our readers*.
The skin of the wild Dog of Nepal was compared by Col. Sykes with a specimen of the Koloun of the Mahrattas, recently described by him in the 'Proceedinge,' (Part 1. p. 100,) under the name of Canis Dukhunensis. He stated his impression to be, that the animals are identical, differing only by the denser coat and more woolly feet of the Nepal race, a difference readily accounted for by the greater cold of the elevated regions inhabited by it. He declined, however, pronouncing a decided opinion, which, he thought, could only be arrived at by more extensive comparison, and by a full acquaintance with the habits of the wild Dog of Nepal.
Among the Birds contained in Mr. Hodgson's collection was exhibited a specimen of the Hamatornis undulatus, a species described in the first part of the Proceedings of the Committee, p. 170, and figured in Mr. Gould's 'Century of Birds.' The specimen agreed accurately with that which had been previously exhibited to the Committee, except in size ; the present specimen being about one-third larger. From this difference in size it was conjectured to be a female. Specimens were also in the collection of the Myophonus Temmsinckii, the difference between which species and the Myophonus flavirostris (metallicus, Temm.) had been pointed out in

* Vide Gleanings, iii. 122.
the same part of the 'Proceedings,' p. 171. The separation of the two species was thus further justified by the accurate accordance of several specimens of the Nepalese bird, in those characters which separated them from the Archipelagan species. A specimen of Zoothera monticola was also included in the exhibition, which deviated in no respect from that already described in the 'Proceedings,' p. 172, and figured by Mr. Gould.
An interesting species of Hornbill, which has been described by Mr. Hodgson in the 'Asiatic Researches,' vol. xvii. p. 178, but which had never before been seen in Europe, accompanied the former birds.
Among some drawings of this species which accompanied the collection, one was observed in which the tail was elevated in the same manner, although not to the same extent, as in the Toucans of South America when at rest. Mr. Vigors called the attention of the Committee to this peculiarity in the Toucans, which he had ascertained from a living bird in his own collection, and which he described in the ' Zoological Journal,' vol. ii. p. 480, pl. xv. And he dwelt on the additional proof thas afforded of affinity between these two families of the Old and New World, which are equally allied by the most important characters of their structure.
A male and female Pheasant were also exhibited from the collection, which appeared to be the species described by Dr. Latham under the name of Phasianus lencomelanos, (Ind. Orn. ii. 633.) Mr. Vigors pointed out the difference between this species and the Phasianus albo-cristatus, which he had described in the first part of the 'Proceedings,' p. 9. This difference consisted in the deep black colour of the crest in the Phas. leucomelanos; in the lanceolated feathers of the under part of the body extending no further than the breast; and in the plumes of the lower part of the back being doubly fasciated, by a slender violet-black band in the first instance near the apex, and secondly by a slender white apical band. In the Phas. albo-cristatus, on the contrary, the crest is white, with a somewhat dusky base; the lanceolated feathers on the under body extend over the abdomen; and the feathers on the lower part of the back are fasciated with one rather broad white apical band, without any vestige of the black violet markings observed in the other species. Mr. Vigors added, that these two species, together with the Phas. limeatus of Dr. Latham, exhibited to the Committee on the 11th Jan. of last year, and described in the 'Broceedings' of that date, p. 24, as well as the firebpcked Pheasant, Phasianus ignitus, Lath., formed a group among the Pheasants, which appeared intermediate between the typical birds of that family and the genus Gallos, or Jungle Fowl. This group, distinguished by their crests, and by the tail partaking equally of the elevated character of that of the Jungle Fowl, and the recumbent character of that of the Pheasant, had been set apart by MM. Temmincis and Cuvirer under the name of Houppiferes, and by the former naturalist under the scientific name of Euplocamus.

The only species apparently undescribed in the collection was the following Pigeon, which Mr. Vigoss expressed his pleasure in having it in his power to dedicate to the enterprising and scientific discoverer.

Contmba Hodgsonir. Col. capite colloque pallidé, dorso crissoque intensius vinaceo-griseis; alis, regione interscapulari, abdomineque vinaceo-brunneis, hoc albo variegato; scapularibus albo guttatis; nuchd vinaceo-brunneo notatd; remigibus rectricibusque, his intensius, fuscis; guld albescenti-grised; pedibus satwrate caruleis, anguibus flavis.
Longitudo corporis, 15 unc.
Meteorological Register kept at the Assay Office, Calcutta, for the month of February, 1833.

Jour. As. Soc.

-
-
Jam. Rersoce.

JOURNAL

$0 F$

THE ASIATICSOCIETY.

No. 15.-March, 1833.

1.-On the Restoration of the Ancient Canals in the Delli Territory. By Major Colvin, Engineers.
[Extrscted frocen that Officuris Repost to Government as Superintendeat of Canels.]

1. THE CANAL OF FRROZ BHAH.

The original branch of the canals lately re-opened, to the west of the Jamina, was excavated under Frroz Shah, about the middle of the fourteenth century. The neighbourhood of Hissar was his favorite hunting ground, where he evidently must have passed much time, attended by his court, if we may judge from the extensive ruins of buildings and tombs still existing, and oscupying a space of several square miles, all attributed to that period; the advantages of an abundance of good water for so large an assemblage, in a country of such extreme aridity, where the wells are 130 feet deep, and the springs often salt, may have been the principal incentive to this great undertaking.

Probability and tradition point out the head of the original canal to have been where it now is, immediately at the point where the Jamna issues from the lower range of hills, and nearly opposite to another hunting seat of the same emperor, marked in the maps as Bádsháh Mahal; from whence it was apparently conducted along one of the many old water-courses of the Jamna, till it fell into what was then the mouth of the Símbe river*. This channel, under the operation of time and floods now become the western branch of the Jaman, was then probably

[^20]of more moderate dimensions, and, to turn the water into the croes-eute formed, must have been closed below Fattehgarh, probably by an earthea dam renewed annually, no remains: whatsoever of any permanent work remaining in that vicinity. By one or other, or all of the channels, the remains of which now exist, the water was conveyed across a tongue of land into what is clearly another old channel of the Jamea under Buirya, being a wide hollow, skirting the high ground to its north and west, which is continuous, though with numerous and deep indentations, from the hills along the right bank of the Sumbe river, and then following this water-course as far as Karndl; towards the hills rising little short of 100 feet, and sinking south of Karnúl, near Uncha Sumaina, (where the canal enters on the high land, and diverges from the Jamne,) to about 15 feet. Above this point the land on the left bank is uniformly low, extending to and forming the Kádir land of the Jamna, a most fertile tract, almost entirely under cultivation, and from its composition, and the closeness of water to the surface, almost independent of irrigation.

From Uncha Samána, a canal must have been excavated, at firat of great depth, but gradually diminishing as it approached Sufridon, near which it opened into a branch of the Chitang river, said to come from near Terautri by Bardd, a few miles east of Suffidon*, along which the canal was led with partial excavations, of which the remains exist, in some places more, in others less, (as would be the case in clearing out a river bed,) until it rejoined the other branch of the Chítang, at Dhátrat. From Dhátrat the marks are more apparent of its having been an ancient river bed, simply cleared out to pass on a stream of water to Hissir, and a few miles beyond the latter, apparently with a view to provide an escape for the surplus water of the canal into the old bed of the river; as within a few miles of Hissúr all trace of former excavation ceases, whilst the river bed is continuous; latterly, winding among the sand hills of Bhikantr, or more properly speaking, along the northern bounds of the sandy desertt, until the bed unites with that of the Ghaghar river, near Badhopal, and about 22

[^21]vilies south eeast of Bhaturr, whence it has been traced by Mr. W. Prasesk to open on the valley of the Satlej, north-east of, and about 20 miles from Bahávalpuir ; thus securing an outlet for the waters, should soch ever be needful: but as the Ghaghar river, which receives the drainage of the hills from Náhas to Plassia, and generally of the country between the Jamne and the Satlej, does not in the heaviest season pass in force beyond Bhatuitr, no stream by the Chítang is likely to effect the junction, and the period when this river ceased to flow as one is far beyond record, and belongs to the fabulous periods of. Which even tradition is scanty.

It. may not be out of place here to advert to the canses which are even now operating to destroy the utility of the Ghaghar and auch rivers, and tending to extend the limits of the desert, which forms our north-western boundary in this quarter. What the country about and went of Rameak, now inhabited by the Bhattís, has been, may be inferred from the numerous sites of towns and villages scattered over a tract, where now fixed habitations are hardly to be met with. I allude only to the vicinity of the bed of the Ghaghar, with which I am persomally acquainted;-when the depopulation took place, I am not prepared to say; it must have been long since, as none of the village sites present one brick standing on another, above ground,-though, in digging beneath it, very frequent specimens of an old brick are met with, about 16 inches by 10 inches, and 3 inches thick*, of most excellent quality: buildings erected of such materials could not have passed away in any short period. The evident cause of this depopulation of the country is the aboolate absence of water, most probably the effect of the syster now in use in the Sikh states, through which all these rivers pass from the mountains; -namely, the erection of dams of earth across the streams at all favorable points, to raise the water so high as to flow over the face of the country and irrigate it, the surplus escaping by the sides till stopped by ọther dams, and so on, it might almost be said, ad infinitum.

It will easily be conceived, that in forming this string of lakes, the consamption of water by absorption and evaporation disposes of the greater portion, whilst the irrigation takes a very small share, which could be equally well, though more expensively, drawn off by small canals from the main stream, leaving the latter open to proceed onward

[^22]as far as it would go, and such an unincumbered stream would by being in constant action prevent the accumulation of impediments in the river bed, which, under the system of damming, have eight months of each year to accumulate, and in a country liable to drift sand, any vegetation in the bed is sufficient to collect and stop it, and form banks, which from the effect of the next rains is spread and deposited in hollows, gradually raising the bottum, and thereby widening the water way. and diminishing its power of sweeping clean the channel-an operation which with an open river would have been constantly going on, as no particle of water passes onwards without moving somewhat nearer to its final receptacle some portion of the river silt. In the Ghaghar, the outlet no longer existing, the operation is that of a gradual filling up from the tail of the river upwards, and the consequent shortening of the point to which water reaches from its source. At present the stream in the dry weather reaches to Drindhal, and it is only in the rains that any portion of water reaches our provinces when heary floods sweep along the bed of the Ghaghar, sometimes as far as Bhatrir, and convert all the hollows into lakes, which are gradually shoaling, by the amount of ailt in the water filled into them. The bed of the river, thas saturated and aided by irrigation from the patches of water, yields the most splendid crops of wheat in the neighbourhood of Raneah (a space several miles wide)-a benefit our landholders must lose as the river retrogrades, but which might be mach extended, as was shown the year we occupied the Bhatti country, when, a number of the lower dams being cut, the floods of the rains reached and passed Raineak in abundance, where they had hardly been for years previously. The most beneficial effect of insisting on a right to a share of the waters which do not rise in, but only pass through, the Sikh states, would be in affording a safficient supply of water for the nala or canal from the Ghaghar, at Múnok, into it again near Raneah. The general line of it is shown on the map passing by Fattehábad, and being in a great measure within our frontier, it would be an extension of the benefits of irrigation from the Ghaghar to our own subjects, who now derive so little from the vicinity of what the acts of our neighbours make but a nominal river nearly. This old water-course is well defined at its head, and so far open that, in the rains, the freshes send down a supply of water for the rice cultivation near Fattehabád. Frroz Sani is said to have made a canal from the Ghaghar, and it is possible that this is the channel alluded to. The advantages of its being re-opened (only however after the Ghaghar river shall have been cleared of dams, for at least 100 miles up) should not be lost sight of. The only thing further I have to say on the canal of

Fraoz Shar is, that as no marks of irrigation channels exist along its benks, it is natural to suppose no system of extensive irrigation had tine to take root, and that, with the decease of its founder, it-fell into neglect, and discontinued flowing; had it flowed long enough to get ap any system of irrigation, the remains of water-courses would not have been utterly obliterated, whereas there are no traces of them west of Sujfidon.

ALI MARDAN KHAN'E, OR, THE DELEI CANAL.
Whether the above canal continued to have a stream in any part of ite coarse or not, at the time the Delhi branch was thought of, early in the seventeenth centary, does not seem very clearly known; though the exprescion of Ali Mardán Kbín "having brought his canal from Kernal to Delli" would imply that, the original canal still sowed as far as Karnál, and thence probably into the Jamna, from the choaking up and neglect of the excavated portion between Karnal and Suffidon. Anxiety to take advantage of the ancient canal of Feroz Shat, so far as suitable in direction, probably induced Alr Mandín Kbín to follow it as far as Madloda, whence turning south, he would fall in with a natural hollow near Korána, which is in fact the head of a great drain of the country ending in the Farkhnagar Jul, about 15 miles S. W. of Delhi, and this he unfortunately followed to Gohána. Thence diverging south-east, he appears to have pursued a line, the t ces of which are most prominent from Gohaina to Jatola; and thence on, or nearly on, the present line, he made his way to Delhi. A terrible catastrophe is recorded to have happened on the first trial of the works, when the water, having got into the doep hollow at Gokasa, could not escape thence by the channel formed, and accumulating, until it overtopped the embankments across this hollow way, destroyed the town of Lialpurr, of which the extensive ruins still exist in a low hollow weat of the present town of Rhotak. The correction* of his error appears to have been made with much judgment, pasaing closely to the natural ridge of the country, where the land falls off on each side. From Jatola, the departures from his old course are of less moment ; although, to account for the remains of bits of canal here and there, he must have made another detour near Bhowoina, where entering on the low ground betwoen that and the rise on which the city stands, he had his most difficult task. He appears to have secured himself, by an outlet, at the upper end of this dangerous spot, sufficient to reduce the level of canal materially in case of accident. Ahead of this point to maintain the level required in the city and palace, the canal, instead of

[^23]being sunk in the ground, is carried along an elevated moand, in many parts of which the bottom rises much higher than the surrouncting country. . The lowest portion of this hollow was croseed on an aqueduct of masonry, under which escapes the surplus water of the Farkhacger Jhil into the Jamna. The canal, shortly after entering on and skirting the base of the range of hills west of Delhi (the drainage from which crosses over the canal by ancient aqueducts), is finally lod directly across the ridge by a channel cut out in the rock, to the depth of about 60 feet at the crest. It then enters the city, and pasaing through it by an open channel, traversea along another extensive aqueduct into the palace, throughout the whole of which it ramifies, in open or covered water-courses, having outlets to the Jamna, thus permitting the passage of constant streams of fresh water. Similar to these, in the space between the range of hills and the palace, namerous underground channels were led off to the various residences of the nobles, and the divisions of the city, yielding to the whole city and its suburbs a supply of good water, from the open well shafts connected with these underground water-courses, and necessary to admit of their being cleared out.
On a review of the ancient works in Delhi, connected with the canal, money must have been expended with a mpast lavish hand, to effect what is known; and much is yet hidden in the ruins of the neighbourhood. The branch thas successfully opened, appears to have been maintained in a state of efficiency, until the year 1760, including a supply down the Gohdna branch, and another down a portion of Frnoz's canal, in which latter the water ceased to flow at Susfidon about 1740. The decay of the canal was probably gradual ; and final only, when the power of the emperor was too much circumescribed, and his attention too much engaged by the perilous circumstances of his reign, to attend to such matters : to which may be added the gradoal increase in size and depth of what was then the western branch of the Jamna, rendering the annual formation of the earthen dama across it in time for the irrigation of the crops, a work of more dificulty and labor, than was compensated by the advantages derived. During the long period that it did flow, the system of irrigation from its waters appeass to have been most extensively diffowed. judging from the multitudes of water-courses which intersect the cometry on both banks, from below Karmel to Dellii : the amounts of the revenue derived from it must however be deemed fabulous, or-muet be misunderstood;-villages, which have from 12 to 15,000 biges ef land, being stated to have paid a lakh of rupees a year-a sum about
equinalent to the grose produce of the land, supposing every part of it jiched one first-rate crop annually, and that the whole of the lands were under irrigation, a matter for which the capacity of the canal was perfectly inadequate. Either the price of produce must have been much ligher then, or the village bounds much more extensive; or what is more probable, districts were designated by the names of the principal towns or villages, and thus the rents stated include the total revenues. Certainly no such resalts are now witnessed in villages of the first magnitude, where irrigation is used to the extent of 1500 Rs. per mame for the use of the water. One such village, Bhatgaon, yields the Begum Sumroo 20,000 rupees a year, I believe; and another, Sissane, pays, I think, to our Government 16,000 rapees. Another, Konána, pays about 14,000 rupees, and is one of our finest villages on the camals, though not so large as others : these villages irrigate extensively*. the doab canal ot ali mardín ihí́n.
I amless acquainted with the former history of this canal. It certainly bemes the name amongst others of Ali Mardín Khín, and must therefore be coeval with the Delhi canal ; but having undergone several reparations in parts. its names are varions. It was originally led from the Jamma shertly above the rains of Bádsháh Mahal, along a nala of the Jamna to the village of Nya Shakr, from which an excavated channelcoaducts it into a small mountain-torrent near Raipur, in which it proceeds about two miles, and is then led slanting across the beds of two great mountain-torrents, (the Nyagabn and Maskareh Rao ;) on getting clear of which, it was led by Sahairaxpúr, apparently along the crest of the ridge between the Jamna and Hindan rivers, from the feeders of the latter leading off from its left or east bank; whilst it is ascertained that several hollow ways lead towards the Jamna from its right bank. In its coorse from Sahíraxpúr to near Delli, there is nothing particular to notice, beyond the absolute absence of the remaine of any trace of ancient bridges or water-courses. Near Delhi, it descends into the valley of the Jamna, and passing partly direct, and partly through the grounds of a Royal preserve, it rejoins the Jamna opposite the city. From the above-mentioned want of traces of ancient works, I conceive the task of maintaining the passage across the momentain-torrenta at its bead, of which three are first-rate, was found to be so great, that the canal was abandoned almost as soon as formed, and that the repeated attempts at reparation afterwards were only

[^24]efficient for a season, and were overcome by the increasing difficalties. Had irrigation existed to any extent, 100 years could not have obliterated all traces of it; and had the water flowed for any length of time, results analogous to what are now experienced elsewhere would have followed, and must have left a trace behind them. Of the former condition of this canal, I must therefore content myself with these inconclusive remarks.

Restoration of the Canals in the Delhi Territory.

The attention of Government seems to have been drawn to the canals shortly after these provinces came under our dominion. I have understood the first suggestion was the offer of a gentleman (Mr. Mercer) to re-open the Delhi canal at his own expence, under the engagement of having secured to him the sohole benefits resulting for a period of 20 years, which was not accepted; and under orders of Government, a survey and design for the work was completed and submitted for consideration by Lieut. Macartnery, of the Cavalry, in the year 1810; this was further followed up, if not preceded, by several reports from other officers on the subject; (Lieut. Whits of the infantry and Lieut. Fordyce of the engineers, amongat the number,) whose reports are lodged in the Chief Secretary's Office : and the whole subject seems to have elicited such a variety of opinion from Colonels Kyd, Garstin, and Colebroore, either as Surveyors General or Chief Engineers, that the matter seems to have fallen into abeyance, until revived during the government of the Marquis of Hastinas. In the same year, a survey of the Doab canal was made by Lieut. Tod, followed up by a notice from Lieut. Hodason, from which nothing resulted. The canal of Frroz Shat is merely incidentally noticed, and appears not to have engaged any attention until the period of Captain Blang's appointment to the canals. I am unable to give any special notice of what may be called the preliminary measures, from the want of records in my office, where nothing further than the original reports by Lieuts. Macartney and Tod exist.
Restoration of the Delhi Casal, from the Hills to Delhi, 185 miles is length.
This subject appears to have early engaged the attention of the Mazauis of Hastings, although it was not till the beginning of 1817 , that Lieut. Blane of the engineers was appointed to conduct the work; his estimate was framed on the report of Lieut. Macartney : although in the progress of the work, it was found necessary to depart considerably from the ideas of that officer, in consequence of the changes effected by the river in this interval. The work was carried on by Lieut. Blane,
with great zeal and in the face of numerous difficulties, and the water being partially brought down as the work progressed, irrigation commenced from it in 1819, and by the end of May, 1820, the water was brought to the city of Delhi, and passing through the main conduits in the palace, rejoined the parent stream.

Lieut. Blans, instead of drawing his supply of water from the river by any of the old heads near Bürya, or as pointed out by Lieut. Macartnby, from near Dadupur, (either of which, in the then state of the case, would have entailed the closing up of what had become the western branch of the Jamna, either by a permanent work eminently liable to destruction, or by an earthen dam renewed annually, at a great expence and loss of time, besides the almost certainty of its destruction, from the floods of the cold weather,) wisely selected the vicinity of Chiharpir, to draw the supply from, although it entailed the passage of two rivers, one the Patralla, of no great moment, the other the Súmbe, of considerable difficulty, from its being the sole drain of the mountains south-east of Náhas nearly down to the Jamna : these two rivers between them drain also the whole country nearly between the Súmbe and the Jamna, and as their streams united before reaching the Jamna, one crossing would be saved. He unfortunately drew his new line of canal from the junction to Búrya, too close to the Jamna, instead of leading it under Bellachor and Kharwan, which though much more expensive in the onset, would have proved less so hereafter; it would at least have been much safer, as it has now become necessary to take measures against the encroachments of the Jamna*, which this season have been to a formidable extent, and may this year, require expensive means, to prevent its continuance, which can only be decided on after the rains. The water led from the Jamna near Chưharpuir is conducted along a

[^25]natural channel to Jhydari, thence by a new cut into the Patrilla, which it follows to its junction with the Sumbe, where Lieut. Buxs projected a dam of masonry, but was deterred from its execution by the heavy floods of 1820 : the earthen dam then required was in extent 500 feet, now it has extended to a serious work of 1200 feet; the extension is attended with the advantage of the floods attaining less height, as none have reached since within three feet of the height he noted.From this point an entirely new channel connected this work with the old line of canal near Burrya, whence its bed was simply cleared or restored as far as Delhi; in the vicinity of which a number of old bridges were repaired and some new ones built, besides which the only other works done were the formation of a new escape dam at Kanjumin towards the head of the canal, and the restoration of an old one near Bomana, for the tail of it ; both works of vital importance, though still insoufficient from want of a more centrical escape (as at Karmal), to pass of the heavy land floods from the north of Karncl, which are added to those of the canal in the rains : the old channel by Büdakhera presents a suitable site for such a work. On Lieut. Blans's unexpected death in June, 1821, the canal was considered finished, and the bills rendered, amounting to somewhat more than half of the estimate-many works noted in them were not even commenced. The canal was however in fact completed, so far as conducting the supply of water then needful was concerned. When this supply came to be increased, and that for Fszoz's canal to be also brought down by the same head, the canal was no longer efficient; to prevent inundation, it became necessary to embenk the canal nearly from end to end, and when the water became so deep as not to admit of a loaded hackery (or cart) passing through it, it became necessary to build bridges, so that from within a few years of Captain Blanz's death, the works of the canal, suited to its present purposes, have been in almost constant progress, and upon an enhanced scale, from the canal being kept full of water during their execation; for the irrigating villages had then become dependent on it for the means of paying their revenue. These works are only now drawing to completion.
Restoration of Feroz's Canal. Main branch, Rair to Bahaderak, $151 \ddagger$ miles in length; Rhotak branch, 45 miles long; Darbak branch, 32 miles long ; New Supply Head, 12 miles long. Total length, 240 miles.
The idea of the advantages of this work appears to have presented itself to the mind of Captain Blane, when employed on the Delhicanal, in its vicinity ; but they were first specifically brought to the considera-:
tion of government by the civil commissioner Mr. Fortascus, through whom I received instructions in May, 1820, to make the requisite surveys and estimates; these added to other duties were not completed. till June, 1822, and were then submitted to government, and sanctioned daring that year; and I was honored, by being appointed to carry my. own ideas into effect. The work commenced in March, 1823; the excavation of the channel was completed, and, a few necessary works of masonry for regulating the water being finished, the water was turned down the canal in May, 1825. This measure may appear precipitate, but water to the country, to which this was destined, was so valuable a boon to both man and beast, and the soil was generally so good, and the canal relatively to the Delhi one so small, that the extra expence of working in water was of much less moment, than the benefits of the supply of water to the country. Since that period the completion of original works, as well as the extension of the advantages of the canal, have been progressive.
. The original works consisted in the clearance of the old line of canal from Rair to Chaminí, with the formation of bridges, as detailed in the abstract of estimates. The extensions are of the main line to Bakiderah,-of an additional branch into our newly settled frontier towards Darbah, -and of the Rhotak branch to Rhotak, with all the works necessary thereon :-these works like those of the Delhi canal are close on completion. In reference to the two canals, which have one common head, I may here allude to the formation of the masonry dam across the Súmbe, now in execution, to supersede the earthen dam there, premising that this dam is swept away annually in the end of June, after which, there is no regular supply of water in the canal, and that it is extending in dimensions. With every exertion, it occupies about 25 days in construction, and as it cannot be commenced before the rains are over, it cannot be completed before the 20th October, and in these 25 days, the fall of the Jamna is betiveen two and three feet (exclusive of temporary rises from floods), so that although there is an abundant commencing supply for the season without any work in the Jamna on the lst October,-it is no longer so on the 25th, and it takes 10 days further to stop up the escape channels in the Jamna near Chuharpír (which can only be commenced after the bunds below are capable of retaining the water) ; by this time the river is a foot lower, and the channels at the separation of the eastern and western branches have to be cleared out, which brings the full supply into the canal about the 1st December. With the masonry dam, which may be thrown entirely open down to the level of the bed of
the Sambe during the rains*, and which may be planked up to foll water level in two days, and sanded in front in three or four ; this will be ready for the reception of water on the lst October, at which period also may be ready a single small intermediate dam, then necesesry to bring down water, and the other works may be kept in progress according to the fall of the river, so that the supply, being kept steady from the lst October, will reach the most distant parts by the 10 th, just when wanted, and will not fail, as there will then be leisure to have each necessary work in advance ready at the moment it is wanted; these alone are advantages outweighing a cost beyond what this will be, the temporary work, with all its disadvantages, costing about as much as the interest at four per cent. on the outlay of the permanent one, which supersedes it.
Restoration of the Doab Canal, East of the Jamna. Main branch, 135 miles long ; side branches, about 25 miles in progress.
In July 1822, Lieut. DsBuds of the engineers was appointed by the Marquis of Hastinas, to survey and report on the then state of the Doab canal. The field work of this duty carried on throughout the rains was completed by the end of March, 1823, when Lieut. DxBods was relieved by Captain Smite of the engineers, appointed 31st December, 1822, to complete the surveys and prepare the estimates of expence of restoration of the Doab canal, which preliminaries being completed in May, 1823, the work was authorized in December of that year, and commenced on in 1824 ; and on this canal the great portion of original work of all descriptions being completed before the water was turned in, it was only upened in January, 1830. The general completion of works being immediately followed by the departure of the superintendent, Major Sxith, for Europe, on sick certificate, the duty devolved on his assistant, Lieut. P. T. Cautlery, of artillery, under whom the supply of water has been kept up in the face of dificulties, some of which could not be and others were not anticipated. The deranging causes were, first, the great fall in the apper and lower portions of canal combined with looseness of soil ; and next, the many mountain-torrents crossing its course. The first, though from end to end \dagger only equal to that of the Delhi canal, was disposed of in a much shorter space, and without the strong soil general in the line of the Delhi canal

[^26]to counteract its effects. The consequence has been the displacement of the bottom of the canal at its head and tail, where in consequence of the natural inclination of the country, the great portion of the slope was concentrated. The only remedy for such a defect is, a system of lockage; this has been applied where of most urgent necessity, and for the completion of which a design is now under the consideration of Government, which if sanctioned will do away with the evil. The second cause of disasters, the mountain-torrents which cross its coarse, (the Badhí Jamna, the Nyagaïn, and the Maskarrah raos, besides smaller ones, are now I would fain hope nearly, if not entirely, provided for, by the arrangements which last year's operations have completed, and which, there is reason to suppose, are such as are not liable to be injured to any serious extent : but the power of these mountain-torrents is such, as to defy all calculation ;-unseen, their operation in times of flood must almost appear incredible, and in ther progress they are so capricious, it is impossible to provide for every contingency, that a series of years may present. These three great torrents have been each provided with extensive masonry dams, laid open during the rains, but capable of being shut up to supply water when required at that season, besides which, the Maskarrah, the most dangerous one, has three extensive openings leading into the Hindan river, and each now, at least 100 feet in width ; and so much has altogether been done, that, there is no reason to apprehend any further heavy expenditure on this account, except under some operation of nature, which may destroy any portion of the works. These remedial works, and the completion of portions of the original design, which Lieut.Colonel Smitr was unable to finish, have with a few additional, beneficial, or necessary works, been continually in progress since the canal was opened. One of the heaviest labours has been, that of keeping the embankments of sufficient height to prevent the inundation, which would otherwise occur from the deposit of the silt brought down from the upper part of the canal, raising the bottom of the canal wherever the current was sufficiently slack to allow its sabsidence; this evil and expence will cease, with its canse above noted.

Having detailed as far as could be done the former and present state of the canals, and the original expenditure, incurred thereon, it remains to notice the purposes for which these canals were reopened, the results to the present period, and the current expenditure for their maintenance in efficiency.

1st.-Of the purposes for which the Canals were re-opened.

The original and almost sole purpose of the government in undertaking these works appears to have been to convey a large supply of water from the Jamna, for the purposes of irrigation of the crops, lst, on lines of country where the natural depth of the wells was so great as to render the cost of irrigation from them so heavy as to impede the improvement of the districts, and delay the resettlement of waste villages, as on the Delhi canal. 2nd, to supply the means of cheap and easy irrigation to districts, as on the Doab canal, where although the wells are not so deep, yet the irrigation from the canal would be so comparatively cheap and easy as to afford the probability of great extension of the benefit : and 3rd, as on Frroz's canal, to confer the means of irrigation on districts where from the excessive depth of the wells none was heretofore in use, and to convey a supply of good and wholesome water to a country where generally it is brackish or salt ; in some districts so much so, as to preclude their occupancy, except for a few months grazing in the rains. To these points alone the general instructions of government tend,-and with such in view, the original estimates of the Delhi canal were framed; with the progress of this work, the advantages derivable from water-carriage, brought prominently forward after the water was first turned in, and the means of using the water as a motive power for machinery, of which the late Capt. Blanz, the first superintendent, made a commencement, led to the original designs of the other canals being formed with reference to these ends, which have been followed up on all the canals by further works designed to render one or other of the above purposes more efficient ; so that on the completion of the designs either sanctioned or now before government, little further work can be necessary, excepting such as may be for the extension of these various benefits to new parts of the country.

$2 n d .-O f$ the results to the present period.

The annexed abstracts will show in a condensed form the results ap to the end of the last official year. In elucidation of which, and explanation of comparative small returns, with such works, I may possibly be obliged to be more diffuse than I would have wished, to be enabled to convey a correct idea in regard to both the present results shewn by these papers and the future prospects; and first I have to notice, as having general reference to all the canals, the often repeated declaration of the government to the superintendents, as their main rule of guidance, that, the object of government in collecting a rent through them waa
not so much to form a productive source of revenue from the actual price paid for the water, as to give them an efficient control over its expenditure, by making it of value sufficient to prevent its being wantonly wasted; and that they looked alone to the general improvement of the country, as the source from which they should derive the return adequate to the outlay. This announcement completely prevented the superintendents' disposing of the water so far as irrigation was concerned to the best advantage, and led to the settlement of a fixed rate of assessment so low, that it is not sufficient to prevent carelessness, entailing much waste of water; from which it may be presumed, that, the instructions of government have been fully acted up to, and the rates levied are sufficiently moderate. I am unable to state from want of knowledge whether the improvement of the revenue in canal villages has been commensurate with the expense: I know the rents of many have been raised, and that others, which were reckoned highly assessed, have been by the canal enabled to pay their revenue; and I also know, that tracts of jangal have disappeared in many parts, and are superseded by caltivation, supported by the canals. This point might be elucidated on the Delhi canal by a statement showing the revenue derived from all canal villages for a series of years before 1820 , and for the subsequent years, compared with an account of the revenue derived during the same years from villages not irrigating from the canal, and in which the wells were equally deep. The length of leases being consi-dered,-the advantage I believe would be with the canal villages, and the comparative difference would be fairly attributable to the canals; the improvement which would doubtless appear on the inland villages, as well as a corresponding proportion of that on the canal villages, being attributable to the benefits arising from a settled government superseding an unsettled one. On Frsoz's canal a similar comparison might be made, commencing with the year 1826; but the Doab canal is too recently opened to afford any room for comparison. I may be permitted here to observe a fact which has forced itself on my notice in my constant intercourse with the inhabitants of canal villages, that, wherever a lease is for any long period of years, of 10 or upwards, or even of five years, improvement, and the use of the canal water make most rapid strides; and that wherever the settlement is too suddenly raised, or is for a short period, or from year to year,-the sole object of the cultivators appears to be to deteriorate their lands, often until they fall into a state from which it is difficult to recover them ; and to this the deadly epidemic of 1829-30 has much added, by leaving valuable villages without hands sufficient to cultivate their
lands*. The abstracts show that on the Delhi canal, an immediate and satisfactory commencement was made by. the cultivators, in availing themselves of the benefits put within their reach; on the other canals this is apparently much less the case, the explanation of which appears to me to be simply, that, on the Delhi canal and upper parts of Feroz's canal, irrigation from its waters was merely the resumption of an old practice, of which the memory still remained, and the country being intersected by old water-courses, the villagers had merely to follow up their traces to the canal banks, and clear them out with a tolerable assurance that when opened they would be serviceable, and that their money expended on the clearance would not be thrown away \dagger. On Frroz's canal, below Suffidon, and the Doab canal, the case was totally different; no remains of ancient water-courses existed to point out to the inhabitants the mode of drawing the water to their landa; they had not the recollections of such a system of irrigation having existed, and had to buy all their experience of the disadvantages of adopting what was the cheapest mode, a direct cut from the nearest point of the canal to their lands without reference to level; and it was not until they had bought this experience, and failed, that, they would listen to the advice given them, and lead their water-courses so as to answer the purposes. On Frroz's canal, the system too led to a perfectly new mode of life : instead of continuing a pastoral people, who depended on the periodical rains raising them grain sufficient for their food with little trouble, they early made the discovery, that, with plenty of good water for their cattle, if they used it for irrigation, they must give up a life of idleness for one of comparative labour, and it was only by very slow degreea they acquired the knowledge, that, the advantages derivable from it would compensate them for the labour, and it is only now that the advances are beginning to be rapid, and advice sought as to the best means of availing themselves of the water. It cannot bowever be expected, that the benefits of the canals in Hariána will be developed until the rising generation brought up on the line of canals to labour, forms the majority of the inhabitants; and will not be fully so, until time and good government does away with the recollections of the life of general inactivity, added to the predatory habits, of their forefathers

[^27]On the Doab casal the charge in not se great, being only of ane sysrean of isrigation for another. It is almost too much in its infency to Now of comparioons, but the results are consistent with the premieses, and the progress of irrigation has been infinitely more rapid than on Freos's caral, though lens so than on the Delhi canal ; the decrease in the laet orop, ahown in the abstract, compared with the corresponding coe of the preceding year, being solely owing to the excess of rain during the last cold season, diminishing the necessity for water, a cause which has frequently had corresponding results on the Delhi canal. It being a clear matter of courne that, where rain falle in sufficient quantity to ripen the cropa, they will not draw apon the canal for a supply to be paid for.

It was found, chiefly on Freoz's canal, that many villages were inclined to go on as they had heretofore, without employing the water for irrigation, but freely using it for all village parposes, and for tha supply of their cattle, saving themselves the expence and trouble of drawing water or maintaining their wells and tanks efficient. As they. benefitted considerably by the canal in this way, it appeared reasonable that they should contribute their share to its support; and it was submitted to government, that although villages paying above a certain sum annually (fixed at 100 rupees) in shape of water rent on irrigation, should still have the free use of the water for village, parposes, yet that those paying less should contribute to the expences of what they benefitted from, by paying a moderate rate on the number of cattle of all kinds belonging to the village. This rate was fixed at six rupees per 100 head of cattle per annum, -a rate so infinitely below the cost of watering from wells, that, to the westward, cattle are brought to the canal from villages distant many miles. The distinction made in favor of irrigating villages has led to many irrigating up to and beyond the limit, which gives free water to the cattle; and in villages within reach of canal irrigation, this source of income will gradually cease, but will still be continued, and go beyond what it has now attained by the watering of cattle of villages, either so distant, or so situated, as to be unable to irrigate, and it is one so fair and reasonable, that it may safely be continued. The filling of village tanks at certain rates is in freat only a modification of the above, and requires no special notice.

Of the Employment of the Water for moving Machinery.
The only application of the water of the canals for the movement of machinery hitherto put in practice has been of a very simple nature, yet prodncing what will appear comparatively great results, as a source of revenue. The use of the water is let out to those who
offer most for it, and as the rent offered can never exceed a rate which must be under the cost of other modes of doing the same work, the employment in this way of surplus water, or of streams again returned to the canal for irrigation, is a general benefit to the community, and tends to cheapen commodities for which the demand is constant.

The first introduction of the system was by Captain Blane, who permitted the erection of three small mills for grinding flour in Delhi, on payment of an annual rent of 25 rupees. Since these, mills of superior powers have been erected at the cost of government, which in Delhi and its vicinity are rented at rates varying from two rupees to five rupees per day, each mill; according to its power, which depends on the height of head water available at the different sites. The produce of the flour mills in Delhi fluctuates considerably, but with the supply of water now becoming annually more constant, the range will become from 25 to 30,000 rupees per annum, beyond which it is not likely to go. Similar mills are being constructed at Karnál, the income from which is expected to realize from 9 to 12,000 rupees,-as the large cantonment, added to the city, will probably yield abundance of work, and time and leisure will enable future superintendents to select many advantageous spots for the erection of small flour mills suited to the demand, every one of which may be more or less a productive source of revenne, compared with the expenditure, if due attention be paid to suit the supply of mills to the probable work. On Freoz's canal, the only mills erected are those at Hanst, less powerful than the Delhi ones, but as yet too powerful for the demand; their produce however compared with their expence is satisfactory, and in such a rising town as Hansf, full employment for them may be anticipated. With exception of the vicinity of Jhind, no other place holds out work for any extensive sets of mills on this canal, and there the slope of the canal appears sufficient to promise a return of about 15 per cent. on the outlay.

The capabilities of the Doab canal in this respect, as in many others, are very great. Flour mills have been erected at Saharanpír, and near Delhi, and the produce shown in the abstract is the return from them; others are just completed at Shamli : and there are other large towns capable of affording work for many more, some of which are authorized and others contemplated, the waste water from all being available for irrigation below the mill sites. Besides the above, saw mills are about to be tried at Delhi and Karnal, places which would yield much of such work, being the marts from which the upper part of western India is supplied with timber, from the forests of the Jamna and the Ganges. Models of oil and sugar-cane mills have also been prepared, which
promise not oaly to be successful, but likely to find an abundance of employment, the lines of the Delki and Doab canals producing much agar-cene, with very imperfect modes of expressing the jaice.

It will be apparent, that all these modes of employing the water are highly advantageous, and do not interfere with the main parpose of the canals, that of irrigation ; the mills being established either where surplos water escapes, or where it is returned below the mills into the canal again, no loss of water is entailed to irrigation, beyond the abmorption and evaporation of the mill streams.

Of the Employment of the Canals for the Transit of Merchandize.

This object has as yet been only very, imperfectly attained, being chiefly limited to the transit of rafts of timber on the line of canals between the forests of the Jamna, from which the rafts enter the canal at its head, to all intermediate places, along the canal of Frroz Siah, as far as Hissar, a distance of $\mathbf{2 0 0}$ miles. Down the Delhi branch from Rair, few if any rafts, except for canal works, have passed down, as they could not reach nearer to Delhi than 12 miles, from the obstructions presented by the ancient bridges and reduced dimensions of the canal. It is therefore preferable for rafters to use the Jamna for such purposes, conveying their rafts to within a mile of the city, though attended often by great danger in the rains, or delays in the hot-weather.

I do not conceive for these reasons, that the Delhi branch will ever come into use for rafting, beyond the demand of the vicinity of the canal, which with so mach jungle-wood, available for common purposes, is not likely at an early period to be great. The Doab canal, it is probable, will be so employed as soon as the completion of the works intended to rectify the disadvantages attendant on the heavy fall at head and tail of this canal, shall afford means of locking the whole line of strong descent. This canal will ultimately come into use for rafting, not only on account of its safety and more equable depth of water, when compared with the Jamna, but because Saharanpír is the general mart for all timber brought from the range of hills between the Jamna and the Ganges, and the merchants will doubtless see the advantages of at once rafting direct from Saharánpar to Delhi by a safe and expeditious line of water carriage, instead of incurring the cost of a land carriage of 16 miles to the Jamna, added to the danger and delays of the river navigation.

In regard to boat navigation, all that has yet effected has been done by the superintendent, in using boats for the transport of lime, from the upper to the lower parts of the canal, which has
been a matter of great convenience, from the difficulty of procerint land carriage; indeed more so than one of saving, on socount of the unformed condition of the canal banks for the purpose of traokege. In this respect, the Doab canal is well advenced; to make its banks available, nothing beyond a clearance of trees is noceseary, when it may become an object to cut them down, on completion of the locks. On the Delhi and Hariána branches, the necessary work is rapidly progressing, and the last lock necessary is just completed. To eatablish such a novelty however will, I fear, require the experiment, to be made by the government, of establishing some boats suited to the canals, to ply for the carriage of goods; for instance, between Karmal, or Rair and Hans\&, and I think such might shortly be done with advantage. There is at present a most extensive traffic existing across from the Doab, through Panípat, and Sonipat to Hans\&, for the export of sugar ; the return being salt, and coarse grain, and Hawst being one of the chief entrepóts in that quarter, for the supply of the western states. It appears to me, it would conduce greatly to the prosperity of Hansí, if the line of trade could be diverted from Pánipat to the cansl at Rair, where the Hansi and Delhi branches separate, instead of proceeding direct from Panipat to Haser via Neawlta, by a land carriage of about 70 miles. From Rair, the sugar loaded on the canal boats could either proceed to within 12 miles of Delhi*, saving about 40 miles of land carriage, or by Frroz's canal to Hanst; on this latter line a return cargo would always be secure; and north of Karnal, being a great sugar country, it is probable much would be exported thence, independent of that reaching the canal from the Doáb, by Pánlpat. Another mode in which it is probable such a trade might .be established would be the offer of a premium, to the individual who should have conveyed the greatest value of imports and exports by the canal, beyond some fixed sum, up to a stated period. Some mode which would give the merchants a knowledge of the ad. vantages to be derived from water over land carriage, without entailing on them present expence and risk, will I think be necessary, to set the matter going, after which it may be safely left to its own merits.

Of rafting on Feroz's canal, the knowledge of relative coot and charges was first given, by all timbers for the canal and garrison works at Hanss being rafted by the canal; and the result has been, that, the

- At the cost of a single draw-bridge, boats could be enabled to reach within eis miles of Delhi, and alterations to three old bridges would take them to within twe miles of Dellis.
import of timber from Karnal to Jhind, Hanor, and Himarr, by land mariage, has been completely muperasded, the canal being capable, of carrying ratt, of the heavient timbers, including; all chargen and the canal duty, at a coset of about one-half of the land carriage; and correncpomding results may be expected elcowhere, whan ance the advantages of trengport of menehandize by.boats is clearly ahown. The boats anitable to the canale should be long and narrow, and of burthen from 100 to 200 mavends*, sharp at both eads, and with a falling mant, and anil, to take admatage of the wind so often faxarable for a return paseage against the stream. The current however is no where sufficient to offer any aerions impediment to traoking up.

> Of sundry minor Items of Revenue.

With the view of preventing waste, and discontent, or complaints of partiality, it has been made a rule on the canals, that, nothing, the produce of the canals, shall be given free of payment of what is deemed an equivalent, and that whoever chooses to give the equivalent may have the right purchased. This leads to sundry small collections, which individually trifing are collectively sufficient to pay a most considerable portion of the outlay in improving this source of income, by planting timber trees on the canals. In the rains, the canal bounds produce annually a strong growth of varions descriptions of grasses, and jangle; these have to be oleared annually to admit of repairs and eccess to the banks; what is unprofitable is burnt, and what is meeful is stacked and sold. The bounds are in many parts covered with trees of natural growth, of which such as would impede the ultimate purpose of trackage are disposed of when wanted in the neighbourhood. Licances are also granted for cutting forage from the canal bounds. These together produce the sums stated in the column of "sale of produce of canal bounds," in the annexed abstracts, which though as yet trifling will ultimately become of material amount, when the useful forest timber trees, now planting on the canals, shall attrain value with age, of which an idea may be formed from the canal banks, west. of the Jamna, affording space for about 200,000 trees to attain.maturity; they are planted in such numbers that from. 10 to 15,000 get. past the age of danger annually, at an expenditure limited to 2000 rupees. At the age of 20 years, the average value of each timber, if only rated at $2 \frac{1}{2}$ rupees, would admit

[^28]a similar number to be cut down annually, being in value, at the above average, 30,000 rupees; though when once the regular cutting commences, it will of course only be picked trees which are felled in number suited to the demand for pablic and private purposes, and which individually will be far more valuable. The produce of the canal bounds may therefore I think be ultimately of considerable importance, and probably much more than I anticipate, from the destruction of the natural forests of the country from want of protection*, and the total absence of any system of plantation in this part of the country.

The only other item of income noticeable as having been one anticipated by Captain Blane is that, from renting out the fishing of the canal ; as yet it is hardly worth notice, and can never be of any moment, if I may judge from past experience.

As a source of revenue fines should not properly be estimated : the object of levying them is to aid in the prevention of waste or wilful misuse of the canal waters ;-to protect the embankment from injury, and thereby save its vicinity from inundation :-and to secure the plantations from depredation and negligence.

Note.-The above report concludes with accurate statements of the various items of expence incurred upon the canals, for which we cannot find space; we have however endeavoured to condense their contents into the following table, under such heads as could be readily separated.-ED.
Abstract of Expences incurred, or estimated, upon Permanent Works of the three Canals, up to the present time.

Denomination	Delhi Canal.	Hariána Canal.	Doab Canal.
	$\begin{array}{ll} \text { Rs. } & \text { A. } P . \\ 50,309 & 2 \\ \hline \end{array}$		
Overfalls, escape dams, weirs, regulators, and sluices, \qquad	$\left\|\begin{array}{rrr} 1,60,309 & 2 & 10 \\ 1,03,113 & 8 & 9 \end{array}\right\|$		1,76,426 818
Bridges (some with locks)	1,02,547 10	69,658 15	95,315 2
Under ground channels,	3,099 1	6,500 0	
Irrigation outlets, \&	4,500 0	35,769 14	11
Experimental works,.	4,938 14		
Water-mills for saws, fis	45,538 10	6,351	25,192 14
Depots, choukis, \&c...	4,414 6		8,195 0
Plantations of trees on banks,.	$\begin{array}{r}2,281 \\ \mathbf{5 2 , 2 6 4} \\ \hline\end{array}$	2,283 15	5,490 13
Tablis	52,	52,175	
for Works,	4,83,007 15	5,50,162 5	1115

- The forests of the Jamna are nearly destroyed from indiscriminate cutting, since they fell under our authority : any one is allowed to cut what he pleases, and where be pleases, on payment of a merely nominal duty, and the whole coantry resorts here for supplies. Formerly it was not 80 : the result is, that now there is not a saul tree fit for public purposes, within six miles of the river; no rosds exist, and the cost of timber in consequence in my recollection has doubled.

The total first outlay. for the restoration of the system of canals will by this table appear to have been about fifteen lakhs of rupees :-it is impossible on the present occasion to specify the particulars of the various works of engineering skill which the nature of these canals rendered necessary :-one of the sluice dams was described in our number for Oct. 1832 (vol. i. p. 454), and we hope hereafter to select for insertion other works equally novel and interesting to Engineers, from among the numerous plans and designs transmitted by the Superintendent to Calcutta. Meanwhile, we must conclude this notice with a condensed abstract of the revenue of the canals, and the ordinary outlay in maintaining them, also compiled from Major Colvin's statements.

Abstract of the Revenwes and ordinary Expences of the several Canals

 since the period of their restoration.
Revenue.

From what source.	Delli Canal, for 23 half years, up to 1830-31.	Hansi or Peroz'Canal, 11 half years, up to $1830-31$.	Canals west of the Jamna, since the accounts were united for one year, 1831-32.	Doab Canal, for 4 half years, up to 1831-32.
Rent of ground ander irrigation, Rabi crop,	$\left\|\begin{array}{ccc} \text { Ra. } & \text { A. P. } \\ 1,88,070 & 5 & 5 \end{array}\right\|$	$\begin{array}{rrr} \hline \text { Rs. } & \text { A. P. } \\ 38,185 & 10 & 6 \end{array}$	$\begin{array}{ccc} \hline \text { Rs. } & \text { A. P. } \\ 27,698 & 3 & 4 \end{array}$	$\begin{array}{cc} \text { Rs. } & \text { A. P. } \\ 9,559 & 12 \end{array}$
\% Kherif ditto,..	1,47,522 41	30,012113	23,318 1	4,074 1110
Rent for watering cattle,	2,098 57	8,3341310	4,210 9	, 3.1
Rent of water-mills, .. Transit duty on rafts of timber, \qquad	$\begin{array}{rrr} 80,029 & 14 & 5 \\ 2,933 & 4 & 0 \end{array}$	$\begin{array}{llll}8,332 & 13 & 9 \\ 3,957 & 3 & 7\end{array}$	$\left\lvert\, \begin{array}{rrr}19,002 & 3 & 7 \\ 2,061 & 15 & 0\end{array}\right.$	3,361 68
Sale of produce of canal bounds,	4,299 149	1,469 1310	1,810 611	1,271 119
Sundries-fishing, filling tanke, \&c. \qquad	2,250 154	1,547 1111	317001	
Pines for breach of canal regulations,	15,711 59	8,047 117	2,463 210	1,985 100
Total income,....	4,42,916 5	99,888 00	80,881 1011	20,253 43
Annual income, say,	42,000 0	20,000 00	81,000	10,000 0 0

Expenditure.

$\begin{gathered} \text { Establishment for su- } \\ \text { perintendence } \\ \text { of } \\ \text { works, collections, } \\ \text { ac........................ } \end{gathered}$	3,47,195 79	1,51,770 10	79,722			5	
Amount of the ordimary repairs, as per moathly bille,	69,169 124		18,342			10,509	5
Total expenditure,	4,16,365 41	1,57,574 06	98,065	7	0	85,224	11
Annna	40,000	28,000	,000			,500	

II.-Abstract of Observations of the Temperature, Pressure, and Hygrometrical state of the Air at Nasirabded. By Major T. Oliver.

The barometer is the same I used at Delhi, and the observations have been reduced by the same quantity (.055), to make them comparable with those in the Surveyor General's office. The thermometern are also the same. I have not been able to note the barometer at 10 A. x. excepting for two or three months : the daily range appears to be about 0.10 . The mean temperature of the day has throughout been taken as the mean of sunrise and $\mathbf{2 h . 3 0 m . ~ P . ~ M . ; ~ a n d ~ o f ~ t h e ~ n i g h t , ~}$ the mean of sunset and sunrise. I lately obtained from Calcutta one of Daniell's hygrometers, intending to compare its dew-point indications with the wet thermometer depressions in this dry climate; but I cannot procure ether that will produce 4 depression of more than 5° or 6° below what water will effect, and this of course is useless here, unless in the rains. We have already a sufficient number of comparisons of this sort in moist air, but it would be desirable to have them in the dry air of this part of the country. As the moist thermometer sinks sometimes as mach as 40°, some freezing misture must be requisite to get the dew-point in such cases, where I imagine the best ether would not answer the purpose.
Regarding the Tables I now send, it will be observed, that in Table III, I confine myself merely to temperatures and wet thermometer depressions : these can be reduced at any time into tensions, when the subject may have undergone due investigation: in the mean time, the dew points and mean comparative tensions have been calculated, as in my former communication.
Table I.—Barometer reduced to 320; Temperature of the external Ait and Deduced Elevation of Nasiríbdd above Calcutta.

$\begin{aligned} & \text { Year and } \\ & \text { Month. } \end{aligned}$	Barom. 4 P. M.	Temp. of Air.	Elevation.	Year and Month.	Barom. $4 \text { P. M. }$	Temp. of Air.	Elera. tion.
	In.	${ }^{\circ}$	Feet.		In.		et.
Dec. 1830,	28,513	72,8	1435	Dec. 1831, . .	28,467	65,2	1462
Jan. 1831,	,510	72,2	1468	Jan. 1832, ..	,483	68,8	1430
February,	,398	68,4	1474	February, ..	,365	69,6	1488
March, .	,338	85,1	1529	March,	,312	79,7	1493
April,	,230	95,3	1508	April,	,218	95,9	1526
May,	,117	102,7	1495	May,	,161	98,2	1497
June, .	27,979	99,4	1532	June,	28,000	100,1	1526
July, ..	28,003	94,5	1529	July,	27,951	91,4	1539
Angust,	,040	87,2	1500	August, ...	28,032	85,8	1425
September,	,138	85,9	1493	September,..	,183	88,3	1504
October,	,278	87,6	1444	October,	,340	89,2	1466
November,..	,407	76,1	1431	November, . .	,461	81,3	1473
Means,	28,246	85,6	1487	Means,	28,248	84,5	1485

1803.]

Tasle II.-Mcas Temperature of each Month, with the differences from. the Mean of the Year.

Month.	Day.	Diff. from Mean.	Night.	$\left\lvert\, \begin{gathered} \text { Diff.from } \\ \text { Mem. } \end{gathered}\right.$	Sunset.	Difi. from Mean.
Jamuary,	$\begin{gathered} 0 \\ 60,3 \end{gathered}$	$\begin{array}{r} 0 \\ -16,3 \end{array}$	$\stackrel{0}{57,2}$	$\begin{array}{r} 0 \\ -16,0 \end{array}$	$\stackrel{0}{65,4}$	$-\quad \mathbf{0} 4,2$
Febraxy,	60,0	- 16,6	57,6	- 15,6	64,5	- 15,1
March,	71,7	- 4,9	69,0	- 4,2	77,9	- 1,7
April,	86,0	$\pm 9,4$	82,0	+ 8,8	-90,0	$+10,4$
May,	90,5	+13,9	86,5	+13,3	93,6	$+14,0$
Jume,	91,6	+15,0	86,7	+13,5	91,3	+11,7
July,	86,7	$+10,1$	83,0	+9,8	86,7	+ 7,1
Argust,	82,1	+ 5,5	79,0	+ 5,8	81,7	+ 2,1
September,	81,4	+4,8	78,7	+ 5,5	83,0	+ 3,4
October, .	79,3	+ 2,7	75,6	+ 2,4	83,1	+ 3,5
Norember,	68,7	- 7,9	65,0	- 8,2	73,3	- 6,3
December,	60,6	-16,0	57,7	- 15,5	64,3	- 15,3
Means,	76,6		73,2		79,6	

Tasle III.-Temperature of the Air and Depression (D) of Wet Thermometer.

Year and Month.	Sunrise.		2h. 30 m. P. M.		4 P. M.		Sunset.	
	Temp.	D.	Temp.	D.	Temp.	D.	Temp.	D.
	0	0	0	0	0	0	0	0
December, 1830, .	49,8	9,5	73,7	19,1	72,8	18,8	67,3	16,2
Janmary, 1831,..	50,3	9,6	72,9	17,8	72,2	17,7	68,2	16,4
February,	50,0	5,5	68,9	13,9	68,4	14,0	65,1	12,2
March, .	62,5	10,1	85,3	22,2	85,1	22,1	81,8	19,1
April,	74,4	14,7	97,8	29,4	95,3	28,0	90,0	25,0
May,	82,5	16,7	104,6	33,6	102,7	32,9	95,7	26,7
June,	82,7	9,1	100,3	22,9	99,4	23,1	89,2	14,5
July,	78,8	5,1	95,5	17,5	94,5	17,0	86,9	10,8
Angust.	77,1	2,7	88,6	10,2	87,2	9,6	82,1	5,7
September,	76,2	3,7	87,4	15,1	85,9	10,9	82,6	7,9
October, .	69,1	8,5	89,4	22,1	87,6	20,7	82,6	14,9
November,	55,3	7,0	77,4	18,3	76,1	17,9	70,0	14,3
Meama, lst Year,	67,4	8,5	86,8	20,2	85,6	19,4	80,2	15,3
Dee. 1831,	52,6	3,9	66,2	9,3	65,2	9,0	61,2	7,6
Jan. 1832,	47,9	5,9	70,2	16,2	68,8	15,8	62,6	12,5
Pebraary,.	51,1	7,0	70,4	16,6	69,6	16,7	64,0	13,3
March,.	57,6	10,4	81,2	22,7	79,7	22,2	74,0	18,3
April,	73,7	16,0	97,3	32,5	95,9	31,3	89,9	25,2
May,	76,0	14,6	99,0	32,5	98,2	32,3	91,6	27,8
Juse,	81,3	10,4	101,6	26,7	100,1	26.2	93,3	21,3
July,	79,5	5,5	93,4	16,1	91,4	14,9	86,6	11,2
Auguet,	75,6	3,2	87,0	10,8	85,8	10,0	81,2	7,0
Seprember	72,7	6,3	89,5	17,9	88,3	17,5	83,3	14,5
October,	67,4	13,5	91,5	28,9	89,2	27,6	83,6	24,2
November,	59,3	10,5	83,8	22,8	81,3	21,5	76,6	18,5
Means, 2nd Year,	66,2	8,9	85,9	21,1	84,5	20,4	79,0	16,8

Tarks IV:-Dew point (S), calculatel from the Depression' in Table III. Comparative Tension (T), and Grains of Aqweous Vapour in a cubic - foot of Air (G.)

Year and Manth.	S.	T.	G.	Year and Moath.	s.	T.	G.
Dec. 1830, ..	$\stackrel{0}{31,8}$,338	2,37	Dec. 1831,	$\stackrel{0}{48,6}$,683	4,25
Jam. 1831, ..	34,0	,370	2,57	Jan. 1832,	36,9	,445	2,84
Pebruary, ..	41,6	,528	3,33	Pebruary,	36,5	,418	2,80
March,......	45,5	,372	3,74	March,	35,5	,299	2,6e
April,	46,2	,260	3,75	April,	38,6	,196	2,84
May,	48,9	,224	4.03	May,	40,4	,201	3,00
Jume,	67,9	,463	7,53	June,	61,9	, 379	6,20
July,	71,6	,606	8,56	July,	71,4	,617	8,52
August,	74,4	,759	9,45	Augast	72,0	,738	8,77
September, ..	70,0	,685	8,21	September, ..	62,4	,533	6,43
October,	55,4	,449	5,17	October,	35,6	,215	2,68
November, ..	43,0	,438	3,47	November, ..	40,2	,336	3,07
Means,......	52,5	,458	5,02	Means,	48,3	,422	4,50

III.-Determination of the Constant of Expassion of the standard 1afeet Iron Bar of the great Trigonometrical Survey of India ; and expansians of Gold, Silver and Copper by the same Apparatus. By Jas. Prinsep. p.n.s. Sec.

When I submitted the results of noy former experiments on the expansion of iron, brass, and lead, which were printed in the Gleanimes in Scirncr for December, 1831, I ventured to anticipate that the simplicity of the process then contrived for heating the metals would be a rocommendation for its adoption in any fature researches of a similar nature. The opportunity has not been long wanting ; and as it has involved the necessity of a more scrupulous degree of accuracy, from the important purpose to which the results were to be applied, I feel it incumbent upon me to enter into fuller detail in describing the corrse of experiment pursued. The gigantic scale of the former trials, with bars of twenty-five feet in length, was calculated to obviate most of the errors of observation, as well as any want of extreme delicacy in the measuring apparatus; but on the present occasion, although the berswere of smaller dimensions, the other concomitants were much more satiafactory; and I may confidently maintain that, with the prosent and the former series, we now possess a more correct table of the dilatations of gotd, silver, iron, copper, brass, and lead, than have been hitherto published in works of natural philowophy.

It win be remembered, that the measurement of the bave for the great Trigonometrical Survey of India, on the Barrackpúr Road, was cenducted with comapensation bars of a peculiar construction, each of them ten feet in length, or, bearing near their extremities two minute points, intended to represent that distance without liability to slter by change of temperatare. Their construction has been securately cescribed by Major Everest in the 18th volume of the Asiatic Researches. To prevent the possibility of derangement in all or any of these compound bars, and to serve a term of comparisen for the whole, a standard iron bar was furnished along with them from England, upon which was laid off at a eertain temperature with all imaginable accuracy, the measure of the English parliamentary ctandard, to which all the meagores of the Indian meridian line should be thos reducible.

After the completion of the Barrackpur base, the compensation bars maderwent a most rigid comparison with terz bTandied; as did ajoo the steel chains used in measuring the several bases of Col. Lambton's Survey in the peminsula. The particulans of these comparisons, conduct. ed with that most elaborate care and precaution, which has distinguished all the operations of the new sarvey, will be described by Major Evereet himeelf, when he ehall favour the problic with the realit of his labcurs. At provent it is but one item of these precautiomary measures which will come under our review.

The comparisons with the standard bar were made at a temperature differing by many degrees from that at which the latter had been proved in England. It became therefore necessary to apply a correetion for ite dilatation by heat : but to do this a question naturally arose as to what cometant ahould be employed? The expressions given by different experimenters vary from 1.00144 (Troughton) to 1.00118 (Dalong et Petit), or one-sixth of the whole quaatity, \rightarrow variation either to be attributed to imperfections in the mode of experimenting, or to difference of quality in the metal,-but in either way rendering it advisable to have recounve to a new met of experiments, to obtain the individual expanaion of the atandard bar itself. The experiments mande by myself in Dec. 1831 upon a rod of iros twenty-five feet in length, though nearly agreeing with the realits of Lavoisier and Smeaton*, were for the eame reason inapplicable to a metal which might be of different quality. It was therefore determined by Major

[^29]Everest to submit the bar to a new inquiry, attended with eviery precantion to insure confidence.

The process adopted was framed on the principle parsued on the former occasion, namely the employment of a steam-pipe, to heat the metal uniformly to the boiling point. The section of the bar, $2 \frac{1}{2}$ inches by $\frac{3}{4}$, prevented its application in the same simple manner, by insertion in a leaden pipe; and it was determined to employ micrometers on the microscope principle of Troughton to read off the expansions ;a new apparatus was therefore constructed by Mr. H. Barrow, H. C. Mathematical Instrument-maker, of which the following description, with reference to the perspective view in Plate VII. will explain the nature.

A double cylindrical case $a b$ (fig. 3) was made, 9 feet 11 inches in length, and four inches in outside diameter, the inner cylinder being of copper, the outer case of tin. The space between them was shat in at the two ends, with perforated discs, so as to allow the bar to be inserted freely into the inner tube. The bar was supported in the tube apon two brass rollers, enclosed in the steam-tight square boxes at c, d, and situated at the same distance apart as the rollers upon which the bar is always supported in its own wooden case. (fig. 1.)

The tubes were pierced through from above in four points e, f, g, h, for the introduction of thermometers, the bulbs of two of which (f, g,) penetrated into deep cavities apparently provided for the purpose in the bar itself; these were filled with mercury, to insure the right reading of the temperature of the bar. The cylinder, $a b$, was supported on two of the brass tripods of the measuring apparatus, technically called camels, k, l, which are provided with vertical and horizontal screw motions to adjust the position of the bar. The steam was admitted from my small engine by a pipe at the northern extremity b, and suffered to escape freely from the waste pipe m at the other end.

Two micrometer-microscopes, $n, 0$, were firmly attached by acrews to two isolated solid blocks of stone, p, q, built upon the stone pavement of the laboratory at the requisite distance apart; the focus of the object glasses being adjusted in true verticals to distinct vision of the minute dots on the silver discs of the standard bar, when the latter was itself adjusted horizontally to a perfect level by means of a theodolite placed on the opposite side of the room.

The object of the double cylinder, according to the original desiga, was, to encompass the bar with a steam jacket, and thus heat it to the requisite point without allowing the steam itself to come in contact with, and thus to corrode, the iron; as well as to prevent its eacape from the two open ends, which would incommode the glasses of the microscopes:
it was found however at the onset that the heating of the bar in dry air, although surrounded closely by the copper tube, was a most tedious precess, whereas it was effected immediately by contact with the steam, which, condensing on the colder surface of the metal, delivered its latent heat, and did not issue from the vent until the whole apparatus had been effectually brought to the boiling point. It was therefore a fortunate circumstance that a leak in the inner tube, in the course of the first experiment, threw open a communication for the steam to the inner chamber : this was afterwards enlarged by piercing a hole through the copper, immediately in front of the steam injection pipe b. The only inconvenience produced therefrom was, that a little steam escaped from the two ends where the bar necessarily projected under the microscopes. This was however obviated by packing with cotton, and screening the object glasses with paper. The steam issued in plentiful clouds from the thermometer apertures f and g.

Having thus described the apparatus as it stood during the experiments, I must be allowed to add a few words on the capabilities of the several parts of it : and first, of the micrometers. The northern microscope was immovable, bearing fine cross wires in its field, to which the centre of the corresponding dot on the bar was braught by the lateral screw of the camel K . The cross wires of the southern microscope on the contrary had a range of about a tenth of an inch, which it subdivided by 20 revolutions of the centesimally-divided screw-head into 2000 parts. The micrometer was therefore sensible to the 20000 th part of an inch, or more rigidly, each division of the index was equal to $\boldsymbol{c}^{\frac{1}{3 n}}$ inch, and the error of reading did not amount on several trials to more than one or two such divisions.

Secondly. Of the thermometers. There was some difficulty in procuring good instruments with naked bulbs, and it was necessary to remove common ones from their metal scales to adapt them to the apparatus, and to scratch the degrees on the tubes ; many thermometers were broken from this and other causes. As the precaution was taken of comparing their boiling points, and their indications at the general temperature of the air, with a standard instrument, no error on this score was to be feared beyond the necessary difficulty of reading off to fractions of a degree, where the instruments were only divided to every two degrees. The mean thermometric error cannot however be estimated at more than 0.2 of a degree, which upon a range of 140 degrees will not affect the resulting dilatation more than $1^{\frac{2}{2} \delta a t h s, ~ o r ~ a b o u t ~} 2$ in the sixth place of decimals. The fact is that the bar itself was a much more delicate measurer of the mean heat of the apparatus than the thermometers.

The errer of the readings therefore apon a length of 10 feet (nemmo fang it even to $2 \frac{1}{2}$ divisions of the micrometer) will not merpmen 0.000001 , while the error of the thermometer reading many amonat to 0.000002 : it will be seen from the tables which follow, that the general ram of the experiments fully confirmas this estimate of accurney; at the same time it would be useless to carry the expression of the dilatation beyond the sirth decimal, as is frequently done in cascen beon saticled to relianoe.

The order of each experiment was similar to that deacribed in my former paper. When several readings had been made at the temperature of the room, the steam was let on and kept up for ceveral hoars, during which the second readings were made. Cold water was not introduced, as it took a long time to restore an equal temperaturo, and it was found better to allow the apparatus to cool down gradually by the following morning.

- It was only in the third series of experiments that the bar remsined quite stationary at the higher temperature for more than two howss. In general it was remarked that the reading of the micrometers gave the motal a maximuma dilatation at the firet moment of its being brought to the boiling poist, gradually falling off even to the extent of 20 divisions (rotroth of an inch), as the steaming continued. This was evidently not attributable to change of temperature in the steam, for the thernometers were not affected. I imagined that it mast be produced by torvion or carvature of the bar, from the under part of it being at firut less heatod thea the upper ; for, by the construction of the apparatus for steaneing, it is evident that, on the introduction of the steam, the upper parts of the tabe would become heated first, while the condensed steam collected in the lower part of the cylinder imparted a lower temperature to the under sarface of the bar: but this would cause the bar to ansume a slight curvature upwards, which, as the sapporting rollers were sithated in distance one-fourth from the ends, would tend to depress the dots below the true focus of the microscope; the effect of this and of the onrvature would be to make the bar shortor than otherwise, so that this explanation cannot be admitted.

Some very curious experiments, however, which are deccribed by Captain Kater in the Pbil. Trans. for 1830, may serve to afford an explanation of the anomaly. That gentleman found that the error ia the Hinear measurement of a flat bar of $\mathbf{3 6}$ inches in length, might amount to .001 inoh, simply by its resting upon an uneven surface, and acouming a curvature therefrom, the versed sine of which amounted to no more than .01 inch; now the difference between the chord and the
arc is this case, is less than a hundred thousandth of an inch, and is, therefore, inappreciable; nor is it attempted to explain in what way the effect obverved should be one handred times greater than could have been expected. Captain Kater, it is true, immediately devised a remedy for this anomaly, by seeking the neatral axis of the bar, and imprinting the dots apon ledges formed at the two axtremities in this plane. The Indian standard bar was formed on this principle, the parts bearing the dots being two-fifths in vertical height of the remainder of the bar (figs. 1, 2.) : bat upon a length of 10 feet, we may conceive that a trivial error in the assumed position of this neutral axis may be sufficient to account for the slight anomaly in the readings alluded to. It will be evident that on the slightest slackening in the supply of steam, the upper part of the bar would become cooler than the lower, for the aeme remen as given above, and a contrary flexure would thas take place to a similar amount. By taking therefore the mean reading of each series of experiments, we need not fear any influential error from this scurce, which I have the rather pointed out on account of its apparent confirmation of Captain Kater's curious discovery.

We will now proceed to the experiments, placing them in a tabular form according to their dates, and correcting the thermometers, \&c. to a common standard.

First Series, 20th November, Standard Irom Ber A.

	Thermometers.			Hour of Observation.	Micrometer Readings.	Observations.
	In the steampipe.	Inserted in the Bar.				
		North end.	South end.		Divisions.	
1		$\stackrel{\circ}{\mathbf{7 8 , 3}}$	$\begin{gathered} 0 \\ 77,2 ? \end{gathered}$	Noon	-1067	The indications of the
2		152,	152,0		-82	micrometers and ther-
3		170,8	164,7		+113	mometers were read off
4		178,6	169,7	to	+211	simultapeously at equad
5		184,4	185,4		+ 314	intervals of time, to at-
6		190,2	194,0		$+493$	certain the ratio of calo-
7		212,0	212,0	4 P. M.	+1157	rific mecession, but the
8		212, ${ }^{\text {c }}$	broken		$+1151$	opening of a leak pre-
9	210,6	212,0			$+1140$	rented the completion of
10	210,2	212,6			+1133	the series.
11	213,3	212,8			+1152	Observers, Major Even-
12		201,2			+1033	est and Captain Wiz
13		188,9			+806	cox.
	ence of $\}$ atares			dilatation,	2213	

Second Series, 21st November 1832. Standard 10 feet Bar.

	Thermometers.			Hour of Reading.	Micrometer Readings. Divisions.	Observations.
	In the steampipe.	Inserted in the Bar.				
		North end.	South end.			
1	0 80,1		78.0	H. \mathbf{x}.		
2	79,9	77,6	77,5	349 P.M.	-1050	Focal distance of mi-
3	214,2	212,5	212,0		+1127	crometer 2,15 inches;
4	214,2	212,6	212,0		+1116	stopcock of steam-pipe
5	217,2	212,4	212,0		+1099	frequently opened and
6	215,4	212,8	212,5		+1114	closed during this se-
7	212,6	208,2	211,6		+1083	ries.
8	215,1	211,4	211,9		+1089	
9 10	214,8 214,4	212,3 212,5	212,4		+1101	Evercst and Capt. Wil
10	214,4	212,5	212,1	50 P. M.	+1106	cox.
12	81	71,3 72,7	71,5 72,2	70 A. M.	-11175	On the following mor-
13		71,6	71,3		-1185	ning Capt. W. and J. P.
Diffe cemp	ence of rature,	rising, falling,		dilatation do.	$\begin{aligned} & 2171 \\ & 2296 \end{aligned}$	Omitting Noe. 7 \& 8.

Third Series, 22nd November. Same Bar.

1	72,7	72,6	72,5	110 A.m.	-860	Barometer 29,99. Wril-
2	73,9	74,4	74,5	12 43P.M.	-829	cox and Prinsep.
3	213,9	212,6	212,7	20 p.m.	+1447	The micrometer re-
4	212,0	212,4	212,2		+1443	mained perfectly sta-
5	212,0	212,4	212,2	to	+1443	tionary for half an hour,
6	212,0	212,4	212,2	${ }_{5}^{40 \text { P. M. }}$	+1443	and the steam-cocks were not touched.
8	76,3 70,7	81,8 71,7	80,0 71,8	$\begin{aligned} & 50 \text { P. M. } \\ & 90 \text { A. M. } \end{aligned}$	$\begin{aligned} & \text { — } 974 \\ & -926 \end{aligned}$	rejected, not evenly cool. next morning. J. P.
Diffe temp	ce of ture,	rising, falling,		dilatation do. do.	$\begin{aligned} & 2288 \\ & 2218 \\ & 2370 \end{aligned}$	single reading. following morning.

Fourth Series, 23rd November. Same Bar.

1	72,9	73,2	73,9	[1157A.x.\|	-897	Barometer 30,02.
2	72,9	73,4	73,9		-896	Wilcox and Prinsep.
3 4	212,3 212,5	212,5	212,3 212	12	+1394 +1394	
5	211,9	212,4	212,2		+1387	
6	212,7	212,5	212,2		+1379	
7	212,8	212,4	212,2	125 p.m.	+1379	
8	75,5	76,5	76,7	415 P. m.	-872	rejected.
9	72,0	73,4	72,8	110 A.M.	- 920	following morning.
Diffe temp	ce of ture,	$\begin{aligned} & \text { ising, } \\ & \text { alling, } \end{aligned}$		$\begin{aligned} & \text { dilatation } \\ & \text { ditto. } \end{aligned}$	$\begin{aligned} & 2283 \\ & 2306 \end{aligned}$	

Fifth Series, 24tk November. Same Bar.

	Thermometers,			Hour of Reading. H. $\mathbf{~ M . ~}$	MicrometerReadings.	Obeorvations.
	in the Steampipe.	$\begin{gathered} \text { inserted in the } \\ \text { Bar. } \end{gathered}$				
		North end.	South end.			
1	72,8	72,9	73,2	1140A.m.	- 906	
2	72,5	72,9	73,3	1143 "	- 906	Barometer 30,02.
3	73,3	74,1	74,1	045 P .m.	-890	Wilcox and Prinsep.
4	212,3	212,9	212,5	18 "	+1401	
5	212,5	212,9	212,5	120 "	+1401	
${ }_{7}^{6}$	212,	212,6	212,4	145 "	+1395	
7	211,5	212,7	212,4	20 "	+1394	
Difer tupe	$\left.\begin{array}{l} \text { ace of } \\ \text { ctare, } \end{array}\right\}$	rising, falling,		dilatation, ditto.	$\begin{array}{r} 2298 \\ 2283 \end{array}$	taking readings of 26th

Sixth Series, 26th November. Same Bar.

2	71,3	71,5	71,9	10 A. M.	-916	
2	72,9	73,1	73,9	$1125 \mathrm{~A} . \mathrm{m}$.	-875	Barometer 30,02.
3	73,3	74,1	74,2	$030 \mathrm{p.m}$.	-865	Wilcox and Prinsep.
4	213,0	212,3	212,3	10 "	$+1418$	
5	212,3	212,3	212,0	2θ "	+1405	
6	212,9	212,4	212,2	215 "	$+1400$	
7	212,5	212,2	212,1	240	1388	
Diff. temp	$\text { \} falling }$	$\begin{aligned} & 139,1 \\ & 139,7 \end{aligned}$		dilatation, ditto.	$\begin{aligned} & 2288 \\ & 2288 \end{aligned}$	following morning.

Seventh Series, 27 th November. Same Bar.

1	70,5	71,0	70,9	100 A.m.	- 910	
2	72,3	73,2	73,0	noon.	-875	Barometer 29,92.
3	73,0	73,6	73,5	030 P.x.	-869	Wilcox and Prinsep.
4	212,2	212,5	212,1	10	+1422	
5	211,7	212,4	212,0	130%	$+1408$	
7	212.2 212,7	212,5 212,5	212,0 212,0	$\left\lvert\, \begin{array}{lll} 1 & 45 & \# \\ 2 & 0 \end{array}\right.$	$\begin{aligned} & +1404 \\ & +1398 \end{aligned}$	
Diference of temperature,		139,7		dilatation, 2293		

The accordance of the observations, particularly of the latter series, was so satisfactory as to render their further repetition superfluous : it now only remains therefore to arrange the data of the several experiments in a tabular form, and to calculate the resulting dilatations sccording to the usual expression of " the dimensions taken by a bar at 212°, whome length, at 32°, is 1,000000 ."

Abstract of the results of the foregoing experiments on the expaxsion of the Standard 10 feet Bar of Iron.

No. of the series.	Range of Temperature Farh.	Dipisions of the micrometer.	Total expansion in decimal parts of a foot.	Dimensions of a bar at 212° whose length at 32° is 1,000000 .	differesce from the mean in millionth
$\underline{1}$	136,0 134,6	2213	. 000909895	1.001204 1.001194	-14
$2 r$	134,6 140,6	2296	. 0094392	1.001208	- 10
3 r	138,9	2288	. 0094064	1.001219	+ 1
f	131,5	2218 ?	. 0091185	1.001248	+30
	140,7	2370 ?	. 0097435	1.001246	+28
45	138,7	2883	. 00938858	1.001218	
f	139,2	2306	. 00994804	1.001226	+8 +8
$5{ }_{f}^{r}$	139,2 139,5	2298 2283	.0094475 .0093858	1.001222	± 4
$6 \stackrel{f}{r}$	139,5 139,1	2288	. 0094064	1.001217	- 1
f	139,7	2288	. 0094064	1.001212	-6
7 r	139,7	2293	. 0094269	1.001214	
		Mea	the whole,	1.001218	

The mean of these experiments is 1.001218 , but if two of the series (doubtful because they depend on single observations), be strack out, the dilatation will appear to be 1.001213 , and the greatest deviation hardly amounts to the one hundred-thousandth part, while the general accordance is much within these limits. The mean of the former experiments upon an iron rod of 25 feet in length was 1.001256 , determined by a single heating, and therefore liable to some uncertainty: that of another wrought iron bar to be noticed presently, was 1.001216, which agrees so closely with the above, as well as with the results of Smeaton and Lavoisier, that I am inclined to think there is not so much variation due to the quality of the metal as has sometimes boen supposed, and that 1.001215 may be safely employed on all occasions as the constant of expansion for wrought iron.

- II.-Expansions of Gold, Silver, and Copper.

Having concluded the experiments upon the standard bar of the trigonometrical survey, it occurred to me as very desirable to make use of the microscopes, while fixed, to lay off a duplicate of the bar for deposit in my own office. When this had been done, it followed that the constant of expansion might likewise be determined with ease for the new bar by a repetition of the same process ;-and further that we might arrange alongside of the iron bar such other metals as were readily procurable in the mint of the desired dimensions.
Captain Wilcox kindly undertook to assist me in this new series, which was conducted in every respect with the same attention to mi-
nate accuracy at before. We prepared in the mint two laminated straps; one of pure gold*, 10 feet two inches long, $2 \frac{3}{4}$ inches broad, ad about of inch thick, weighing about 320 lbs : the other of standard silver ($\mathrm{r} \frac{1}{2}$ oopper alloy), of the same dimensions or a little thicker.

The two ends were cut away, and marked with fine dots as nearly as poseible at the distance of 10 feet apart. As the run of the micrometer wes only one half of the expected expansion of the metals now to be tried, the precaution was taken of inserting second dots about $\frac{1}{18}$ th of an inch withim the first, the distance between the two dots being carefully measured under the microscope. I have said that the inner steam cylinder was of copper; all that was necessary therefore to enable us to measure the expansion of this metal along with the rest, was to fix two small tongues to the two extremities of the tube, projecting under the focus of the microscopes, and bearing the marks for measurement.

For conaistency I will insert the new series of experiments with the same detail as before, to enable other experimenters to judge of the meseure of confidence due to our simple bat somewhat tedious investigation.

Erighth Serios of Experiments on Expansion.

Day.	Therninometera.			Readings of the mierometer.			
	In	Bar.	Steam	Iron.	Gold.	Silver.	Copper.
	South.	North.	pipe.	Iron.		(add 2277.)	(mda 2297.)
			\bullet				
Nov.	76,0	76,6	76.4	\}-904,5			
30.	76,2	76,7	77,6	\}-904,5	-891,5	-900	-959
Heon	211,7	212,2	213,2	\} +1000			
to	211,9	212,2	213,2	$\}+1290$	-758,5	4358	-140
	211,8	212,1	213,8				
	211,9	212,2	214,3	$\{+1275$			
5 P. M.	211,8	212,1	213,0		-776	+360	-129
	211,8	212,0	211,2	$\int+1269$			
	211,9	212,1	212,7 214,0	$\}+1279$	-768	+362	-129
	211,9 72,9	212,0 71,6	214,0 71,4	$\left\{\begin{array}{r}+1279 \\ 1023\end{array}\right.$	-768	+362	-129
7 i . M.	72,4	71,6	71,6	$\}-1023$	-960	-937	-1058
Ascesdingirange, 135,6			dilatation, ditto.				
			ion, 2182	2649	3543	3133	
Dencend	ding do.	139,9		2301	2718	3574	3222

Ninth Series.

Dec. 1. Neon	76,0 76,2	75,6 76,0	76,5 76,5	967	-913	-864	-979
	211,6	212,2	213,4	+ 1266	-798	+358	-157
to	211,8	212,1	214,4	+ 1267	-799	$+365$	-141
1. 21.	211,9	212,1	212,2	$+1254$	-806	+364	-197
Ascending range, 136,0			dilatati	, 2229	2637	3503	3098

- Of the old gold mohar standard, or 1 car. 34 gr . Br., which, as far as such expesiments go, mary be deemed pure.
+ Before this experimate, the hole had beea pierced throught the copper cylindor.

I should have premised, that to prevent the straps of gold and silver from curving within the cylinder, when heated, they were held flat, one on each side of the iron bar, by coils of copper wire at distances of six inches apart-these were not so tightly bound as to impede freei motion longitudinally.

At this period of the experiments it was determined to anneal the: gold and silver bars, to observe what difference would be caused intheir rate of dilatation thereby, as well as what would be the permanent elongation due to this change of condition.

To effect the annealment of such long slips of metal in the most equable manner without endangering loss or accident, required certain precautions. They were laid upon a flat bar of wrought iron, supported at distances of a foot asunder by fire-bricks, as represented in fig. 4, P1. vii. Their whole length was then enveloped in gobar, or cakes of : cowdung, in the same manner as is practised in heating the felly of a wheel. The heat was thus gradually raised, until the whole length. was uniformly of a glowing red. Bat, not to lose the opportuaity which this experiment afforded of ascertaining the relative expansions of the three metals at this higher temperature, an iron stake bad been firmly fixed in the ground at one end of the bars, against which all three were made to abut firmly: the other ends were connected by an intermediate brass rod (kept cold) with the nonius of a sliding scale placed on the ground in a line with the bars, so as to measure off their elongation with great facility. The results, and the temperature by Farenheit's thermometer founded on the assumption of an equal rate of expansion throughout the scale of each metal, were as follows.

Absolute expension in inches

The gold, placed uppermost,	1.638	1787°
The silver, in the middle,	2.008	1655
The iron, undermost,	1.240	1609

That the upper position was much hotter than the lower was evident, nor does it seem surprising that the difference of temperature should have been so much as 180 degrees. No knowledge therefore could be gained on the point sought, namely, the relative ratios of expansion; but the method of operating is itself capable of further application, and I hope hereafter to be able to pursue it to more conclusive results.

The absolute elongation of the precious metala, by annealment, was measured by placing them once more under the microscopes at the same temperature as before, $\left(77^{\circ} .2\right.$.) It was found to be much lems than was calculated from the difference of specific gravity before and after annealment, shewing that the compression under the rollers was in the gold 20 , in the silver 8 , times greater in the transverse than.in the. longitudinal direction. The results were as followas:

To compare the relative expansions, the increase of bulk, or volume, must be divided by three, to reduce it into linear elongation, when, as before stated, the transverse will be found much to exceed the longitudinal expansion.

Having explained the objects and results of this digression, and imagining the bars replaced as before, we will proceed to the remainder of the experiments with the steaming apparatus:

Tenth Series.

Das.	Thermometer,			Readings of the micrometer.			
	in bar		in steam	Iron.	$\begin{gathered} \text { Gold } \\ \text { (add 2525) } \end{gathered}$	$\begin{gathered} \text { Silver } \\ \text { (add 4065) } \end{gathered}$	$\begin{gathered} \text { Copper } \\ \text { (add 2297) } \end{gathered}$
	wouth.	north.					
Dee. 3.	78.5	78,3		-937	-449	$+865$	-965
	79,2	79,2					
Noon	212,1	211,8	211,5	$+1279$	-383	$+224$	-240
to	212,0	212,0		$+1267$	-381	+222	
5 p.m.	212,0 211,9	212,0 211,7		+1264			
Ascending remperature, different for each metal, Dilatation (adding space betwees dots),				$\begin{gathered} 0 \\ 133,6 \\ 2207 \end{gathered}$	$\begin{gathered} \stackrel{0}{133,4} \\ 2592 \end{gathered}$	$\stackrel{0}{0}$ $133: 1$ 3423	132,8 3022

Eleventh Series.

Dec. 4.	78,4 78,6	78,4 78,6	\}....	- 911	-445	+865	-977	
104.2.	212,3	212,0	full	+1278	-377	+227	-203	
to	212,2	212	steam	+1266	-401	+220	-202	
p. m.	212,1	212,1	$\left\lvert\, \begin{gathered} \text { (steam } \\ \text { less) } \end{gathered}\right.$	$\begin{aligned} & +1204 \\ & +1202 \end{aligned}$	-404	+175	-226	
Range of temper. ascending, ..				0	0	0	0	
				133,7	133,7	133,7	133,5	
Ditto fo	or leat r	adings	,......	133,6	133,6	133,6	133,5	
				2183	2593	3423	3071	
Bilatation, frat readings,				2114	2566	3375	3048	

: In this last series the steam was allowed to run down on purpose to try the effect: and it will be seen that it was sensibly felt by all the metal bars, even while the mercurial thermometer scarcely indicated the fall; for as before remarked, the bars were far more sensible thermometers than the small mercurial instruments.

The expansion however by the last experiment has been purposely calculated, to ahew the maximum inftuence of sach a cavec.

The general resuits may now be classed under their respective heads as follows:

	Range of temperature.	Reading of micrometer	Deduced dilatation for 180 degrees.
Duplicate Iron 10 feet Bar.	135,6	2182	1,001191
	139,9	2301	1,001217
	136,0	2229	1,001213
	133,6	2207	1,001283
	133,7	2183	1,001208
	133,6	2114	1,001171?
	Menn, reject	the lest,	1,001210
	$\left\{\begin{array}{l}135,6 \\ 139\end{array}\right.$	2649	1,001446
Pure Gold, rolled hard,. . .	$\left\{\begin{array}{l}139,9\end{array}\right.$	2718	1,001438
	136,0	2637	1,001435
	$\left\{\begin{array}{l}133,6\end{array}\right.$	2592	1,001439
	$\left\{\begin{array}{l}133,7 \\ 1336\end{array}\right.$	2593	1,001435
	$\left\{\begin{array}{l}\text { 133,6 } \\ \text { Mean, reject }\end{array}\right.$	${ }^{2564}$	1,001481 ?
	Mean, reject 135,6	the last,	${ }_{1,001933}^{1,001438}$
Standard Sil	$\left\{\begin{array}{l}135,6 \\ 139,9\end{array}\right.$	3543 3574	$\begin{aligned} & 1,001933 \\ & 1,001890 \end{aligned}$
	136,0	3503	1,001906
	133,6	3423	1,001896
	133,7	3423	1,001898
	133,6	3375	1,001869?
	$\begin{aligned} & \text { mean, } 136,6 \end{aligned}$	3133	1,001697
Copper annealed, but parti-	141,5	3222	1,001685
	135,8	3098	1,001688
tube,	132,8	3022	1,001684
	133,7	3071	1,001702
	(133,5	3048	1,001690

It must be remarked with regard to this series, that, besides other sources of error, the dots, marked with a needle-point by an unstilful hand, were rather difficult to bisect; and further, the continual ahifting of the apparatus, to bring each bar successively under the foces of the microscopes, was more than sufficient to account for irregularities greater than are observable in the present results.

In comparing the list with the former one, one is struck with the close agreement between two metals of very different fusibility, namely, standard silver, and brass ; a circumstance which permits the application of silver divided circles to astronomical instruments of the lattermetal. Platina is by no means so well adapted for such a purpose. The operation of annealing does not seem to have the slightest effect upon the rate of expansion, a fact well worthy of consideration, as it would be at all times difficult to say what allowance should be made on such account, where the degree of hardness of a metal might be uncertain.

The latest determinations of the dilatations of metals (which have reached me since the above experiments were finished), are those of Mr. Daniell; but the apparatus used by him, (a plumbago tabe of six inches in length, holding a rod of the metal to be operated on,) however well adapted for approximate measurement of intense heats, is obviously not worthy of trust for minute measures at low temperatures.

1 do wot thereffre inmert his tuble from the Philosophical Magazine now before me, but at onoe concitude with a general summary of the dilatations which our experiments in India have establiahed, in a maneor worthy, I hope, of entire confidence.

Dilatations of metals determined at Calcutta.

	Standard 10 feet bar of the Trig. Survey,	1,001213	
	Duplicate of do. of English bar iron,... Wire-drawn rod, twenty-five feet,	$\begin{aligned} & 1,00121 \theta \\ & 1,001256 \end{aligned}$	
Gold,	nearly pare, (10 feet long)		1,00143
Silve	containing one-twelfth alloy, (do.		,001904
Corp	sheet, ammealed, (do.		1,001691
Bease,	wire-drawn, annealed, (25 feet)		,001906
Leas,	deo-inch pipe, (25 feet)		1,002954

The apparatus used in the foregoing experiments is preserved, in case it should ever become a desideratum to try the expansion of other metals or substances by the same process.

IV.-Continuetion of Dr. J. Gerard's Route with Lieutenant Burnes, from Bokhdat to Meshid.

[Extracted from letters to his brother Captain P. Gerard.]
Mirabád, 31st July, 1832. We took leave of Bokhára on the 21 st ultimo, and are now in a Túrkoman village, about 36 miles distant, awaiting the arrival of the merohants, \&c. who are to form the Kafla; but we may be here long enough, as the Urganj army is still in our way. Ghos Bég sent for us before starting, and made us over to the Tárkomans and Kafla bashi, with every demonstration of good will, and enjoining them to convey us safe to Meskid at their peril. ****

The weather has been uniformly sultry;-thermometer daily above 100°, even as high as 110°, and our sitting room is but a few degrees cooler, but the extreme dryness of the air counteracts the sensation of heat. The nights have generally been pleasant and the mornings always temperate;-thermometer 66°. Though it is now the middle of Augnat, the climate can scarcely be said to have changed, except that the nights are cooler.

Meshid, 17th September, 1832.-Here we are safe in Persia, after a journey of no ordinary difficulty. We left the village (Mirabad) so long our prison, on the 16th of August, and crossed the Oxus on the following morning, intending (as we had believedupon faithleas resolutions), to accomplish the trip in fifteen or sirteen days. Our first detention commenced at Sarjue on the bank of the river, but as this
-was not occasioned by any untoward event we cared less. Other Kerfilus joined us here, and on the 2list we resamed the journey acrose the deesert. The weather had undergone a great change, and was now temperate. We almost immedistely entered amongat sand heaps, which nucceeded in rising heights, and extended till they bordered the horizon on all sides; and the Shimal or north wind sweeping away the loose surface, made it appear like the sea spray, while the heaps themselves represented the waves. The camels trod heavily through the sand drifts, and the horses plunged as if they were fording a river. Several belts of this sort occurred between them, tracts of sand covered with bushes or ahrabs, and then a ridge of the desert composed of hillocks or sand waves, which at a distance looked like a vast roller just going to break. Scarce any track is visible, the wind defacing the priste of the camels' feet; but there is a general line of route which is followed. The sand heaps are of every size and shape, but have commonly their cliff to the south; deep chasms are formed by the junction of their bases, and basins or cavities which would resemble pools if filled with water. . The scene was quite new and magnificent. It was altogether a wilderness. We passed several dead carcases of camela and horses, the drivers of which, having missed the wells, killed somse of them for sustenance. Most of the wells were saliferous, but the watur answered for our horses and some of the people, who live little better. The climate had evidently turned from its extreme temperature, and in this respect we had not to complain. The nights, contrary to erpectation, were very mild. A very long march brought us to a well of bad water, after having been without any except what we brought from a distance. This was a relief the more grateful, as we had nearly miseed the spot, and perseverance alone in feeling for the road kept us is a proper direction, till the barking of a dog announced our proximity to a Tórkoman camp. On the 27th we reached a baked arid plain, on which was planted a tented village of Tarkomans. Here we were to be taxed by the Urganj authorities, who came down to us from the ancient city of Marour or Myhr, now almost level with the face of the desert, and no longer an inhabited spot. The Urgang army was close upon us, but on their homeward ronte. On the 28th the collector arrived, and inspected the Kafla. The merchants presented him, as customary, with various articles: we sat mate in our camel panniers, and were duly reported as Mucdirs upon a pilgrimage to the places of fire worship; our offering to the taxman consisted of loaf sugar and tea. Our prodigality was nearly ruining us; fortunately a Rusaian merchant (a Mahomedan who traded to Ruasia, whowe ararice
had conguered all pride of self-sufficiency), from a regard to his own joterests, checked our liberality, and instead of presenting a couple of sagar-loaves and a handful of tea, broke off the end of one, and with a few raisins made up our nazar.

Several of his train peeped into our creels and asked after our buainess, and were quite satisfied on being told that we were Afghans from Kabal : so little are those people acquainted with the colour and characteristics of Europeans. In this respect, therefore, our faces are real masks, and it was here only the name of our country that we had an object in concealing, since to the services of those in Abbas Mirza's army especially, not a little of the bad feeling between the Khan of Urganj and the Persians is owing. Russians and Englishmen are alike their enemies, or rather the Urganjis are hostile to both. In the afternoon we ventured out of our camel baskets as the enemy was departing, but as some of his dependents were lingering behind we were warned back. In the evening we got out and laughed heartily at the transaction. In truth we were quite at our ease all the time, not believing that there was an individual in our camp who had any object in betraying us; but it was not long till we discovered that wretches are to be found in every community, and people whose fair faces belie their feelings. We had only a week's march between us and Meshid, and we started again with fine prospects.
; On the 1st of September we came in sight of the mountains of Persia, and next day arrived at Shiraks, a Túrkoman village with a fort. Here we were to be taxed, but misfortunes seldom come single; and if the merchants had to complain of an imposition, we certainly had not bargained for a share of their bardens and a load of our own besides. While in our former embarrassment near Myhr, we superadded to it the pleaeant prospect of meeting a body of Allemans, whom the merchants of our Kafila actually saw marched off upon a predatory excarsion to the borders of Meskid. The tax-gatherer, who had an interest in the mafety of the Kafilas, exaoted a promise from them, that should they crome our path we had nothing to fear: but a robber's pledge is like lover's vow graved upon some insect's filmy wing, and lasts only till the bait is thrown out. No fewer than seven hundred of those armed ruftans were thus let loose. At Shiraks we learnt that the Allemans were still in pursuit of booty, and the Kafla took up its position till they should have passed us on their return. Apprehensions were now turned into real horror, at least with me, when we beheld the cold-blooded moseters racing into the village, with their spears poized and their horsee almont dead from fatigue in their infernal occupation. They
brushed past our encampment, some of them stopping and conversing with the Kafila, and relating their adventures to the merchants, who in parsuance of their trade took a heartless interest in that of the robbers, as upon their success more or less would rest their own security. Upwards of 100 Kuzlbashes were seized for the Bokhara market, and a number of camels and cows which they drove off from within sight of the walls of Meshid. Their encampment was close to us, and we were almost tempted to take a look at it. Some of the Allemans were disabled, while their horses were scarce able to carry them. Many had returned empty-handed, finding the work too heavy; all those who touched at the village came for refreshment or to visit their friends. This is a strange state of society, yet these intrepid adventurers, when seen in the ordinary relations of life, are not only sociable companions, but even preposeessing in their naturel simplicity and easy manners. The guard of Túrkomans we had were the same people, and every individual of it coald enumerate his exploits in the inglorions field; but this is perhaps not quite fair, as it requires a considerable share of courage to meet the various perils of their vocation : pillage alone is their aim, and, of all others, haman beings are their greatest prize; nor is it much to be wondered at that, amoongst people who are naturally prone to rapine, their fellow creatures should be most coveted, as long as the infamous markets of Bokhdos and Urganj offer a premium for the trafic. The Ruasians have, I believe, succeeded in restraining slavery as regards Bokhdive : bat what reliance is to be placed upon any compact that is both adverse to momcemary interests and religious zeal? There are several hundred Rossian slaves now in the dominions of the Bokhara dynasty, and as long an Turkomans offer them for sale there will be purchasers ; and what does Ruesia know of her black population or of her fugitive soldiern, who wander amongst half sarage hordes at the extremition of her territory ? At Shivaks there was a Persian girl of unquestioneble beaney who had been in slavery for a couple of years, with the Terkomans of course; her transfer was delayed in hopes of an enhanced price, and a Kafila which followed ua, picked her up at what may appear a high valeation, if indeed we can make any estimate of what is in itself unappmociable! But you will excuse me for treating the subjoct in this loome way, having resided so long in a quarter of our own domiaions whase female slavery is as notorions as the sun at moon day, and if not quime so glacing, is, I fear, scancely leas remarkable, white it is an genial to the people's feelinge as his rays to their frozen solitudes. The Pacsian gide was sold for upwarde of 60 tiks, more than 420 rapees, a are
that would perchase at lenst a dozen of females in the Himalayan reb gions. When this infernal traffic is so profitable, can we expect that the houngry Tarkomans of the desert will restrain their capidity for heman fesh ?-but this is a subject for sages in their closet, and not for travellers.

Our detention at Shiraks till the roads were cleared of lingering robbers was necessarily prejadicial to us, as we were still in the U_{r} gaxj territories, though virtually subject to Abbas Mirza: but you may judge of his authority by the successful obtrusions of the Tarkomans even to the gates of this holy city. Our protests against imposision an the previous occasion of paying taxes had given umbrage to everal of the merchants, who seemed to have leagued together to make what they could of us; and finding us still self-confident, had recourse too the mean tricke natural to the trade, and betrayed us. We were now to be locked up in the fort till the Khan of Urganj sent for us; and at first we suw nothing but certain misfortune, slavery at the very least, and we prepared for flight with the evening's twilight at the risk of falling into the bands of the Allemans, or half perishing for thirst in the desert. When thus tarning over our thoughts, one of the merchants, a Persian, whose state of health had made him extremely gratefol for our carative atteations, relieved us from our suspense, and, togesher with the avaricious Russian trader, offered to conciliate the Túrkoman chiefs, and pass us off as pilgrims or any other species of wanderens. A couple of tilas and a little tea and sugar, with sweet words, satisfied their expectations; but fortune favoured us more than our presents, as it happened that our friend the Persian was a most intimate acquaintance of the very people who pressed us so closely. Having got out of this snare, we divested ourselves of every comfort we might have had over our fellow travellers, sat in the sun or in our creels, and ceased to cook our dinner as usual, as the fire collected - swarm of Tarkomans as a candle does insects. Still delayed, new dificulties arose, a plot to extort money or tea was again begun, and our apprehensions of ramours of our disguise reaching the chiefs of the Urganj army were too well grounded. A fresh body of Allemans had i suaed from Mévoar, and were approaching Meshid; our consternation was further rexised on learning that Abbas Mirza's Elchee (ambasendor) on his way to Herait was seized by the very people we were amonget, and was actually a prisoner in irons in the village, so that on every wide were environed by difficalties of one sort or other; at last a - Kejfles from Meshid made its appearance, and our irresolute associates fot amder wrigh, much to our satinfaction, after nine days of the mont
irksome durance, though we were not entirely without amusement during part of the time, but upon the very threshold of a friendly port such provoking interventions were quite unsupportable. Even here we were obliged to take in a supply of water. On the llth we reaumed our journey, and on the 12th crossed the mountain frontier of Persia or rather Khorasan, which is continuous with the hills which trend along the Oxus and run into Hindu Kush. They are about 4,000 feet in height (water boiling at $205 \frac{3}{4}^{\circ}$), and support the plains of Persia which have a very considerable elevation.

At midnight of the 12 th we were thrown into confusion by a report of an encampment of robbers. The Kafila closed up in a great hurry; the camels were instantly squatted upon their knees and packed together; the utmost regularity prevailed; fear having overcome their surprise, both men and beasts were silent ; the camels, as if they had been accustomed to such scenes, trombled and sat still. The armed men stood in front waiting the assault. I found myself close to a pair of women who were bustling about seeking comforters, but I felt rather abashed in such company, and making my way over camels' backs and bales of goods got outside, followed by our Haji Baba, who though a very respectable man in his calling had no idea of showing fight, and entreated me to make myself snug ; but his alarm was soon allayed, for the enemy was not forthcoming, and the people we dreaded were equally afraid of us. They were travellers like ourselves. Had they been Allemans we should have made but a poor figure in the contest, for not half of us would have come to the scratch, as the phrase is, and too surely the remainder would not have kept it up after the first onset. In the evening we were within ten miles of Meshid, and before making a final start of it, a custom-house officer paid us a visit, and delighted us by intimating that Captain Shee was at Meshid, where news of some kind or other must await us ; but as Abbas Mirza was besieging a fort in the neighbourhood, we could not reconcile the report. An hour before day-break on the 14th saw us at the gates of this city, and we are now amongst Persians all gay and courteous, anew scene entirely,-no more Usbeks! We were very fortunate in having met with Mrs. Shee here, who invited us to breakfast and dinner, and shewed us every attention and kindness. There is also a serjeant in charge of the arsenal, who is particularly useful to us ; he has engaged to keep a register of the thermometer here for me. We are going out to the prince's camp, 100 miles from this. He has just taken a fort, and concluded his campaign. Lieut. B. will thence go on to Tehran, but I must return here and start with a Kafila for Herat. The road is far from safe, but

I only require to be with the Kafia to be protected. This is a fine city: the scene is entirely new. I am forced to make an abrupt conclusion to be ready for the Chop (post). * * *

10th October, I have been at the prince Royal's camp, about 90 miles from this. Lieut. Burnes there left me for Astrabad and the Caspian. We found Captain Shee, Mr. Brouski and Mr. Beck in camp, all living in the Persian style: they were very kind to us. Captain Shee and I went to the Turquoise mines, and since my return to this I have not been very well. Every body here is also sick. My journey to Herat is all fixed. I saw Yar Mohammed Khan, Prince Kamran's minister, who received me extremely civilly, but I am cautious in putting myself under any obligations."
V.-Proceedings of the Asiatic Society.

Wedneoday Evening, 27th March, 1833.
The Honorable Sir Edward Ryan in the Chair.
The Proceedings of the last meeting were read.
Lieut. A. Burnes, Aseistant Resident at Cutch, was elected a Member.
C. Telfair, Eeq. President, and Mons. J. Desjardins, Secretary, of the Natural History Society of Mauritius, were on the favorable report of the Committee of Papers, elected Honorary Members.

Read letters from Captain Henderson and Mr. F. J. Halliday, expressing their reluctance in being obliged to withdraw from the Society.
Read a letter from J. C. Morris, Esq. Secretary to the Madras Literary Society, \&c. requesting that copies might be made for the use of Cavelly Venkata Lachmia pundit, formerly in the employ of Colonel Colin Macken. sie, of the English Catalogue of the late Colonel's collection of inscriptions.

Ordered that such information as can be given, regarding the Transle tions of Colonel Mackenzie's collection of inscriptions, be forwarded in reply to the Mad. Lit. Soc.
The Secretary announced that materials were collected for another volume of Researches, and that it was for the Society to determine whether it should continue to publish in the same form as heretofore.

The Native Secretary submitted a memorandum on the subject, of which the following is the substance:-

The first five volumes were printed by the Calcutta Gazette Press on its own account, and copies supplied to Members at 20 Rs. each, after which the Society took the responsibility of publication. Until 1810 a charge was made for the volame; thenceforward Subscribing Members received their copies gratis.

The sale of the Researches either in India or in Europe has been very limited. The cost of printing, gradually reduced from Rs. 10,000 to Rs. 4500 per volume, has
emounted from the time that the Society become ite own publindertor, Pas. 88000
While the return by sales has been $\left\{\begin{array}{l}\text { in Enghand, Rs. } 3200 \\ \text { in India, }\end{array}, 6000\right.$

Peaving a balance of loss on 13 volumes, Re. 72,800
Baboo Ram Comul Sen proposed that in future the matter for publication sbould be transmitted to Europe, where a printer may be found to print it on his own account, Mr. Wilson kindly correcting the press*.

After some discussion a Committee composed of Dr. J. Tytler, Major Benson, Dr. J. T. Pearson, and Mr. J. R. Colvin, was appointed to consider on the best mode of publishing the continuation of the Researches.

Extract of a letter from J. F. Royle, Beq. to the Secretery was reed, an mouncing the intended publication of his "Illustrations of the Botway and Physical Geography of the Himalaya mountains and Kashmere."

Library.

The following books were laid on the table :-
Transactions of the Royal Society of Edinburgh, vol. xi. and part, and vol. xii. lst part-presented by the Sooiety.

Professor Buckland's account of the animal and vegetable remains and of rocks collected in Ava by Mr. Crawfurd-by the author, through Dr. Wallich.

Ditto on the oceurrence of the remains of elephants, \&cc. in the frocen mud of Behrings Straitg-by ditto.

Proceedings of the Royal Asiatic Society at the Anniversang Meeting of Saturday, 7 th June, 1832-presented by the Society.

Proceedings of the Mauritius Natural History Society, for September and October, 1838-by the Society.

Journal Asiatique, No. 56, August, 1838-_from the Asiatic Socidy of Paris.
Meteorological Register for Febreary-from the Surveyor General.
Syr-uLMIutakherin, 1st volumo-presented by the publishor and editor, Mfubis A Abdül Mojed.

Anglo-Persian Anecdotes, transtated by Krishnachundra Ghose-Pro sented by Raja Kalikrishna Buhtidur.
The following works, received from the Oriental Translation Fund of Great Britain and Ireland.
Fraser's Annals of the Turkish Empire, from A. D. 1591 to 1659, ist rol.
Stewart's Tezkereh al Vakiat, or Private Memoirs of the Moghul Emperor Hamáyán, 1 vol.
Klaproth's San Kokf Trou Ran To Sets, ou Aperçu general des trois Royaumes, with a volume of plates.
Stenzler's Raghubansa, Kalidasm Carmen, Sanskrité et Latine, 1 vol.
The Geographical works of Sadik Iefahani, translated by J. C.
Julien's Hoei Lan-ki, ou l'histoire du cercle, de craie, drame en prose of eat rers, 1 rol.

- This is however hardly a fair way of stating the case: the members are in fuct the purchasers of the Society's rolumea, which they pay for by their subscriptions. Publication is the main object and the main expence of every literary association; without which it would be of comparatively little utility or interest to the world.
 during the laet ceatery, let vol.
Allineson's Shah Naseoh of Fipdeass, tranelated in vessa and prose, 1 val.
Fourth Annnual Report of the Oriental Tranalation Pund.
The following books roceived from the boak-sellers:
Gray's Indian Zoology, part xii.
Lardner's Cyclopedia, Spain and Portagel, vol. 4.
Natural History.

1. Dr. Wallich, Superintendent H. C.'s Botanic Garden, presented in the name of Professor Buckland, specimens of the coprolite, or fossil albumgracum, from the lias of Lyme-regis, Dorset.

Some of these fossils are in their rough state, some are cut and polished, and there are plester casts of other specimens in Dr. B.'s collection.
2. A fragment of fossil bone, brought by himself from Jabalpúr, was presented by Major Benson.

This fragment is enveloped in a hard greenish siliceous coat, which has also penctreted into the pores of the bone in many parts, and has taken the place of its ssimal matter, probably by the same process of infiltration which is observed in fousil wood from the same part of India.
3. A further selection of the fossil shells of the Himalaya were received from Captain P. Gerard, on the part of his brother, Dr. J. Gerard.

Several of these shells differ from those depicted in the Rev. R. Everent's paper in the Physical Transactions, and will form the subject of a supplementary plate.

Read extract of a letter from Lieut. Burnes, presenting specimens of As bestos found between Pesháwar and Kabull ;-

Ditto Native Muriate of Ammonia from the province of Hissar, north of the Oxus ;-

Ditto of the sand or silt suspended in the river Oxus ;-
Ditto of sand from the Kharasm Desert between the Oxus and the Cas pian.

The President communicated the following circular, with a request from the Rev. W. Whewell of Cambridge, for any information which Members of the Asiatic Society might be able to supply on the subject of the tides of she Indian Coaets.
Anggestions for Persons who have opportunitice to make or collect obvervations of the Tides.
${ }^{\circ}$ Ir was shewn by Newton, nearly 150 years ago, that the fact of the Tiden and several of their circumstances, resulted from the law of the Universal Gravitation of matter. But in this interval of time acarcely any thing has been done which might enable us to combine into a general view the phenomena of the Tides as they take place in all the diferent parts of the world ; and at very few places have good and comeinned obeorrations been made and published. It is conceived that by collecting such observations as have been made, or may easily be made, the connexion and relation of the Tidee of all the parts of the Ocean may be in a short time clearty made out; and that persons mey be induced to make such careful obecrvations an may serve to be compared with the theory. In this hope the preent paper is circulated.

The most useful Observations with reference to our geaeral knowledge of the Tides are the following, beginning with those which are most casily made :

1. The Observation of the Time of High water at a known plece, on any day, and especially at new and full moon.
2. The Observation of the Time of High water on several days in succession at the same place.
3. The Observation of the Height of several successive Tides at the same place.
4. Observations of the comparative Time of High water on the same day at different places in the same seas.
5. An observation of the Tims of High water at a given place on any known day may be useful.
If the Time of the Moon's southing on the same day be noted, this will facilitate the use of the observation, and will furnish an additional evidence of the correctness of the date.
The Time of High water on the days of New and Full Moon is more particularly useful than on other days.
Obeervations of the Time of High water may be made with sufficient socuracy without a tide-post. A place ought to be selected where the water is tolerably smooth.
6. If there be opportunity at any place, it is desirable to observe the Time of High water every day for a fortwight.

If it be ascertained that the two tides on the same day occur at regular intervals, one of them only need be observed.

But there are often irregularities in the relative Times of the morning and evening Tide; and these irregularities are different for different ages of the moon. In this case both daily Tides should be observed.
3. A single observation of the Height of the Tide is not of much value. But a Series of Heights for a fortnight is valuable, especially if accompanied with observations of the times.

The morning and evening Tide are often unequal, and this inequality sometimes varies considerably from one fortnight to another.

In observations of the Height of the Tide, the difference of High and Low mater ought to be taken.

The channel of a river is not a good sitnation for such obeervations.
4. The usefulness of tide observations will be greatly increased if those made at places in the same seas can be compared so as to ahew the Rats at sohich the Tide wavere travels:
For example, the time which it employs in passing along a certain line of coast, or across a sea, or round an island, or up a bay.
N. B.-The Tide wave is the elevation of the waters by which High water is produced in many places at once. It is not observed as a visible wave, but is found by drawing a line upon the globe through all the places at which it us high water at a certain moment. The rate and direction of ita travelling are known by comparing the position of such lines at successive times.
N. B. -The Rati at which the Tide wave Trafisls is quite distinct from the rate at which the stream of ebb or flow rwas.
N. B.-Also the Dirgction in which the Tide wave travels is quite distinct from the direction in which the tide ebbe or flows.

The mont proper obsorvations for determining the rate and course of the Tile wave are those of the Time of High water on the same day at differcut points (not too near nor too remote) on a continued line of coest or sea.

This may often be done by a person residing in any country by making enquiries of persons conversant with the coasts, or by directing corresponding observations to be made at different places for a few days only.

If the places difer much in longitude, this ought to be noted, that allowance may be made for the difference of the absolute time of noon.

If there be any uncertainty as to the rate and course of travelling of the tide beefreen two places, the doubt may best be remored by obtaining obeorvations at some intermediate point or points.

It is necessary to distinguish the Time of High water at the mouth of a deep bay or sound, from the time of High water further in. The former is to be taken in all such comparisons as are here spoken of.

Large islands and loug promontories much disturb the regular progress of the Tide wave.

Comparative Obserrations of the Bight at different places in the same seas, especially if combined with thoee of the Times, may also be of great value.

All communications concerning any observations of the above kinds made or to be mede in any part of the world will be thankfully received. They may be addressed to the care of the Sec. Asiatic Society, or direct to

The Rev. W. Whewsll, Trinity College, Cambridge; or, at the Royal Society, London; or the Astronomical Society, London."

The Preaident read a letter handed to him by Dr. Strong, addressed to Major Benson, Mil. Sec. to the Right Honorable the Governor General, describing the progress and present condition of the borings in Fort William, with the opinion of Sergeant Reid upon the causes of the repeated failures; and suggesting that the Government should continue the experiment upon its relinquishment by the Society: Major Benson explained that the present reference to the Society had for its object to obtain their opinion as a body upon four essential points before recommencing operations ;-the probability of ultimately finding a spring;-the expediency of making the further attempt ;-the mode of avoiding such accidents as have hitherto impeded the auger :-and the estimated expense.

After some discussion, the following members were nominated a Committee to draw up a report with advertence to these points. Dr. Mill, V. P. Dr. Wallich, Dr. Langstaff, Mr. Seppings, Captain Forbes, and Dr. Casanova.

Antiquities.

Read extracts of a letter from Lieut. A. Burnes, presenting to the Society cleven of the coins collected by himself in his recent visit to Manikyale.
Two or three of these coins are in excellent preservation, with very decypherable Greek inscriptions, and are thus proved to be of Bactrian fabrication :-they bear the several devices of the equestrian figure ;-the man in the tunic ;-the elephant; ac. and agree in other respects with the coins deacribed in Mr. Wiboon's paper
plate II. Noe. 25, 26, 27, 28, \&c.) : there are others of a pure Hindee character ; but as Lieut. Burnes will soon be in Calcutta with the remainder of the coins procured by him, any further notice may better be deferred until his arrival.

Literary.

A paper was read on the marriage rites and usages of the Jâts of Bharatpur, by J. S. Lushington, Esq.

The marriage of Balwant Sinh, the present Raja of Bharatpur, to the daughter of the Bechore Raja, in May 1832, afforded the author an excellent opportunity of witnessing the numerous ceremonies punctiliously observed in its solemnization at Deeg. Mr. Lushington describes the betrothal-the tika or marriage present-the settlement of a fortunate day by the pandits, and the consequent transmission of the lagan patrf, orbride's horoscope, to the bridegroom, which is considered to close the marriage. Connubial feasts and concerts are then given in the parents' houses. The youth is anointed with jasmine oil, and makes pooja and offerings to the family potter's wheel, to Sitla the goddess of the small-pox, and to the gohra or place in which the filth of the palace is deposited : this is said to typify the increase of progeny, as the heap of rabbish continually augments! The ceremony of the bhat succeeds, in which rice and other presents, of horses, elephants, \&cc. are given to the parohits, the Ranl and Raja and their attendants, by the brothers and other male relations. Deputations from foreign courts succeed. The Barat or marriage procession starts from the temple of the bridegroom's mahant or head priest (he had not a family guru), and is attended with much splendour. Upon its arrival at the bride's house the ceremonies of taran and hom take place. The former consists in striking the image of a bird with a sheathed sword;-the latter, the burnt-offering and adoration of water, are described as the most interesting parts of the perform-ance-they are followed by the Kanyadan or giving away of the bride-the Pradakshana, the Aghuna, and the marriage hymns.

The bride is then carried home, when feasting and curious games, resembling "snapdragon and bran-cake," amuse the young couple.

After three days' residence with her lord, the bride returns to her parents for three or five years, when she is brought away with the ceremony of gona or gaman-but this may be dispensed with by the performance of phir-pattah, or changing the stools of the bride and bridegroom when the hom is celebrated.

VI.-Madras Litrrary Society.

General Meeting held at the College on Saturday, 26th January, 1833.
The Hon'ble Sir R. Palmer, President, in the Chair.
The Secretary (J. C. Morris, Esq.), laid before the Meeting a statement of the funds of the Society in both its branches.

Captain Chase, Lieut.-Col. Coombs, A. Robertson, Esq. and Capt. Rowlandson, were elected the Committee of management.
W. Hudleston, Esq. and Capt. Rowlandson, were added to the Committee of papers.

Donations of various books from individuals and societies,-of a Beudtha image and a gold coin, were announced.

Seventeen new members had been elected since the last general meetings, and fourteen had retired and gone home.
Read letter from Messrs. Arbuthnot and Co., stating that they are preppared to receive the model of a pagoda the property of John Hodgson, Esq., which that gentleman has requested may be transferred from the Madras Literary Society to the Royal Asiatic Society.
Ordered that the model of the pagoda in question be forwarded to Messrs. Arbuthnot and Co., and that a letter be addressed to the Royal Asiatic Society, explanatory of the delay which has occurred in its transmission.

Read letter from Lieutenant Chalmers, forwarding a translation from the Persian of the list volume of the Akbar Namah of Abool Fuzl.

Resolved, that Lieutenant Chalmers be informed that on receipt of the second volume, the Society will be prepared to submit his work to the favourable notice of the Oriental Translation Committee of the Parent Society in England.

Read letter from the Baron De Ferussac, requesting to be furnished through the medium of the Society with some information regarding Minerals and Shells, in order to enable him to finish a work he is engaged in on these subjects.

Resolved, that the Baron De Ferussac be informed, that the Society will use their best endearours to meet the riews and wishes expressed in his letter.

Read letter from Cavelly Venkatah Lutchmiah, submitting a letter from Sir Alexander Johnston, and requesting assistance from the Society.

Resolved, that Cavelly Venkatah Lutchmiah's letter be referred for the consideration and report of the Committee of Papers.

Read list of books presented to the Society by a Jain Priest.
Ordered to be referred to the Committee of Papers.
Read letter from the Honorary Secretary to the Royal Asiatic Society, acknowledeing the receipt of sereral communications, and returning the Society's thanks for the same.

Ordered to be recorded.
Resolved, that all letters and communications which either from inadvertence or other causes may hitherto not have received answers, be immediately replied to, with saitable apologies; and that it be publichy notified that all communications, bowever short, which may in any way tend to elucidate the history and sciences, arts and customs of the natives of India, whether Hindus or Mahomedans, will be thankfully received by the Society, will receive ready attention from the Committee of Management, and will be read at the quarterly meetings of the Society.

Resolved, that with the view of increasing the efficiency of the operations of the Society by stimulating its supporters to exertion, regular meetings be held on the second Thursday of the months of February, May, August and November, for the parpose of reading the several communications which may be received, and of selecting such as may be most deserving of publication.

Proposed by Lientenant-Colonel Coombs, seconded by Mr. McDonell, and carried by scclamation-
"That this meeting hail with peculiar satisfaction the presence of The Right Fionorable Patron of the Society, and beg to return him their grateful and respectful acknowledgments for his promised countenance and support."

The thanks of the meeting were unanimously voted to the Honorable the Presideath for his able conduct in the chair.

VII.-Miscellaneous.

1.-Indian Botany.

Extract-Proceedings of the Linnoan Society, 5th Jwne.

The East India Company have presented to the Linnsean Society their magnificent Herbarium, containing the plants collected between long. 73° to $114^{\circ} \mathrm{E}$. and lat. $32^{\circ} \mathrm{N}$. to the equator, by Konig, Roxburgh, Rattler, Russel, Klein, Hamilton, Heyne, Wight, Finlayson, and Wallich. It includes about 1300 genera, more than 8000 species, and amounts, in duplicates, to at least 70,000 specimens, -the labours of half a century.

For many years a large portion of these vegetable riches were stored on the shelves of the India House, without any one sufficiently conversant in Indian Botany to arrange and render them subservient to the cause of science. On the arrival in this country of Dr. Wallich, the distinguished superintendent of the Company's Garden at Calcutla, in the year 1828,-who brought with him an immense acceasion to the Herbarium from various parts of India, especially Nipal and the Burmese Empire,-the Court of Directors instructed him to make a Catalogue of the aggregate collection, and to distribute duplicate specimens to the more eminent Societies and naturalists throughout Europe and America.

This immense labour has occupied Dr. Wallich for the last four years ; and it is the chief selection from these various Herbaria, destined for the museum of the India House, which the Court of Directors have, with princely munificence, presented to the Linnsean Society.

The liberality of the East India Company has been duly appreciated thronghout the wide circle of science. It has been acknowledged by letters and addresses from the different Societies and individuals honoured by their patronage; and this last act of their bounty will endear them still more to the promoters of Botany, by placing the treasures they possessed along with thone of Linnsus and Smith.

The Linnsean Society purchased, two years ago, at an expense of 3000 I., the collections of Linnwus and of the late excellent Sir J. E. Smith ; and since that, the Herbarium of the Society having been further enriched by the treanures of the Eatt, it forms collectively one of the most intereating and important in Europe.

- The East India Company have set an example of a wise and liberal policy, which will be followed throughout the world, not only by Societies, but by those enterprising individuals who have, to their own honour, made large collections of the objects of natural history; and it is a source of national congratulation that at this moment the naturalists of Europe feel indebted to this country for the most extensive contribution that was ever made to their botanical collections. We owe this general feeling of respect towards us to the enlightened conduct of the Court of Directors, who have done more to diffuse a knowledge of Botany than was ever done by any Government or association of persons on the globe.

A deputation from the council of the Linnsean Society, headed by the President Lord Stanley, waited on the Chairman of the Court of Directors, on the 26th instant, with an address expressive of the high sense the Society entertains of the honour conferred upon it by the liberality of the East India Company.

Dr. Royle's Collections.

We are happy to perceive by an announcement made at the last meeting of the Aciatic Society, and which we have inserted in the advertisement sheet of the pre-
sent number, that Mr. F. J. Royle is about to give to the world the froits of his laborious researches in the Botany and Natural History of the Hills and the upper provinces of India. We trust that his work will meet with a full portion of the public patronage, without which it would be ruinous to attempt the publication.

2.-Indian Gbology.

List of the specimens of Rocks from the Tenasserim Archipelago, situated between the Parallele of $10^{\circ} 50^{\circ}$ and $12^{\circ} 10^{\prime} \mathrm{N}$. presented to the Society, 15th Jan. 1831. By Lieut. Lloyd, lst Aesistant to the H. C. Marine Surveyor General".
No. 1. Clay slate, from a small detached islet on the western side of Sullivan's Island, in Lat. $10^{\circ} 54^{\prime} \mathrm{N}$.
No. 2. Fine grained granite, decomposing, from a rock on the western side of the same island, and distant about two miles more to the northward? its top has a very whitish appearance, perhaps from the action of the sun and salt-water.

No. 3. Quartz rock, from a rocky islet on the eastern side of Sullivan's Island, immediately opposite to No. 1, and distant from it about one mile, the breadth of the island in that part.
No. 4. Granitic sandstone, from a small island of a reddish brown appearance, situated on the western side of Sullivan's Island, in Lat. $10^{\circ} 58^{\circ} \mathrm{N}$.
No. 5. Sandstone, from a point on the western side of Sullivan's Island, near to the last.
No. 6. Slate, from a point on the eastern side of an island named by Captain Ross "Lord William Bentinck's Island," in Lat. $11^{\circ} 40^{\prime}$ N. It does not shew the principal formation of the island, but merely a lump or patch on the point, and very easily separated with the hand, being in regular horizontal layers.

No. 7. Quartz rock, from two hill islands situated off the N. end of Sullivan's Island, in Lat. $11^{\circ} 1^{\prime} \mathrm{N}$.

No. 8. Granite, from the Alligator dry rocks, which are situated off the N. end of two islands, called by Captain Ross, "Sir Edward Owen's and Sir John Malcolm's Island."

Nos. 9 and 10. Granite, from Sir Edward Owen's Island, the former from the eastern side, in Lat. $11^{\circ} 13^{\prime} \mathrm{N}$. and the latter from the north side, in $11^{\circ} 15^{\prime} \mathrm{N}$.

No. 11. Granite, from Sir John Malcolm's Island, in Lat. $11^{\circ} 16^{\prime} \mathrm{N}$.
No. 12. Limestone, (similar to that of Elephant rock, in the Quedah country, described by Ward, from a small round and steep island, in Lat. $11^{\circ} 16^{\prime} \mathrm{N}$. and situated on the eastern side of Sir John Malcolm's Island.

No. 13. Jasper conglomerate, from the Northern Elephant Island, of which there are four large and other smaller ones, between Lat. $11^{\circ} 3 z^{\prime}$ and $11^{\circ} 36^{\prime} \mathrm{N}$. They are from 6 or $\mathbf{7 0 0}$ to 1000 feet high, and resting on small bases, appear at a distance like large peaked rocks : the northern one stands in six fathoms water, its sides project outwards, so as, in parts, toadmit of a boat getting underneath, and the rugged pieces of the rock beneath, at a little distance, resemble stalactites, of which the specimens are pieces that have been knocked off.

[^30]No. 14. Quarts and micaceowe schist, from the 8. side of a smanl ishand, in Let. $11^{\circ} 47^{\prime} \mathrm{N}$. It is covered with trees of a great variety of folinge, and producing mary berries it attracte numberless pigeons of a beautiful cream coloor, with wings and trils tipped with black; and from this circumstance it has been called Pigeon Island.

No. 15. Grawite, from a small island on the south-eastern side of Sir Edward Owen's Island, in $11^{\circ} 11^{\prime} \mathrm{N}$. This ialand, when 1 visited it, was covered with " Tucase."

Nos. 16 and 17. Limetone and decomposing Granife, from two amall islets diatent from each other $\frac{1}{3}$ a mile, in Lat. $11^{\circ} 49^{\prime} \mathrm{N}$.
No. 18. Micaceoms schist, from rocks that cover and uncover with the tide, near to the last.

No. 19. Micacoous schist, from a small island, in Lat. $11^{\circ} 50^{\prime} \mathrm{N}$. and has only oue or two fathoms on its summit, which gives it the appearance of a cap and feather.

No. 20. From an island in $11^{\circ} 53^{\prime} \mathrm{N}$. It is formed by two hills connected by 2 marrow sandy ridge, so that, at a distance, it appears like two small islends. The apecimen is taken from the south-west point of the western hill, the summit of which has an even and flatish appearance.

No. 21. Fine grained granite, from rocks on the western side of Christmas island, in $12^{\circ} 0^{\prime} \mathrm{N}$.

No. 22. Quartz, from a small island, in Lat. $12^{\circ} 4^{\prime} \mathrm{N}$. (Hoapital Island.)
No. 23. Quartz, from the north-cast point of an island to the westward of it
No. 24. Decomposed granite, from a small island, in Lat. $12^{\circ} 9^{\prime} \mathrm{N}$.
3.-Indian Arts and Manufactuage.

Mode of dyeing Kharwo Cloth, practised in Bundelkhand. Tranalated from a Persian account. By Babu Hari Mohun Sén.
To dye-say one bale of cloth, consisting of fifty-two pieces, the first step to be taken is to wash them white in water. Thirteen seers of oil of castor, three seers of impure soda (thak-ij-zamin-shbr, efflorescence on saline earth), and fifteen meers of clear water, must then be mixed together, and the cloths dipped and drenched in the solution twice a day for four days continually. At the expiration of that time, the same operation is to be renewed for a period of seven dayn soaking the same in the liquor, and reducing the operation to once a day. But care should be taken to put into it a little saline earth every day during the process. After this, the whole bale of cloths must be rewashed in clear water, and then steeped over again in another hiquid composed of water and three seers of Halelah (Terminalia Chebula), and afterwards dried. A similar cold solution of water and three seers of alum is then to be prepared, in which the stuffe are aguin to be steeped, and afterwards well dried. After all these operations are daly conducted, a caldron or large vessel is to be filled with a sufficient quantity of water, in which are to be mixed one maund and ten seers of Al (Morinda Tinctoria), a dyewood, and five seers of Dhdiwa (another wood). The former should be well dissolved previously to the cloths being submitted to the process of dyeing. After they have taken a deep dye in this liquor, they should be taken out of the rease, and then washed with soap and water. Then a solution of eight seers of gum is to be made, and the stuffs immersed and washed in it for the last time. They are afterwarda to be folded piece by piece, and rubbed and scoured with a litte gum over their surfice, and then beaten in order to make them amooth and compremed.

To dye elothe of an Amua-sabz, or mangoe-green color.
The ctoths require first to be dyed in a solution of indigo; the latter to be used at the rate of two chitakb on an average per piece. Afterwards they must be boiled in water with a mixture of rind of pomegranate in it. In this operation, half a seer of the latter should be mixed for each piece. They are then to be steeped in a strong solation of water and alum, which should be given in two chitaks on an averge. After this, a preparation of two chitaks of turmeric diseolved in water sbould be made, and the stuffs kept dipped in the same for one whole night. In the morning following, they must be washed in clear water, and leatly dyed with the juice of Kicome flower, which when first extracted is naturally yellow, and which is termed "Pin" in Hindastan!. They are afterwards to be folded and betwen anooth.

The dyeing of Súry Pakks, a red yellowo-the color of a bird so called.
A composition comprising ten seers of oil of castor, five seers of impure soda, (thak-i-zempon-i-shbr) one seer of goat's dung; to be made, and to be all diseolred in a sufficient quantity of water. Twenty pieces of stuff are then to be washed in pure water, in a vessel all separately, and one by one, changing the water every time. This operation is to be kept in continuance for fifteen days. They must afterwards be washed in clear water, and soaked in a solution of alum and water. Twenty-five seers of powder of $A l$ should then be dissolved in a necessary quantity of water, in a large vessel, and the cloths ateeped and coloured in the liquor. They are thus to be wrought up for the space of six days, and finally dried and folded.

4.-Note on Lieut. Burt's instrument for trisecting Angles.

On reading the papers on the trisection of angles, in the number for November leat, I observed some inaccuracies, which as they were overlooked in the last number, I now beg leave to bring to notice.
Mr. Burt, in proving the correctness of the instrument, has made the truth of the demonstration depend on a position which is itself in want of proof. He saya, (page 500, 1. 8), " rad. bo-rad. a0," but they are not necessarily equal from the construction, and it should therefore be proved that the locus of the point b is in the arc abe. The demonstration is consequently faulty. I think however the instrument will effect the purpose intended ; and perhaps when I have more leisure, I mas attempt to prove its accuracy, if not anticipated by some one whose avocations are more in accordance with such pursuits. Mr. B. says that A B the fourth log of the instrament, may be dispensed with. I do not think it can, but I don't undertand this part of the paper, nor do I see how a line can be parallel to one or two others, and also pass through the same point with them.
I hare not tried to construct the instrument, but I should anticipate some difficulty in applying it, as one may not readily know when the points \mathbf{A} and \mathbf{O} respectively coincide with $\&$ and 0 .

> I am, Sir,
> Your obdt. servt.
A. K.

JOURNAL

05

THE ASIATIC SOCIETY.

No. 16.-April, 1833.

1.-Accownt of the Jain Temples on Mount Abú in Guzerat. By Lieut. Buraes, Bombay Army. H.R.T.

The mountain of $A b u, A b u j$, or Abrighad, is situated near the 25th degree of north latitude and $73^{\circ} 20^{\prime}$ of east longitude, in the district of Sekráí and province of Márwár, about 40 miles N. E. by E. of the camp of Disa. The magnificent temples are erected at the small village of Dilwoarra, about the centre of the mountain, which has an elevation of about 5000 feet, where the summit is extremely irregular and studded with peaked hills. There are four in number, all of marble, and two of them of the richest kind. They are dedicated to P/rasniti, or "the principal of the deified saints, who according to their creed have successively become superior gods,' and who are believed to amount to the number of twenty-four, or as some told me, to have appeared, like the Hinda gods, in twenty-four different Avatars.

These are the gods of the Jain, Shrdwak, or Banian castes, who are a gloomy tribe of atheistical ascetics, not unlike the Budhists, " who deny the authority of God and a future state; believe that as the trees in an uninhabited forest spring up without caltivation, so the universe is self-existent; and that the world, in short, is produced, as the spider produces his web, out of its own bowels; and that, as the banks of a river fall of themselves, there is no supreme destroyer." se They also deny the divine authority of the Vedas, and worship the great Hindú gods as minor deities only :" but Mr. Colebrooke and other eminent scholars have already given the most minute description of this class of people and their worship. The above abstract of their tenets will at once show how little acceptable the followers of Párasnáti can be to orthodox Hindás; and the costly materials of Jain temples are therefore attributable, not to the holiness of the gods to whom they are de-
dicated, but to the riches that are to be 80 generally found among the Banians their votaries.

Jain temples are to be met with in Guzerát, Kattywodr, Cutch and Parkur, as well as in other countries both in the southern and northern parts of the Peninsula, but next to those on Abu, the most celebrated ones on the western side of India, are at Politana and Girnar in Kettywar, at both of which places also they have been built on the tops of hills. The antiquity of the schism between this and the Hindd sect is not accurately ascertained, but the oldest temple on Ab爪 appears to have been built An. Vicramajit 1016, (A. D. 960,) or something more than eight hundred years ago.

The temple now alluded to is dedicated to Rikabdeso, (or as Mr. Ward has it, "Risheriu-drvu,") the founder of the sect and first in order of their deified saints, and is known by the name of Adíswge deval. The four temples are built in the form of a cross, and this is the most westerly. It is in the figure of an oblong square, forty four paces long by twenty two wide (or perhaps 100 feet by 50) ; within the building, and in the centre of the area so inclosed, stands the pagoda, in which the great image of the god is placed facing eastward. In front of this there is an octagon of 24 feet, supporting, on pillars and arches of marble, a cupola of the same. The pillars may be from 12 to 15 feet high. The entrance to the temple is from a small door opposite this cupola, and the grandeur of the building is discoverable at once on entering it, and has a very imposing effect. On all'sides of the area there is a colonnade, the long sides having a double row of pillars sapporting small domes, within each of which are cells in the walls to the number of 56 , in all of which are marble images of the god. In the south west corner, and in a chamber detached from the building, is a colonsal figure of Nriunnáti cut in black stone.

The whole of the building is of the richest white marble, superbly cut into numerous devices; and it is worthy of remark that there is not an inch of stone unornamented, and not twordomes of the same pattern, though one handred and thirty-three in number; and all are carved. The grand dome is a most chaste piece of workmanship, and so light do the pillars appear, that it could hardly be imagined they could support the superincumbent weight.

Adjoining to this building is a room called "Hathisal" or the eleplemet hall, which seems once to have also had a roof of domes, and in which are the figures of ten marble elephants with drivers, each about foar feet high, and caparisoned in the modern style of those of the Native princes, with every rope, tassel and cloth beautifully and correctly carved,
and apparently, the cars and riders excepted, from one block of marble. The workmanship is exceedingly good, and the representation of the snimal is very superior to Indian sculpture in general.

The floor of this room is of black marble, while that of the temple is of white. At the door there is a large equestrian statue of the founder, who by an inscription, is described as "Bixalníth, a Baniam of Chesedoulf to whom the gods had been propitions." It is rudely executed, and is evidently the workmanship of later days.
The whole of this temple is said to have occupied a period of four. teen years in building, and to have cost eighteen crores of rupees, in addition to fifty six lacs spent in levelling the side of the hill on which it is built.

The next temple to be described is the northern one, which is dedicated to Ni'minn'tr, the twenty-second deified saint of the Jains. It is with regard to design and material much the same'as the one mentioned, but although of equal length it is ten paces wider, from which addition the architect has been able to make the colonnade double on all sides without contracting the area too much, and which has a good effect. The pagoda of the god is in the centre, and faces the west. It has also 2 cupola in front of it, the same as the other in size, though far inferior in erecution : but the greatest ornament in this temple, and indeed on $A b u$, is a portico between this capola and the pagoda. It is supported by pillars, and the roof is formed by nine small domes most exquisitely carved. The stones on both sides the entrance of the temple are deeper cut than any marble I ever saw, and, if I mistake not, approach in resemblance to Hogarth's line of beauty. This part of the building is said to have cost eighteen lacs of rupees, and I can well credit the people who gave me the information.

All round the temple and in front of the colonnade, small images of the god are placed to the number of forty-six, in front of each of which are two sculptured domes.

The east side of the building is not divided into compartments, but consists of one long room in which are placed ten marble elephants, which are more minately carved than those described, the very twisting of the ropes being represented. In rear of these are the images of the different contributors to the "holy undertaling," radely cut out in stone, and represented as holding parses fall of money ready to be appropriated. There are inscriptions under all these figures mentioning at length the names of the different "pious individuals," most of whom appear to have been Banians.

In the south western corner of the building are two inscriptions cat in marble and fixed into the wall, but they are in such a good state of preservation that it becomes very questionable if they are of the same age as the temples. They are in the Balbad character, and giving (as I learnt from the people, there being no one who could read them with me,) a genealogical account of the different founders and their relatives Above the niches containing the smaller images, there are also inseriptions with the names of the builders in Güzeratt character. From all of these it appears that this temple was built, An. Vicr. 1293, or A.D. 1236, nearly six hundred years since, by two brothers, Bast and Fret Pál, Banians also of the ruined city of Chandouli, and one of whom is said to have been Koimddar to the Delhi Emperor. The building is said to have cost twelve crores of Sonias; a coin equivalent to ten rapees, in addition to the expense of the portico; and although it is superior to the other temple, this is undoubtedly an exaggeration.
The sculpture of the small domes in this pagoda, from being of a higher order of architecture than the others, deserves remark. In several of them are representations of the gods, in particular a group of the procession of Indra King of the Gods, who is believed to have descended from heaven at the birth, marriage and installation of RIxabdeo; also another of Nemindith's marriage, both of which are pretty well executed in marble. Nothing more attracted my notice, however, than the group next to the one jast described, it being a representation of one of the Mahommedan emperors of Delhi. I observed also that very common ornaments throughout the temple were small Mahommo dan tomb-stones.

Superstition bas however pre-eminently shown itself in the portico. While admiring its beauty I observed the capital of one of the pillars to be of coarse unpolished black stone, which induced me to ask the cause of such a disfiguration ; when the people informed me that it had been done intentionally to keep off the evil eye, as in a place like this where all was beauty, it would inevitably fall and become bewitched if there were no foil. The floor of this temple is of mixed marble, being both black and white ; and under the great dome there is a slab of yellow marble, said to have been brought from Jesalmir.
The two remaining temples are about 365 years old, and very inferior both as to workmanship and materials when compared with the others. Under the dome of the southern one, there is some attempt at mosaic work, and the floor is inlaid with five different kinds of marble.
The whole of these temples are in a good state of preservation, notwithstanding the attempts that have been made to destroy them. The
twils, trunks, and riders of the elephants have been broken off, though . sinoe replaced; and the dome of Adrsinis'-diwal is cracked in one or two places. The earthquake of 1819 is said to have had some effect on these buildings, but although the Brahmans and Jains formerly car-1 ried on violent controversies, it does not appear that the former injured the Jain temples. The natives themselves speak with horror of the oppression of a Mahommedan prince known to them by the name of "Boama Badshah," who is said to have ordered the temples in Aba to be levelled. Natives are at all times but bad chronologists, nor are they in this instance able to give any distinot account either of the time or of the individual whose name excites such irritating fealings.

It is on record however that a Sultan of Ahmedábad in Guzerát, by name Máhmid Begra, sent a force to levy tribute on the Parsees, A. D. 1450, and from the similarity of names, and the connection that sub-. sisted between two such mercantile places as Ahmedábíd and Chandoull, it does not appear to me at all improbable that this is the individual*. The hand of time is now however fast injuring these buildings, and throughout the marble gives signs of decay.
Without placing too much reliance on the insoriptions above alluded to, there is a circumstance which goes far to fix the date of these temples at a period when the Mahommedan power was great in India. All the figures are throughout represented with beards, which we know to be at variance with Hindú customs, and which is without doubt attributable to the same cause that induces the Hindú subjects of a Mahommedan government to follow the custom of their rulers, namely, submission to the powers that be. In Sind, at the present time, such is the custom of all Hindus, and it is perhaps owing to this that the Moslem rulers ever spared the temples of the submissive people they conquered. It is to the same cause, I presume, that we have the representation of the emperor of Delhi, though from the founder being his "Kamdár," it may be more easily accounted for.

With very few exceptions the people on Abí do not worship at the temples of Dilwairra, and there are only one or two Gurjis at the place, who could give, from sheer ignorance, little or no information concerning the surrounding scene of grandeur. They have, however,

[^31]one good quality which our countrymen can well appreciate, a total freedom from all prejudice, so that we entered the " sanctam sanctorum" of the inner temple without a murmur on their part, nor did they object to our handling the gods themselves.

There were besides two inmates of the temples whom I must not omit to mention. They were women who had taken a vow of chactity, retired from the world, and dedicated themselves entirely to religion, or, as they themselves say, had become "Sadú." One of them was young, and had retired on the death of her husband. They spent their time in reading their raligious books, which they readily showed, and were quibe free from that prevailing reserve in Indian women, 80 much 80 that they followed us through the "atria" of the temples, and were ever ready to explain, as far as in their power, the different objects of our curiosity.
. It was from them I learnt the names of the twenty-four deified saints ar gods of the Jains, which are as follows-1 Rikabdeo,-2 Ajilnath, 3 Sambunáth,-4 Abumandjí,-5 Súmtanáth,-6 Padan Prabú,-7 Supárisnáth,-8 Chanda Prabu,-9 Subatanáth.-10 Sítalnáth,-11 Síansnáth,-12 Wáspují-13 Bímalnáth,-14 Anandnáth,-15 Darn-náth,-16 Santínáth,-17 Kntonáth,-18 Aránáth,-19 Milınâth, - 20 Muní Subartjí, -21 Nawináth,-22 Némináthji, -23 P'ırisnéthjí,-24 Mahívarú, and it is not difficult to distinguish by the expressive affix of " j 1 ," even from among this long list, the favored or favorite gods to whom the temples are dedicated.
. I also learned from these people, that there are large assemblages of people on Abri at different but unfixed periods, and that they chiefly come from Guzerát, Márwar, Ajmere, Malwa and Bombay, all of which except the latter are, in fact, the surrounding countries. The natives of India are, as it is well known, fond of perching their temples on the tops of hills and other remarkable places; and it is no doubt owing, as well to the isolated situation, as the great size of the mountain, that such a position has been chosen. There is, however, no marble on Abú, and certainly at present, no roads by which the enormous blocks of it could have been brought up from the pits that are at the base of the mountain, so that it is to be presumed they have been destroyed.

From some specimens in my possession, it would seem that the summit of $A b u$ is granite; but great part of the exposed rocks are in a state of decomposition, and break off in flakes.

The vicinity of $A b \pi$, though now without a large town, has been, as is discoverable from ruins, and according to tradition, a well cultivated and thickly peopled country.

About nine mailes from Givroar, a village at the base of Abu, and half that distance or less from the Bands river, are the ruins of a great and ascient city called "Chaxdomle," said to have been eighteen miles in circumference, and which is now without an inhabitant.

The natives have numerous fabulous accounts concerning the place, and believe it to have been one of eighty-four towns or villages that were destroyed by "a shower of stones" three handred years ago; and that a famine and scarcity of fuel ensoing, the people fled to Gweerdt; and settled at 4 kmedabadd. I myself had not an opportunity of visiting the ruins of this city, but am informed that all its. buildings are throws down as if by an earthquake, the occurrence of which could, I have no doubt, be aecurately ascertained by inquiry on the spot. Its antiquity may be readily discovered from the temples on Abd having been buits by the Baniaus of this once opulent city, as proved by the inscriptions before alluded to, and great numbers of small marble images of Pínasn^{\prime} arse, the same as thore on Abui, being constantly dug from among the rains.
II.-List of Indian Woods collected by N. Wallich, M.D. F.R.S., Corresponding Momber of the Royal Institute of France, and the Acrademy of Sciences at Berlin, \&c. and of the Society of Arts of Londons; Sneperistendent of the Botanic Garden at Calcutta.
[Re-printed from the Tranactions of the Society of Arts, xlvili. 1851.]
Dr. Wallich was sent by the Governor-General of India on several botanical missions, especially in 1820-1, to Nipal, a hilly country situated between the lower part of the valley of the Ganges and the Himaleya mountains, and to the Burmese territory in 1826-7. On each of these expeditions he collected specimens of the native woods, which were sent to England, and deposited at the India House. To these were likewise added some that had been grown in the Botanic Garden of Calcutta. On the arrival of Dr. Wallich himself in England, I had the pleasure of forming a personal acquaintance with him, having before occasionally corresponded with him respecting various Indian prodacts that at different times he had sent to the Society of Arts.

Under an apprehension that the arrangement and description of the vast botanical collection brought over by him, would occapy the whole of his granted time of absence from Calcutta, he suggested that his colleetion of woods should be transferred to the Society of Arts for arrangement and eximination. This plaa having been sanctioned by the Court of Directors of the East India Company, between four and
five hundred specimens were placed in our possession. .Here they were examined, and were cut up into three or four sets of specimens more or less complete. Some of them were found to be worm eaten; and several of those from Nipal being only portions of small branches, are not in a state very favourable for shewing the qualities of wood with reference to its value as timber. Their native names, and the scientific ones of those that have any, as well as the uses to which they are applied by the people of the countries where they grow, were supplied by Dr. Wallich*, partly from his own obeervation, and partly from a catalogue of Burmese woods collected in 1827 by A. Maingy, Esq., and presented by him to Dr. Wallich. Some notices have likewise been obtained from a catalogue of woods sent by. Dr. Francis Hamilton (late Buchanan), from Gualpara in Assam, on the Burrampooter, and which were put into the hands of Mr. Jamea Kyd, master builder to the Hon. East India Company at Calcutta, for ezamimation. These notices are distinguished by the letters Ham., though some of Dr. Wallich's are intermixed with them. The observations on the structure of some of the woods from Nipal were made by myself, and relate chiefly to the longitudinal fibre, to the medullary rays, to the longitudinal tubes, and to the annual layers. For some practical observations the Society is indebted to the carpenter employed in cut-. ting up the specimons.
A. Aifin, Sec.

CATALOGUE OF INDIAN WOODS.

1 Acacia mollis, fr. Nipal.
A large tree: wood yellowish white, shining, coarse, rather soft-8p. \dagger 2 inch. diam. Fibres and rays of the same colour, the latter very distinct: tubes large.
2 Acacia fragrans, fr. Nipal.
A large tree.-Sp. 2 inch. diam. Wood glossy, coarse: a bad apecimen.
3 Acacia. Joolchumahl, N. \ddagger fr. Nipal.
Tree very large : wood excellent for chests and boxes.
4 Acacia. Popeeah, B. \oint fr. Tavoy.
A very large tree: the wood used for poste, bowa, and rollers for ginning cotton.
5 Acacia. Paingadoo, fr. Tavoy.

[^32]6 Acacia odoratissima. Jatikorai, fr. Gualpara.*
Truak very lofty, bat not straight; often 6 foet in girth : wood hard, and used in furniture.-Ham.
7 Acacia marginata. Korui, fr. Gualpara.
5 cubits in girth. Makes good planks.-Ham.
8 Acer lævigatum. Sualendi, N. Cherouni, P.† fr. Nipal.
30 to 40 feet high : 3 to 4 inches in diameter; of slow growth; used for rafters, beams, and other bailding purposes.-Sp. 3.5 inches in diam. Wood raried brown and cream colour, with a wary lustre.
9 Acer sterculiaceum, fr. Nipal.
A very large tree, 3 feet in diameter.- $\mathrm{Sp} .3 \cdot 5 \mathrm{inch}$. diam. Wood light: Sibre pale cream colour, with considerable lustre: rays in distinct brown ribands : tubes large, giving a coarse appearance to the wood.
10 Acer oblongum, fr. Nipal.
A very large tree. Wood moderately hard and compact.-Sp. fibre cream brown, with considerable lustre: rays in narrow ribands of a fleak colour: tubes small.
11 Adamia cyanea. Bansook, P. and N. fr. Nipal.
Wood pale coloured, not used.
Aggar. See Aquilaria.
$\left.\begin{array}{l}\text { Ain, } \\ \text { Aintha. }\end{array}\right\}$ See Dipterocarpus.
12 Ahnaun, fr. Tavoy.
3 to 6 fathoms long; 12 to 15 inches diameter. Yields good crooked timber, the strongest and most durable of any in Taroy; used for anohors to the largest boats.
Alesi. See Justicia.
13 Alnus nepalensis, fr. Nipal.
Wood as firm as English birch, and of a deeper colour ; vary hard, and dificult to cut; lustre considerable.-Sp. 5 inch. diam., 20 layers in 1.7 inch (bat in asother specimen 5 layers in $1: 8$ inch). Heart pale brownish red: fibre glossy: rays reddish brown, very distinct. Bark fibrous, rather thick, composed of many thin lamince.
14 Alstonia (Echites) scholaris. Chatiyan, fr. Gualpara.
A beautifal tree, often 3 cubits in girth, used for coarse furniture.-Hasm.
15 Alstonia antidysenterica (Nerium antidys.). Dudkhuri, fr. Gualpara. A large tree, often 3 cabits in circamference. Is considered a powerful medicine. Beads are made of it, to be worn round the neck.-Ham. Amari. See Guarea.
16 Anacardium latifolium. Bhela, fr. Gualpara.
Grows to a good size; used for making chests and couches.-Ham.
17 Anacardium? Thubbamboo, B. fr. Tavoy.
A large tree, need in bost-building.
18 Andrachne trifoliata. Uriam, fr. Gualpara. 3 cabits in girth, used for coarse furniture.-Ham.
19 Andromeda ovalifolia. Angaree, P.; Juggoochal, N.; fr. Nipal. Grows 1 or 2 feet in diameter: wood soft and spongy, used for fuel. 8p. wood moderately hard, compact, reddish brown, with some lustre. Bark with layers of stringy fibres.
20 Andromeda formosa. Sheaboge, N. fr. Nipal.
A tree of considerable size.-Sp. 4.5 inch. diam. : wood pale brown, insgraised, moderately hard; rays very distinct in the outer layers.

[^33]21 Andromeda cordata, fr. Nipal.
Sp. 4.5 inch. dieqm. : wrod brown, memely dull ; rags diatinct: bark flaky, not at all stringy.
22 Andromeda, fr. Nipal.
23 Andromeda, fr. Nipal. Angaree. See Andromeda. Anjoo. See Jasminum.
Annah-beng. See Fagrea:
Antheel. See Ludia.
24 Antidesma. Boro-helock, fr. Gualpara.
Grows in the mountains; 6 feet in girth ; the wood mand for faraiture.Ham.
25 Aquilaria agallochum. Aggar and Langchi, fr. Gualpara.
Attains a great size in the low-lands of Apsam, and on the lower hills of Gualpara; but in thege situptions the wood is white, and in pa cestimation. Is the Garo mountains certain parts of the heart of the wood bepome of a darkbrown colour, and are atrongly impregnated with a highly mennted oil. Whepe in this state it is usually called Eagle-wood.-Hgm;
26 Aralia digitata. Leesaong, N. fr. Nipal.
A rambling shrub.
27 Aralia nodosa, fr. Nipal.
Sp. small, imperfect, and worm-eaten.
28 Aralia, v. Panax, fr. Nipal.
said to be excellent wood; used for boxes and other articles. Sp. $4 \mathbf{8}$ inch. diam. ; light-coloured, rather soft.
Aroo. See Prunus.
29 Artocarpus. Thounben or Thoun-pine, B. fr. Tavoy.
A large tree; used in boat-building. It produces a sort of cmont-chore, with which the Burmese pay their boats.
30 Artocarpus, fr. Tavoy.
A large tree.
81 Artocarpus. Pynyathe or Tanabeng, B. fr. Tavoy. Wood not used.
82 Artooarpus Chama. Kangtali chama, fr. Gualpara.
The glory of the forests of Gorakpur, where it attains a very great size s used for canoes, for which it is well fitted, being both very buoyant and darable in the water.-Ham.
33 Bah-nah-thoa (probably the same as Laurus Panstha of this Catalogue), fr. Tavoy.
Timber 4 to 6 fathoms long; 15 to 24 inches in diameter : ased in boat and house-building.
Bajarmandi. See Fagraæea.
Balchalpani. See Ficus.
Bakuri. See Bauhinia.
Bembusa. Bamboo, fr. Pulo-Geun, in Martaban.
The largest and tallest sort known; the atem 100 feet high, and attaining at the base a diameter of 11 inches, with sides 1 inch thick.
Banatha. See Laurus.
Bancha. See Ligustrum.
34 Baphhinia Tucra. Tukra, fr. Gualpara.
A clone-grained, soft, tough wood, of a yellow colour-Ham.
35 Bauhinia Bacuria. Bakuri, fr. Gualpara.
An open-grained, soft, tough wood ; 3 gmbits in girth: und for fingitentHam.

36 Banhinia. Koila, P. fr. Nipal.
The flowerbade art eaten in carriten.
37 Bauhinia, fr. Nipal.
A large tree.
88 Berberis pinnatifolia. Milkissee, N.; Jumne-munda, P.; fr. Nipal. Rarely exceeding a foot in diameter.-Sp. 3 inch. diam. : wood strong, close, compact, yellow.
39 Berberis asiatica. Matekissee, N.; Chitra, P.; fr. Nipal.
Wood small.-Sp. rays rather large, distinct ; lajers 12 in 1.5 inch. : wood tough, compect, groenisk yellow. Bhela. See Anacardium.
40 Betula leptostachya, fr. Nipal.
Wood not to be distinguished from English birch.-Sp. 2.8 inch. diam. $;$ 3 layers; rays in numeroos, straight, narrow, paraliel, ribands; bark thin, smooth, spotted like common alder.
41 Betule cylindrostachya, fr. Nipal.
Sp. 45 inch. diam.; wood shaky, of no value; fhyers not distinct enough to be counted ; fibet white, glosesy; rays dark nat-brown, in very distinct, narrow ribends ; bark thick, tubercular.
42 Betula Bhojpattra, N. fr. Nipal.
Sp. 5.8 inch. dirm.; about 20 hayers ; wood moderately hard and compact; caticle used for writng on, and allo for covering the inside of the tabe of the hooknh and kalioun.
Bhaleo. See Rhus.
48 Bhoza Moya. Moj, fr. Gaalpars.
A close-grained bard wood.-Haim.
Bhoea. See Conyza.
Bhoelasi. See Salix.
Bhengyena: See Decadia.
Bhosee. See Salix.
Bhojpattra. See Betula.
44 Bignonia Colais. Kolai Beng. Parijat, fr. Gualpara.
Often 5 cubits in girth ; used only for fire-wood.-Ham.
45 Bignonia, fr. the higher parts of the Saluen river in Nipal.
46 Bignonia. Thathee, B. fr. Tavoy. A very large tree.
47 Bignonia ? Thuggainee, B. fr. Tavoy. A large trees, ased in house-buidding.
48 Bignonia. Lainbha, B. fr. Tavoy. A middo-sized tree.
49 Bignonia chelonoides, fr. Nipal. A large tree.
Billae. See Ligustrum.
Bireesee. See Myrsine.
50 Birouni, P. Kurauni, N. fr. Nipol. Stem 6 to 8 inches in diameter.
Bojhinsi. See Coriaria.
Bonjam. See Gardenia.
Bonkapash. See Hibiscus.
Boro-belock. See Antidesma.
Borogotadhara. See Guarea.
Boropatiya. See Elrocarpus.
Bowinijapome. See Guarea.

5I Briedelia stipularis. Kohi, fr. Gualpara.
Grows to a large sive; wood close, hard, tongh; ased for chents, stoole, sc.-Ham.
52 Briedelia? fr. Nipal.
Wood not very hard, but fine-grained, and fit for orramental cabinet-mork $\mathbf{S p .} 2.5$ inch, diam.; colour lighter than box ; no tubes nor rays risible.
53 Brucea napalensis, fr. Nipal.
Bukkiamela. See Rhus.
54 Buddleia paniculata. Narum-pattee, P. ; Sinna, N. ; fr. Nipal.
Sp. 1.6 inch. diam. ; rays very indistinct; wood pale brown, dull.
Bukaena. See Melia.
Bulaima. See Symplocos.
Bunamb. See Sphærocaria.
Bunaroo. See Quercus.
Bundhali. See Gardenia.
55 Butea frondosa. Polash, fr. Gualpara.
Sometimes 6 feet in girth ; wood open, coft, and toagh, bat sot atrong; used in coarse furniture.-Ham.
56 Cæsalpinia ? fr. Nipal.
57 Casalpinia Sappan. Sappan-wood.
A native both of the peninsula of India, of the Burmese country, and of the Malayan Islands. A large and valuable tree ; the wood red ; used in dying.
58 Calophyllum. Thurappe, B. ; Choopee, N. ; fr. Martaban.
A large tree, used for masts and spars, and for pestles for oil presees.
59 Calophyllum. Turra-phee, B. fr. Tavoy.
Very different from the preceding; used for masts and spars.
60 Callicarpa arborea. Khoja, fr. Gualpara.
6 feet in girth; used for mortars, pestes, and common furniture-Hicm.
61 Calyptranthes. Jam, fr. Gualpara.
8 feet in girth; made into planks, but not considered as of good quality-Erem.
62 Calyptranthes. Saljam, fr. Gualpara.
seldom more than 3 cabits in girth. A close, hard, tough wood, meed for posts, beams, and planks.-Ham.
63 Camellia Kissi. Kissi, fr. Nipal.
Wood close-grained ; no sapwood.-Sp. 1.5 inch. diam.; wood pale browz; bark very thin.
64 Capparis, fr. Nipal.
Sp. 2 inch. diam.; wood white, moderately hard, dull.
65 Capparis, fr. Nipal.
66 Carapa. Taila-oon, B. fr. Tavoy.
Timber 13 to 15 cubits long, 15 to 18 inch. diam.; used in boase-brilding:
67 Careya. Kaza, B. fr. Martaban and Tavoy.
Timber of large size; used for posts and other common purposes.
68 Careya. Kombo, fr. Gualpara.
About 3 cubits in girth; wood. close, hard, tough, and strong. Brocks of matchlocks are made of it.-Ham.
69 Carpinus viminea. Chukisse, N. ; Konikath, B. ; fr. Nipal. Wood esteemed by carpenters.-Sp. pale parplish, with little leastre, hard, rather heary ; tubes small.
70 Cassia Fistula. Sonalu, fr. Gualpara. 6 feet in girth ; an open, hard, tough wood, used for plonghs.-Hemen
71 Cassia nodosa, fr. Bot. G*. A very large tree.

* Bot. G., the Company's Botanic Garden at Ca'cutta

72 Castanea tribuloides. Cotoor and Chisee; aleo Makoo Shingali, N.
(Shingoli, is the general name for oak and chestnat.) Fr. Nipal.
Used for large mortars and pestles for grinding grain in ; becomes brown by steeping in water ; wood hard and heary.- Sp. rays like English oak; that is, every 5 th or 6 th much larger than the others. Another apecimen, aaid to be of the same species, waats the large rays.
73 Castanea martabanica. Nome and Zitha, B. fr. Tavoy.
74 Castanca. Golsinggur, fr. Gualpara.
Branched prickles on the cup of the frait ; leaves entire; timber excellent, close, hard, and tough.-Ham.
75 Castanea. Nikari, fr. Gualpara.
Oak or chestnut ; cup covered with strong prickles; leares notched; 5 cubits in girth; timber close, hard, tough; used for furniture and canoes.-Hem.
76 Castanea. Kangta Singgur, fr. Gualpara.
Not exceeding 3 feet in girth; inferior in atrength and toughness to the pro-ceding.-Hem.
77 Cedrela hexandra. Toon-wood, fr. Nipal.
Sp. the wood has a great general resemblance to Laurus; the outer hyers have white glossy fibres, with very distinct brown rays; the inner layers are brownish red, harder and more compact; bark with white fibres.
78 Cedrela Toona. Toon or Tungd; Poma; Jeea; fr. Gualpara.
5 cubits in girth; a close, hard, but rather brittle wood, of a brown red colour; very durable, and esteemed for furniture. It has an agreeable smell. -Ham. The wood, under the name of Toon, is extensively used among the Europeans in Portugal for chairs and other furniture.
79 Celastrus, fr. Nipal.
An enormous climber.-Sp. trunk deeply channelled externally; wood light; reddish brown; tubes large and numerous; rays deep and very distinct, but of the same colour as the rest of the wood; bark, outer, orange yellow; inner, deep brown.
80 Celastrus verticillata, fr. Nipal. A emall tree.
81 Celastrus ? fr. Nipal.
$\mathrm{Ep}_{\mathrm{p}} 1 \cdot 8$ inch diam.; wood rather soft, very fine-grained; tubes and raye very indistinct ; inner bark nearly bleck; approaches in most of its characters to Turpinia.
82 Celtis australis, fr. Bot. G.
83 Celtis. Khori, P. ; Koosikma, N.; fr. Nipal.
84 Cerasus. Puddom. Nipal cherry, fr. Nipal.
Sp. 3.5 inch. diam. 14 layers : rays reddish brown, distinct; wood rather soft, with some lustre.
85 Cerbera Manghas. Kullooa, B. fr. Tavoy.
From the fruit (probably the kernels) an oil is drawn with which the Burmese anoint their hair. Wood not used.
Chacrovila. See Elseocarpus.
Chalita. See Dillenia.
86 Chamarops Martiona, Wall. Nipal palm, fr. Nipal.
87 Champa, white, fr. Nipal.
Sp. part of a plank : a free-working wood, soft and light like deal : fibre wary, white, and very glossy: rays shallow and slender : layers very distinct, 32 in 4.5 inches. Compare Michelia.
Chabsce. See Michelia.
Chaschoo. See Laurus.
Chatiyan. See Alstonia.
Cheriala. See Rhododendron.

Cherouni. See Acer.
Chickooni. See Eurya.
Chillounea. See Gordonia.
Chitra. See Berberis.
Choopee. See Calophyllum.
Choo-kha. See Pongamia.
Choo-mulloo. See Diospyros.
Choo-muna. See Xanthoxylon.
Choopee. See Calophyllum.
88 Choorosi, N. fr. Nipal.
A very fine sort of wood, said to come from the north. I only knew it ffom having a walluing-stick of it, which was presented to me by the Viceregent of Nipal.
Choee. See Rhus.
89 Chaulmoogra odorata, Raxb. fr. Bot. G.
A very large tree.
90 Chotagotadhora, Bengal, fr. Gualpara.
Chukisse. See Carpinus.
Chusee. See Elxagnus.
01 Chrysophyllum acuminatum, Roxb. Pithogarkh, fr. Gualpara\mathbf{s} cubits in girth; wood white, tough, nsed in furniture.-Hem.
92 Chung, fr. Gualpara.
Perhaps a species of Chilmoria. It grows very large, and affords a close tongh wood nsed in furniture.-Ham.
98 Cinchona gratissima, Wall. Tungnusi, N. and P. fr. Nipal.
A native also of the monntains in Bengal, where it is called Usokuli: used in Nipal for posts and rafters.- Sp. wood brown, light, coarse-grained: bark with many compressed coarse fibres.
94 Clerodendron phlomoides. fr. Bot. G.
95 Coccoloba uvifera, fr. Bot. G.
96 Conyza candicans, Wall. Phusrae, P.; Bhoea, N. ; fr. Nipal.
97 Cordia Myza? fr. Nipal.
A large tree.
' 98 Coriaria nepalensis. Bhojhinsi, N. fr. Nipal.
The fruit is eaten : trunk 4 or 5 inches in diam. Wood not nsed.
99 Cornus oblonga, Wall. Easee, N. and P. fr. Nipal.
A tree of middle size.-Sp. 3 inch, diam. Wood fine-grained, rather hand; fibre white and shining: rays very numerous, reddish brown.
100 Cornus Capitata, Rosb. fr. Nipal.
Grows sometimes to a great size. Wood very hard.
101 Corylus ferox, Wall. fr. Nipal.
Grows at the top of Sheopore, one of the highest mountains in Nipal ; fiowers in September, and produces fruit in December: shell of the nat herd and thick. A tree 20 feet high, 2 feet in girth ; wood light, compect.
102 Cotoneaster affinis, Lindl. fr. Nipal.
103 Cotoneaster obovata, Wall. fr. Nipal.
Catoor. See Castanea.
104 Cou-moo, fr. Tavoy.
Timber 5 to 10 fachome long; 20 to 30 inches in girth; used in boat and houso-building ; not much inferior to Hopsea.
105 Crateegus arbutiflora. Rooes, N. fr. Nipal.
A small tree, or rather shrub; wood exceedingly strong: used for wallingaticks.

106 Croton oblongifolium, Roxb. Parokupi, fr. Gpalpara.
5 cubits in girth; a close-grained but rather brittle wood; uged for coaproc furniture.-Hasm.
107 Croton. Lalpetuja, fr. Gualpara.
3 cubits in girth; a hard close-grained wood, used for small canoes.
Cusroo. See Quercus.
108 Cyathea spinulosa. Fern-tree, fr. Nipal.
109 Cynometra. Maingga, B. fr. Martaban. A small tree.
Daine-oksi. See Dillenia.
110. Dalbergia Momsita, Ham. Momsita, fr. Gualpara.

Attains a considerable size : wood close, hard, and tough ; used in coarse faraiture- Hama .
111 Dalbergia (Rangoon Sissoo), fr. Rangoon, Ham.
112 Dalbergia, fr. Nipal.
113 Daphne Gardneri, Wall. fr. Nipal.
Wood not used. Bark used for paper stuff.-Sp. $3 \cdot 75$ inch. diam.; wood light, soft, coarse, of a grey colour, with little lustre ; bark finely fibrous.
114 Daphne cannabina. Loureir, fr. Nipal.
A shrub, from 6 to 8 feet high; grows on the most exposed parts of the anowy mountains of Nipal. Paper made of the bark is strong, tough, not liable to crack, nor to be eaten by the white ant or other insects.
115 Decadia spicata. Bongyera, fr. Gualpara.
3 cubits in girth. A close, hard, tough wood, used by carpenters.-Hamo.
Deodae. See Ficus.
Dheyri. See Taxus.
Dhoree. See Gualtheria.
116 Dillenia. Zimboon, B. fr. Tavoy.
Timber 3 to 5 fathoms long, 8 to 10 inches diameter. Wood used in house-building; it also affords small crooked timbers for boats.
117 Dillenia pilosa, Roxb. Daine-oksi, fr. Gualpara.
Trunk 6 feet in girth. Wood open, but hard and tough; used for canoeas
-Ham.
118 Dillenia Pentagyna. Oksi, fr. Gualpara.
Wood closer, but in other respects very like the preceding.-Ham.
119 Dillenis speciosa. Chalita, fr. Gualpara.
6 feet in girth. Wood close and hard, but rather brittlé
120 Diospyros. Tendoo, N. fr. Nipal.
121 Diospyros ? Ryamucha, B.; Choomulloo, T.; fr. Martaben. Wood used in house-building.
122 Dipterocarpus grandifiora, Wall. Ain or Aintha, B. fr. Martabap, on the banks of the Atran; also from Tavoy.
A stapendons tree : one of those which yield wood-oil and dammar.
123 Dipterocarpus. Kunnean-phew, B. fr. Tavoy.
5 to 8 fathomplong; 18 to 24 inches in diamoter; grow to a great size; used for beams and planks.
Doduan. See Smilax.
124 Dubdubia. (See Rhus.) fr. Nipal.
Sp. 4.2 inch. diam.; layers 10 ; rays distinct; tuben fov, racher large Wood very white, light, and soft. Bark thin.
Dudkuri. See Alstopia.
Eandorkomul-soong. See Gardenia.
Earansa. See Eurya.
Easce. See Cornus and Rubus.

Eea. See Loranthus.
125 Ehretia serrata, Rosb. Nalshima, N. fr. Nipal ; also fr. Gualpara.
5 cubits in girth; gives planks from 12 to 18 inches wide; wood soft and open-grained, but rather tough; not durable ; used for posts and other common purposes.
126 Ehretia serrata, or macrophylla. Poegulsee, N. fr. Nipal.
Sp. 3 inch. diam.; layers 10; tubes few and amall; rays distinct; rood white, moderately shining, soft.
127 Ehretia lævis, fr. Bot. G.
128 Ekebergia. Jiyakohi, fr. Gualpara.
b cubits in girth ; wood like mahogany, very durable, and much esteremed.
129 Elseagnus, fr. Nipal.
Wood similar to, but whiter than, common hawthorn.-Sp. 4 inch. diam.; layers 27 in 1.7 inch : neither tubes nor rays visible in the croses section : bark thin:
130 Elseagnus. Chusee, N. fr. Nipal.
131 Elseocarpus. Boropatiya, fr. Gualpara.
A close hard wood, of good size, used for canoes.- Ham.
132 Elæocarpus Chacrosila, Ham. fr. Gualpara.
A close hard wood, used for mortars, cheste, \&c.-Ham.
133 Elrocarpus. Thaumagee, T. fr. Martaban. Timber very large, used for masts and posts for houses.
134 Embelia, fr. Nipal.
Sp. very imperfect.
135 Eriobotyria elliptica. Mihul, P. and N. fr. Nipal.
Wood cinnamon-brown, hard, compact, and reckoned good.-Sp. 7 inch. diam. ; rings indistinct, about 26 in $3 \cdot 1$ inches ; tubes very small.
Esealoo. See Rubus.
136 Euonymus. Veysoor, N.; Junghuree, P.; fr. Nipal.
Growe large; wood close-grained, not very hard, perhaps good for carver.
-Sp. rays and tubes scarcely visible : outer bark yellowish gray.
137 Euonymus tingens. Kusoori, N. fr. Nipal.
Wood brown, compect, hard, very fine-grained, dull.-Sp. tubes not risible; rays small and indistinct : bark, outer, orange yellow; inner, brown with fine white fibres: the yellow bark is need for painting the forehead.
138 Eunymus echinata, Wall. fr. Nipal.
139 Euonymus pendula (japonica, Thunb.), fr. Nipal.
Sp. wood brown, moderately hard, fine-grained dull ; tubea and reje m E. tingens : outer bark yellowish in places ; inner, brown.

140 Euonymus, fr. Nipal.
Tall, but of a alender stem.
141 Euphorbiacea. Yamala, B. fr. Tavoy. Wood used for frames of lacquered ware.
142 Eurya nepalensis. Jeegnee, P.; Earansea, N. ; fr. Nipal. A small tree.-Sp. 5 inch. diam.
143 Eurya variabilis (probably the same as the preceding). Chickouni, B. and N. fr. Nipal.

Grows large; wood compact, fine-grained, cinnamon-brown; good fer tarnery ware. -
144 Eurga ? fr. Nipal.
Sp. 2.5 inch. diam. : tubes small ; rays distinct, red brown; fibre ple brown, with moderate lustre : wood reddish brown, fine-grained, moderstels hard.
145 Eurya. Thaun, B. fr. Tavoy. A small tree, used only for fuel.

146 Excocaria ? Thurrotha, B. fr. Tavoy.

147 Fagara floribunda, fr. Nipal.
Sp. 2.2 inch. diam.: tubes many and large : wood coarse, and of remarkably open grain, but more compact near the axis ; colour brownish yellow, nearly dull.
148 Fagara, fr. Nipal.
149 Fagara Rhetza, Rarb. Bajarmondi, fr. Gualpara. Wood close, hard, tough; fit for the joiner.-Ham.
150 Fagreas fragrans, Roxb. Annah-beng, B. fr. Martaban. Timber not large; wood yellowish, compact, and beautiful, but very hard, and on this account not much used by the Burmese.
151 Ficus. Doodae-kath, N. P. fr. Nipal.
Ueed for water-courses, drains, and gntters.-Sp. 4.5 inch. diam.; layers 63 in 2 inches; wood soft, free-working, cloeer than deal ; lustre considerable, satiny.
152 Ficus? Kaffrea, P. ; Pillaksi, N. ; fr. Nipal.
Sp. 1.75 inch. diam.; layers about 50 ; rays brown, indistinct : wood soft, light, of no use.
153 Ficus, fr. Nipal.
Small specimen; rays distinct ; wood soft, light.
154 Ficus, fr. Nipal. A climber.
155 Ficus, fr. Nipal.
A climber.-Sp. rays nut-brown, strongly marked; wood light, not very soft, pale brown, with some lustre.
156 Ficus, fr. Nipal.
Sp. 4 inch. diam.; rays brown, very distinct; layers very many; wood moderately hard, with some lustre.
157 Ficus, fr. Nipal.
Sp. $2 \cdot 4$ inch. diam. ; rays brown, strongly marked; layers very indistinct; tabes large, giving the wood a coarse grain : wood reddish brown, rather hard.
158 Ficus, fr. Nipal.
A large tree.-Sp. 4.5 inch. diam.; layers very numerous; wood soft, worm-eaten.
159 Ficus. Thabboo, B. fr. Tavoy. A middle-sized tree; wood used in house-carpentry.
160 Ficus. Thuppan, B. fr. Tavoy. A large tree; wood not used.
161 Ficus undulata. Bakhalpani, fr. Gualpara.
6 cubits in girth; makes good canoes : wood open, soft, rather tough. Ham.
162 Ficus oppositifolia. Khoskadumer, fr. Gualpara.
3 exbits in girth ; wood open, soft, brittle.
163 Fraxinus floribunda. Lakkuree, N. fr. Nipal.
Sp. 17 layers in $2 \cdot 1$ inches; in colour, grain, and tonghness, just like English ash.
164 Freziera ochnoides, fr. Nipal.
A middle-sized tree; wood pale brown, close-grained, and moderately hard.-Sp. 2.5 inch. diam.; rays hardly distinguishable; resembles peartree.
Gambhari. See Gmelina.
165 Garcinia. Pullowa, B. fr. Tavoy.
A harge tree, used for posts, \&c.
166 Garcinia paniculata, fr. Bot. G.
167 Gardenia florida. Eandorkomul-soang, N. fr. Nipal.

168 Gardenia, fr. Nipal.
Sp. wood cream-brown, fise-grained, hard, compact ; probably useful for turnery ware.
169 Gardenia. Bonjam, fr. Gualpara.
3 cubits in girth; well adapted for all kinds of tursery ware.-Ham.
170 Gardenia. Bundhali, P. and N. fr. Nipal.
171 Gardenia latifolia, fr. Bot. G.
172 Gardenia lucida, fr. Bot. G.
173 Gastonia palmata, fr. Nipal.
Ghese. See Quercus.
Ghonas. See Rhododendron.
Ghorans. See Rhododendron.
Gillaephul. See Spondias.
174 Gmelina arborea. Gambhari, fr. Gualpara.
Wood light, but durable, does not warp, and is not readily attacked br insects ; used for turnery ware of all kinds, and cylinders of a proper size are turned very thin for drums : other musical instruments are also made of it. Goechassee. See Gordonia.
Golsinggur. See Castanea.
Gomulsee. See Quercus.
Gooki. See Symplocos.
Goonsi. See Podocarpus.
Goopor. See Pyrus.
175 Gordonia integrifolia. Chillounea, P.; Goechassee, N. ; fr. Nipal.
The bark contains white spicule, that produce violent itching when rubbed on the skin in their recent state. The Burmese have a superstition, that one beam in a house should be made of this wood. Wood brown, nearly dull, moderately hard and compact.
176 Gordonia ? Kaza, B. fr. Martaban.
Large timber, used for ordinary building purposes.
Govorpongyata. See Guarea.
177 Grewia. Meaya, B. fr. Tavoy.
178 Gualtheria fragrantiseima. Dhoree, N.; Dhoseongree, P.; fr. Nipal.
179 Guarea, fr. Nipal. Sp. 3.5 inch. diam.; wood moderately hard, compact, pale reddish brown.
180 Guarea. Amari, fr. Gualpara.
5 cubits in girth; wood close, hard, and tough ; used for canoes.-Hem.
181 Guarea Gobara. Govorpongyata, fr. Gualpara.
Used for canoes.-Ham.
182 Guarea Alliaria. Bosuniyapoma, fr. Gualpara, Used for canoes.-Ham.
183 Guarea Gotadhara. Borogotadara, fr. Gualpara. 5 feet in girth ; wood close and hard; used by joiners.-Hame. Guarnasi. See Rhus.
Hakoolual. See Limonia.
Harobaer. See Ziziphus.
184 Heritiera Fomes, Ham. (minor, Roxb.) Kunnazoo, B. fr. Tavoy, Soondree of Bengal.
A very large tree ; wood exceedingly hard and durable; used for pestles for oil-mills; shafts of gigs, spokes, and naves, are made of it: an excelleat fuel for burning bricks; grows to a much greater size on the Martaban const

185 Hibiscus macrophyllus, Rosb. fr. Tavoy.
A middle-sized tree, used for common building purposes, bark tough and stringy ; is made into cordage.
186 Hibiscus (perhaps a Sterculia), fr. Tavoy. Applied to the same uses as the foregoing.
187 Hibiscus Lampas. Bonkapash, fr. Gualpara.
6 feet in girth; a soft, open wood, used for coarse furniture.-Ham.
188 Holboellia (Stauntonia) latifolia. Bagul, T. fr. Nipal. A vast climber.
189 Hopea odorata. Tengaun or Thaengong. Common on the Tenasserim and Martaban coasts.
Canoes are made of this tree, which grows to an enormous sise : it aleo produces a valuable resin or dammar.
190 Hopea floribunda, Wall. Tantheya, fr. Tavoy. A very large tree.
191 Hovenia dulcis, fr. Nipal.
A rery large tree.-Sp. 3 inch. diam. ; layers 9 ; wood light, coarse-grained.
192 Hydrangea altissima, fr. Nipal. A climber.
193 Hydrangea trigyna, Wall. fr. Nipal.
194 Hymenodictyon flaccidum, Roxb. fr. Nipal. Sp. $1 \cdot 125$ inch. diam. ; wood dirty grey, nearly dull; moderately hard.
195 Ilex dipyrena, Wall.' Karaput, P.; Munasi and Gulsima, N.; fr. Nipal.
Wood heavy, hard, fine-grained, and much like common holly, said to bocome black with age $;$ used for various purposes of carpentry.-Sp. 3 inch. diam.; tubes very small; rays distinct.
196 Jambolifera pedunculata. Hulhholi, fr. Gualpara. 3 cubits in girth; used for stocks of matchlocks.-Ham.
197 Jasminum arboreum. Anjoo, N. from Nipal. Sp. 4 inch. diam.; wood pale brown, nearly dull, fine-grained, hard, compact.
198 Jasminum dispermum, fr. Nipal.
199 Jasminum chrysanthum. Roxb. fr. Nipal.
Sp. 1.8 inch. diam.; neither tubes nor rays visible; wood white, fineo grained, moderately hard ; brittle, hard concretions in the bark.
Jeea. See Cedrela.
Jeegue. See Eurya.
Jhoori. See Osyris.
Jivakoki. See Ekebergia.
Joolchumahl. See Acacia.
200 Joolshima, N. fr. Nipal.
Juggoochal. See Andromeda.
201 Juglans pterococca, Raxb. from Nipal.
An exceeding large tree.-Sp. 3.5 inch. diam.; wood pale reddish brown,
with considerable lustre, but rather coarse-grained.
Julsi. See Rondeletia.
Jumnemandoo. See Berberis.
Junghurree. See Euonymus.
202 Juniperus excelsa, Bieh? The Cedar of Himalaya.
Harder and less odorant than the West Indian cedar; an excellent light wood.
203 Juaticia Adhatoda. Kath, P. ; Alesi, N. ; fr. Nipal.
A A 2

204 Kaantha, B. fr. Tavoy.
3 to 5 fathoms long, 12 to 15 inches in diameter. Yields a small but raluable timber for oars and paddles,
Kadabusi. See Ziziphus.
Kaffrea. See Ficus.
Kaintha-phogee. See Symplocos.
Kaizai. See Laurus.
205 Kalajiya, fr. Gualpara.
Common over all India; remarkable for the facility with which it grows
from cuttings, and from truncheons; yields much gum ; wood of no use.Ham.
Kalikat. See Limonia.
Kalikath. See Symplocos.
Kalikaut. See Myrsine.
Kanaput. See Ilex.
Kangtali-chama. See Artocarpus.
Kangta-singgur. See Castanea.
Kath. See Justicia.
206 Kaunzo-Kurro, B. fr. Tavoy.
5 to 7 fath. long, 15 to 20 inch. diam.; used in boat-building. See also Meliacea.

Kayzai. See Laurus.

Kaza. See Careya and Gordonia.
207 Keahnaun, B. fr. Tavoy.
15 to 20 feet long, 15 to 20 inch. diam.; strong crooked timber, used for musket-stocks. See also Xylocarpus.
Keannan. See Xylocarpus.
Kee-tha. See Syndesmis.
Keounlak. See Rottlera.
Keysoor. See Euonymus.
Kheemna. See Laurus.
208 Kheera, N. fr. Nipal.
An Euphorbiaceous tree, of no value.
Khori. See Celtis.
Khoskadumor. See Ficus.
Koila. See Bauhinia.
Kohi. See Briedelia.
Kolai. See Bignonia.
Kombo. See Careya.
Komkath. See Carpinus.
Kongeea. See Rondeletia.
Korui. See Acacia.
Kooathoe. See Myristica.
Koosikma. See Celtis.
209 Kuddoot-Alain, B. fr. Tavoy.
Grows to a great size; used by house and boat-builders.
210 Kuddoot-nee, B. fr. Tavoy.
6 to 8 fath. long, 15 to 20 inch. diam. ; an inferior wood, used in boatbuilding.
Kuenmoonee. See Lagerstroemia.
211 Kujulsee, P. and N. fr. Nipal.
Trunk 2 feet in diam.; wood strong and durable ; used for door-posts.

Kallooa. See Cerbera.
Kullowa. See Laurus.
212 Kummi, B. fr. Tavoy. Kunna. See Pierardia.
Kunnazoo. See Heritiera.
Kunnean-phew. See Dipterocarpus.
Kanneen. See Myristica.
$\left.\begin{array}{l}\text { Kunneen-keunke. } \\ \text { Kunneen-keunla. }\end{array}\right\}$ See Symplocos.
Kunneenee. See Sterculia.
Kurauni. See Birouni.
Kurrowa. See Laurus.
Kusoori. See Euonymus.
Kuzzo. See Pierardia.
Kyakle. See Quercus.
Kyamucha. See Diospyros.
Labtesee. See Panax and Rottlera.
213 Lagerstroemia. Kuenmounee or Peema, B. fr. Tavoy.
Used in house-building, and for oars.
214 Lagerstroemia parviflora, Roxb. Sida, fr. Gualpara.
A large tree, 6 feet in girth, and very common ; wood close, hard, and tough, forming excellent timber.-Ham.
215 Lagerstroemia Reginx. Jarul, fr. Gualpara.
6 feet in girth, used in boat-building; but the wood is soft, and deficiens in tonghness.-Ham. It is extensively ured in Bengal nuder the name of Jarul.-Wall.
Lakhurree. See Fraxinus.
Lalpatuja. See Croton.
Lambha. See Bignonia.
Langchi. See Aquilaria.
Latasishnoo. See Urtica.
216 Laurina. Tapahaw, N. fr. Nipal.
217 Laurus. Lumpatch, P.; Chasepoo, N. ; fr. Nipal.
4 to 6 feet in diam. ; wood zoft and pale when young, hard and pale red when older; used in carpenter's work, and for beams.-Sp. 27 layers in 1.8 inches ; lustre considerable; rays mostly distinct.
218 Laurus glandulifera. Sassafras and Camphor-wood of Nipal, fr. Nipal.
Sp. fibre pale flesh colour, with considerable lastre; rays small, dark redbrown ; wood soft, coarse.
219 Laurus. Very like the preceding. Kullowa or Kurrowa, B. fr. Tavoy. Produces the sassafras-bark and camphor-wood of Martaban.
220 Laurus caudata, fr. Nipal.
Sp. fibre light-coloured, shining ; tubes not numerous but large ; rags distinct, dark brown $; 4.2$ inch. diam.; layers $12 ;$ axis very eccentric.
221 Laurus albiflora, fr. Nipal.
A large tree.-Sp. 3.8 inch. diam. ; fibre, tubes, and rays, as the foregoing.
222 Laurus. Panatha (Banatha ?), B. fr. Tavoy. Used in house carpentry.

223 Laurus. Maythen, B. fr. Tavoy.
5 to 6 fath. long, 18 to 26 inch. diam.; a very large tree; wood used for furniture, in house carpentry, and for planks and upper decks for proas.
224 Laurus. Pahela, N. fr. Nipal.
225 Laurus? Kheemna, B. fr. Tavoy.
Timber small; used for posts and rafters.
226 Laurus. Phetpetta, N.; Balukshee, P. ; fr. Nipal.
Wood red-brown, of a fine grain, used for chests, \&c.-Sp. fibre and rags as other Lairi ; tubes filled with a dark red-brown substance.
227 Laurus. Chausoma, N. fr. Nipal.
Sp. fibre light-coloured, with considerable lustre; tubes rather large ; rass distinct, dark-brown.
228 Laurus. Sami-lumpata, P. ; Chikihul-tussipoo, N.; fr. Nipal. Sp . fibre cream-colour, shining ; tubes aid rays cinnamoi-brown ; rather fine grain.
229 Laurus. Keebula, N. ; Kalechampoo, P; ; fr. Nipal. Sp. 3.2 inch. diam.; fibre, tubes, and rayt, as other Lauri.
230 Laurus. Pumlasi, N. ; Khorkula, P.; fr. Nipal.
A large tree ; wood strong and darable,- $\mathrm{Sp} .1 \cdot 6$ inch. diam.
231 Laurus. Khulsi, N. fr. Nipal.
232 Laurus (or Tetranthera), very like T. puleherrima:. Bulooksee, N. ; Sengoulee and Tijpaut, P. ; fr. Nipal.

Wood excellent, used for spinning wheels.-Sp. $3 \cdot 5$ incl. dinim. ; fibre, tubes, and rays, as other Lauri.
233 Laurus. Phusree, N. and P. fr. Nipal.
Wood grayish brown.
234 Laurus lanuginosa, Wall. fr. Nipal.
Sp. wood cream-brown; moderately hard; rays, tubes, and fibre, as others.
235 Laurus. Thaggoo, B. fr. Tavoy.
4 to 6 fath. long, 12 to 18 inch. diam.; used for oars and rudders.
236 Laurus, (Tetranthera bifaria, Wall.) Juttrunga, N. ; Pahelakath, P. ; fr. Nipal.

Large and nseful timber ; wood soft, rather spongy.-Sp. 6 inch. diam.; rotten at heart ; fibre pale yellow, glossy ; rays distinct, dirty brown.
237 Laurus? Thitya, B. fr. Tavoy.
A very large tree; wood used for house-building; and for mortans in which rice is husked.
238 Laurus. Kayzai, B. fr. Tavoy.
Wood used in bouse carpentry.
239 Laurus salicifolia. Horisongher, fr. Gualpara.
6 feet in girth ; wood has a strong smell of camphor 3 used for coarse articles of furnitnre.-Ham.
240 Laurus Champa. Kurka-champa, fr. Gualpara. 3 cabits in girth; used for coarse furniture.-Hame.
241 Leucosceptrum, fr. Nipal.
Wood used for rafters ; soft and of no value.-Sp. fibre with some lustre; rays moderately distinct ; axis very eccentric.
242 Leycesteria formosa, Wall. fr. Nipal.
243 Ligustrum napalense. Billae or Bancha, N. and P. fr. Nipal.
Timber about a foot or more in diameter ; used for building purposes.Sp. 4 inch. diam. ; layers about 10 in an inch: wood heary, hard, compect, tough, and very fine-grained; for the purposes of the engraver will probably be found nearly as good as Mediterranean box; bark with coame white fibres.

244 Limonia. Kailkat, P.; Hakoolnal, N. ; fr. Nipal.
Timber large for the genus; wood white, soft, but close, strong, and tough ; fit for fine turnery ware.-Sp. 7 inch. diam. ; neither rays nor tubes visible; inner bark very fibrous.
245 Limonia crenulata, fr. Nipal.
Wood yellow, very hard; used in house-building.
Lissokatta. See Loranthus.
Lolsi. See Taxus.
246 Loranthus. Eea, N. ; Lissokatta, P. ; fr. Nipal.
Loshima. See Viburnum.
247 Ludia. Mulloka, N.; Antheel ; fr. Nipal.
Used for posts and walking-sticks.
248 Ludia spinosa, fr. Bot. G.
Lumpatch. See Laurus.
Lashpoo. See Sphærocaria.
Luzun. See Pongamia.
249 Magnolia insignis, Wall. fr. Nipal.
Sp. 3 inch. diam.; 12 layers; wood rather soft, moderately fine-grained, and with some lustre.
250 Mainaban, B. fr. Tavoy.
Resembles lance-wood; used for beams, posts, and rafters ; also for lances, bows, sword-handles, \&c.
Maingga. See Cynometra.
Magor. See Vernonia.
Mako-shingali. See Castanea.
Makusal. See Gordonia.
251 Malpighia lucida, fr. Bot. G. A native of America. Masoochi. See Laurus.
252 May-chin-chan-jay. Probably a species of Ebenus.
253 May-klen, fr. Tavoy.
Scarce and dear ; used for rudders and anchors.
254 May-maka, fr.
Used for timbers of junks.
255 May-rang, fr. Tavoy.
Said to be very durable, and much esteemed for the posts of houses buit on the bank of rivers.
256 May-tobek, fr. Tavoy.
Imported in long planks, and used in preference to teak for the bottom planks of ships.
Mathen. See Laurus.
Meaya. See Grewia.
257 Meenaban, fr. Martaban.
5 to 8 cubits long, 6 to 10 inch. diam.; a darable and pliant wood, used for sword-handles and spear-shafts.
258 Megeongee, fr. Tavoy.
A very large tree, used in house-building.
Mehul. See Pyrus.
259 Melia. Bukaena, P. ; Baksi, N. ; fr. Nipal.
260 Meliacea ? Kanzo-Kurroo, B. fr. Nipal.
261 Meliacea. Tokor, fr. Gualpara.
A large tree, used for planks, canoes, and coarse furniture.-Ham.
262 Menispermum laurifolium, Roxb. fr. Nipal.
A large tree, very remarkable for the grain and irregular layers of its wood.

Mhasoosee. See Spondias.
263 Michelia Kisopa, De Cand. Champ or Chaump, P. ; Chobsse, N.

The wood much used for light works.-Sp. piece of a plank, 30 layers in 3.75 inches ; another Sp. 2.5 inch. diam. 12 layers in 1.1 inch. Similar to white Champa, No. 87, but the colour is more yellow, and the rays less distinct.
Mihul. See Eriobotrya.
Mikay. See Murraya.
Milkissee. See Berberis.
264 Millingtonia pungens, fr. Nipal.
A middle-sized tree.
265 Mimosa capensis, Bot. G.
266 Mimosa odoratissima, Bot. G.
267 Mimosa polystachya, Bot. G.
268 Minusops. Thubbae, B. fr. Tavoy.
Wood used for masts and spars; affords also good crooked wood.
269 Minusops Elengi, fr. Tavoy.
Slow-growing ; reared only on account of its flowers, which smell like Russia leather.
270 Mimusops ? Chalpata, fr. Gualpara.
A tree of modernte size, used for coarse furniture.-Ham.
Moj. See Bheze.
Momsita. See Dalbergia.
271 Morinda citrifolia, Bot. G.
The root yields a yellow dye.
272 Morus lævigata, Wall. fr. Nipal.
A large tree.-Sp. 1.5 inch, diam.; wood coarse brownish yellow, with considerable lustre.
273 Morus mauritiana, fr. Bot. G,
Motikissee. See Berberis.
Moyen. See Vauqueria.
274 Mucuna, fr. Nipal.
A supert climber (a kind of cowhage).
Mullokath. See Ludia.
Munasi. See Ilex.
Munachoo. See Rottlera.
275 Murraya. Maikay, B. fr. Tavoy.
4 to 5 feet long, 3 to 6 inch. diam.; used for handles of daggers and of other weapons. A strong, tough wood, in grain like box.
276 Myginda. Silapoma, fr. Gualpara.
5 cubits in girth; used for coarse furniture.-Ham.
277 Myrica sapida, Wall. ; Kaephul, P. ; Kobusi, N. ; fr. Nipal. Grain like birch, but the colour darker.-Sp. 2.5 inch. diam. ; fibre brownish white, nearly dull ; rays very distinct, dark brown in the outer layers; the interior layers harder, heavier, and more compect. The fruit is eaten.
278 Myristica ? Thounsanga, B. fr. Tavoy.
A large tree ; the wood used in boat-building.
279 Myristica. Koathoe or Kanneen, B. fr. Tavoy.
A large tree; the wood used for flooring houses : perhaps the same as the foregoing.
280 Myristica. Jheruya, fr. Gualpara.
A sort of nutmeg, but neither the nut nor mace have any aroma : tonber 5 cubits in girth, used for furniture.-Ham.

281 Myrsine capitellata, fr. Nipal.
Wood compact, hard, with a handsome grain.-Sp. 3.5 inch. diam.; fibre cream-colour ; rays very distinct, broad, heavy, pale brown.
282 Myrsine semiserrata. Bireesee and Kalikant, N. and P. fr. Nipal.
Wood excelient.-Sp. 2.5 inch. diam.; rays large, deep flesh colour, and very ornamental.
283 Nauclea Cadamba, Roxb. Kodom, fr. Gualpara.
A noble tree, 6 feet in girth; wood yellow, used for coarse furniture.Ham.
284 Nauclea undulata, fr. Bot. G. Nalshima. See Ehretia.
285 Nerium tomentosum. Adhkuri, fr. Gualpara. 3 cubits in girth ; used for furniture.-Ham.
286 Nerium antidysentericum. Dudkhuri, fr. Gualpara.
Of the same size and uses as the foregoing : beads are also made of it.Ham.
287 Nikari, fr. Gualpara.
An oak or chesnut; cap covered with large prickles; leaves notched; 5 cabits in girth ; used for canoes and furniture.-Ham.
Niyor. See Schinus.
Nome. See Castanea.
Novum-pattee. See Buddleia.
Odla. See Sterculia.
Okchi. See Dillenia.
288 Olea glandulifera, fr. Nipal.
A large tree.-Sp. 5 inch. diam.; rays very thin and indistinct; wood pale brown, very hard, heary, and compact.
289 Oleina, fr. Nipal.
A middle-sized tree.-Sp. 3 inch. diam.; wood pale brown, with considerable lustre, handsome grain, and very hard.
Oosihu. See Podalyria.
290 Ormosia glauca.
Sp. 3.5 inch. diam.; wood light brownish yellow, with some lustre, hard, and coarse-grained.
291 Osyris napalensis. Ihoori, P. and N. fr. Nipal.
A large timber tree, the frait of which is eaten, and the wood is in estima-
tion. 8 sp. $1 \cdot 5$ inch. diam. ; tubes very small ; wood red-brown, rather hard,
compact, and very fine-grained.
292 Osyris peltata. Phaoun, B. fr. Tavoy.
Pahela. See Laurus.
Paingodoo. See Acacia.
Palash. See Butea.
Paluepean. See Sapota.
Panatha. See Laurus.
293 Panax polyacanthus, fr. Nipal.
A large tree.
294 Panax. Lubtesee, N. fr. Nipal.
Sp. about 2.5 inch. diam.; wood soft, light, spongy, with high lastre; bark with short thick tabercles or spines, broad at the base.
295 Panax ? fr. Nipal.
Sp. 4 inch. diam.; wood soft, light, spongy, nearly dull ; rays numerome, and very distinct in the outer layers.
296 Panax, fr. Nipal.

297 Panax pendulus, fr. Nipal.
A middle-sized tree; wood pale reddish brown, light, moderately hard; rays distinct, giving a handsome grain.
Pangeh-petiya. See Tetranthera.
Panmuja. See Tetranthera.
Parijat. See Bignonia.
Paro-kupi. See Croton.
Passy. See Pyrus.
Paunlah. See Symplocos.
Peema. See Lagerstroemia.
298 Penlay-peen, fr. Tavoy.
5 to 6 fathoms long; 8 to 15 inches diameter; used in house-burilding. Phaoun. See Osyris.
299 Photinia dubia, Lindl. fr. Nipal.
Grows about 20 feet high ; wood hard, fine-grained.
300 Photinia integrifolia, fr. Nipal.
Sp. $2 \cdot 1$ inch. diam. : works freely; somewhat coarse ; colour reddich brown, with scarcely any lustre.
Phrarat. See Quercus.
Phurasee. See Turpinia.
Phusrae. See Conyza.
Phutki. See Eurya.
301 Phyllanthus Emblica, fr. Nipal.
Sp. 3 inch. diam.; layers about 8, very indistinct ; rays distinct : a haodsome, nut-brown, glossy, hard wood.
302 Phyllanthus? Horinhara, fr. Gualpara.
A tree of moderate size; the wood used for coarse furniture.-Ham.
303 Pienmahne, fr. Tavoy.
4 to 6 fathoms long; 18 to 20 inches diameter; afords the beat and strongest crooked timber, and is very durable; used also in houso-building.
304 Pienmah-pue, fr. Tavoy.
See Lagerstroemia.
305 Pierardia ? Kunna or Kuzzo, B. fr. Tavoy. Pillaksi. See Ficus.
306 Pinus excelsa, fr. Nipal.
Wood remarkably compact.-Sp. 3 inch. diam. ; 6 layers.
307 Pinus longifolia, fr. Nipal.
Excellent timber, like Memel deal.
308 Pinus Brunoniana, fr. Nipal.
Wood soft, and of no value.
309 Pinus Webbiana, fr. Nipal.
Sp. 7 inch. diam.; exterior layers soft, and of no value; interior oaes harder and finer-grained.
310 Pinus Dammara ? fr. Tavoy.
A very large tree; used for beams and rafters.
311 Pinus Deodara. Himalaya Cedar, fr. Nipal.
Wood very fragrant.
Pithogarkh. See Chrysophyllum.
312 Plumeria alba, fr. Bot. G.
A Weat Indian tree.
313 Plumeria acuminata, fr. Bot. G.
A Weat Indian tree. Every part, both of thin and of the foregoing, fall of milky juice.

314 Podalyria napalensis. Potugalla, N.; Oosihn, P. ; fr. Nipal.
315 Podocarpus macrophylla. Goonsi, N. fr. Nipal.
The peduncle of the fruit, but not the frait itself, is caten.
316 Polygonum. Tuknee, P.; Tauntul, N. : fr. Nipal.
Used only for fire-wood. The young shoots have a pleasant acidulous taste, and are eaten.
317 Polypodium giganteum. A tree-fern, fr. Nipal.
A stem, 45 feet in height, and proportionately thick, was presented by the Directora of the East India Company to the British Museum.
Poma. See Cedrela.
318 Pongamia atropurpurea, Wall. Lazun, B.; Choo-kha, T.: fr. Martaban.
A noble forest-tree; native of environs of Amherst and Moulmein ${ }^{\text {o }}$ on the Martaban coast : the wood used in boat and house building ; flower of a dark purple colour.
Popeeah. See Acacia.
Potugalla. See Podalyria.
319 Premna spinosa, fr. Bot. G.
320 Premna. Toomulse, N. fr. Nipal.
321 Premna hirsina. Chikagambhari, fr. Gualpara.
Is often found 6 feet in girth; the wood has a strong odour like the musk rat; it is nsed for making musical instruments, and for other uses. It is said that no insect will eat it.-Ham.
322 Premna flavescens. Bukdholi, fr. Gualpara.
3 cabits in girth; wood very inferior to the foregoing.-Ham.
Pregulsee. See Ehretia.
323 Prunus glaucifolia. Ranipeeplee, N. fr. Nipal.
A large tree.
324 Prunus adenophylla. Aroo, P. fr. Nipal.
A lerge tree.- $\mathbf{S p} .2 \cdot 5$ inch. diam. ; fibre white and glosey ; rays brown, distinct; tubes rather small; wood light and soft, but harder and reddish brown near the centre.
325 Pranus ferruginea, fr. Nipal.
326 Psychotria rotata, fr. Nipal.
Sp. 3.5 inch. diam. ; axis very eccentric ; wood pale reddish brown, dull, fine-grained, moderately hard.
327 Pterocarpus? Puddow, B. fr. Tavoy.
A large tree; wood used for furniture and musical instruments.
328 Pterocarpus ? Thoun-kheea, B. fr. the river Attran, in Martaban. Puddow. See Pterocarpus.
Pullowa. See Garcinia.
Puzzeen-zwa. See Ternstroemia.
Pynathe. See Artocarpus.
829 Pyrus indica, Roxb. 9 Mehul, P.; Passi, N. ; fr. Nipal.
Sp. 2.5 inch. diam. wood brown, compact, moderately hard, very finegrained; tubes exceedingly small; bark very thin, composed of 9 brown layers alternating with as many white ones; the thickness of the whole. scarcely $\frac{1}{3}$ of an inch.
330 Pyrus vestita. Goohor, N. fr. Nipal.
Sp. 3.6 inch. diam. ; about 20 layers ; wood soft, compact, of a pale colour, nearly dull.
831 Pyrus foliolosa, fr. Nipal.
A climber.-Sp. $2 \cdot 5$ inch. diam.; wood pale brown, fine-grained, nearly dull, moderately hard.

332 Pyrus ursina, fr. Nipal.
333 Quercus spicata, fr. Nipal.
A very large tree; wood very like English oak; every 7th or 8th ray much thicker than the others.
334 Quercus semecarpifolia. Ghese and Cusroo, N. fr. Nipal.
A very large tree, from 14 to 18 feet in girth, at 5 feet above the ground; clear trunk from 80 to 100 feet.-Sp. $3 \cdot 5$ layers in $2 \cdot 4$ inches; wood light pale brown ; rays small, uniform.
335 Quercus lamellosa. Shulshee and Phrarat, N. fr. Nipal.
Wood very hard, straight-grained, and good, of a pale brown colour ; rayz uniform.
336 Quercus. Bunaroo, P. ; Gomulsee, N. fr. Nipal.
Wood soft, works as easily as deal ; fibre grey, with considerable lustre; rays uniform, reddish brown, very distinet ; layers indistinet; heart reddish brown.
337 Quercus lanata, fr. Nipal. A very large tree.-Sp. bad.
338 Quercus lamellata, fr. Nipal.
339 Quercus polyantha, Lindl. Scosi-Singhali, N. fr. Nipal.
340 Quercus. Tima, fr. Gualpara.
Leaves entire; acorns covered entirely by an unarmed cup formed of concentric rings; timber not more than 3 cubits in girth; used for coarse furni-ture.-Ham.
341 Quercus Amherstiana, Wall. Tirbbae, B. ; Ryakle, T.; ft. Martaban.
Grows to a large size ; wood used in boat-building, \&c.
342 Quercus, from the mountains called Taong-Dong, near Ava. Ranipeeplee. See Prunus.
343 Rhamnea, fr. Nipal.
A large climber.-Sp. 1.8 inch. diam.; heart moderately compact; outer part coarse-grained, rather hard.
344 Rhamnea. Bungla, fr. Gualpara.
5 cubits in girth; used for chests, stools, and other coarse furniture.
345 Rhamnus (Premna ?) Gondsori, fr. Gualpara.
5 cubits in girth; used for canoes and chests.
346 Rhamnus virgatus, fr. Nipal.
Wood very hard and heavy; the heart a bright-red brown, not malike English yew.-Sp. 3.5 inch. diam. ; tubes very irregular ; rays scarcely risible.
347 Rhododendron arboreum. Ghorans or Ghonas, P. ; Tuggoo, N.; fr. Nipal.
The wood resembles plum-tree; used for gan-stocks.
348 Rhododendron arboreum (white-flowered variety). Teuggoo
Tuggoo (Teuggo means white), N. ; Saphed Gonos or Ghorons, P. ; fr. Nipal.

Grows to a large size.-Sp. 6 inch. diam. ; wood rather hard, pale brown; rays in the outer layers very distinct; tubes few and large; layers indistinct.
849 Rhododendron campanulatum. Cheriala, P.; Teotosa, N.; fr. Nipal.
A large tree.-Sp. 3.1 inch. diam.; 26 layers, very distinct; rays indistinct : tubes hardly visible.
350 Rhus Bukkiamela, Roxb. Subuchunsee, N.; Bukkiamela, P. ; fr. Nipal.
Timber good and large.-Sp. 3.5 inch. diam. ; greyish white, with comar derable lustre ; soft, light.

351 Rhus ? Dubdubea ? P.; Guarnasi, N. ; fr. Nipal.
Sp. 3 inch. diam.; layers about 10 : fibre light cream-colonr, with high lustre ; rays distinct, reddish brown ; wood very light and soft ; bark thin.
352 Rhus succedaneum, fr. Nipal.
A large tree.
353 Rhus juglandifolium, Wall. Chose, N.; Bhalaeo, P.; fr. Nipal.
Very like the Japan varnish-tree.-Sp. $3 \cdot 5$ inch. diam. ; heart red-brown, the tubes being filled with a substance of this colour; wood soft, bears a considerable resemblance to the Lauri, with indistinct rays.
354 Rondeletia cana, Wall. fr. Nipal.
355 Rondeletia coriacea, WaH. Kongeea, P. ; Julsi, N. ; fr. Nipal.
Wood close-grained, and becomes of the colour of mahogany some time after it has been cut ; layers very indistinct: used for rafters, tools, \&ec. A red dye is also prepared from it.
356 Rosa macrophylla, Lindl. fr. Gossain-Than, in the Himalaya.
357 Rottlera. Teeta-kath, N.; Labtesee, P.; fr. Nipal.
358 Rottlera (perhaps tinctoria), fr. Nipal.
Wood pale brown, compact, hard, fine-grained ; bark very thin.
359 Rottlera tinctoria, fr. Nipal.
Pruit used as a red dye.
360 Rottlera arborea, fr. Nipal.
Wood light, coarse, soft, worm-eaten : inner bark stringy.
361 Rottlera? Keoun-lae, B. fr. Tavoy.
A large tree; wood used for rudders, \&c.
362 Rottlera. Memasho, B. fr. Tavoy.
363 Rubus Gouriphul. R. ellipticus, Sm. Escallo, P.; Eesi, N.; fr. Nipal.
Common in hedges ; as thick as a stout arm ; fruit eatable.
364 Sabia parviflora. Mhasoosee, P. and N. fr. Nipal.
Bark apongy, of a yellow colour ; sometimes used for marking the forehead.
365 Salix. Bhoelasi, P. and N. fr. Nipal.
A small tree, not more than 8 or 10 inches in diameter.
366 Salix babylonica. Tissee and Bhosee, N. and P. fr. Nipal. Attains an enormous size.
367 Salix, fr. Nipal.
Saljam. See Calyptranthus.
368 Sandoricum. Thittoo, B. fr. Tavoy. Wood used for firniture.
Saora. See Trophis.
Saphed-gonos. See Rhododendron.
Saphew. See Xanthoxylon.
369 Sapindacea. Dophari, fr. Gualpara.
A small tree; used for coarse furniture.-Ham.
370 Sapotea ? Palaepean, B. fr. Tavoy.
Leaves most beautifully silky and gold colour beneath. A very large tree; wood used in building.
Saul or Sal. See Shorea.
371 Schinus Niara, Ham. Niyor, fr. Gualpara.
5 cubits in girth; a hard, close-grained rather brittle wood, with a resinous scent ; preferred by the natives to almost any other for furniture.-Ham.
372 Schoepfia fragrans, fr. Nipal.
Sp. 2 2-5 inch. diam. ; a coarse, light, soft wood.
373 Scytalia Longan, Bot. G.

374 Scytalia Litchi, Bot. G.
375 Securidaca reniformis, fr. Nipal.
Sp. a soft white wood; rays of the same colour as the fibre.
Seesaong. See Aralia.
376 Semecarpus Anacardium. Marking-nut, fr.
Wood soft, and fall of acrid juice; not used.
377 Shorea robusta. Saul or Sal.
This is the staple timber of Hindostan for building purposes: rast quantities of dammar, or resin, are eexrracted from it, as well as from Dipterocarpus and Hopea, all of which belong to one family, the Dipterocargem.
Sida. See Lagerstroemia.
Signa. See Turpinia.
Silapoma. See Myginda.
Sinna. See Budlæa.
Sissoo. See Dalbergia.
378 Smilax. Doduan, P. and N. fr. Nipal.
Sonalu. See Cassia.
379 Sonneratia ? Thaumma, B. fr. Tavoy. A small tree.
380 Sonneratia apetala, Bot. G.
Soosi-Singhali. See Quercus.
381 Sphærocaria edulis. Bun-amb, P.; Lushpoo, Ael, or Ealmarisee, N. ; fr. Nipal.

Used for posts and for fire-wood. - Sp. the wood has a handsome grain, like Sycamore, but with scarce any lustre: rays very distinct, of the same yellowish grey colour as the fibre.
382 Sphærosacme fragrans, fr. Nipal.
A coarse, rather soft, duaky-coloured wood, without lustre.
383 Spondias axillaris. Lupshe, N. fr. Nipal.
Sp. 2.8 inch. diam. ; layers about 11 ; fibre white, with considerable lustre; rays moderately distinct $;$ tubes rather large.
384 Spondias. Sillaephul, N. fr. Nipal.
385 Spondias acuminata, Bot. G.
A large tree.
386 Spondias Amara. Amra, fr. Gualpara,
Grows to a good size, but is not made use of.-Ham.
387 Sterculia ? Kuneenee, B. fr. Tavoy.
Attains an enormous size. An oil is extracted from the wood by incision, which is used for torches.
388 Sterculia. Thikadoo, fr. Tavoy.
389 Sterculia angustifolia, fr. Bot. G.
390 Sterculia. Bahelli, fr. Gualpara.
5 cubits in girth ; used for canoes.-Ham.
391 Sterculia arens. Odla or Hatchanda, fr. Gualpara.
5 cubits in girth; used for canoes. A coarse rope is made from the bark, which is used in taking wild elephants.-Ham.
392 Stravadium acutangulum. Hendol, fr. Gualpara.
3 cubits in diameter; the wood much used, but neither strong nor hand-some.-Ham.
Subuchunsee. See Rhus.
Suslendi. See Acer.
393 Syndesmis Tavoyana, Wall. Kee-tha, B.; red-wood; fr. Tavoy. A very large tree ; used in building, and for boxes, \&c.

394 Symplocos. Gooki, N. fr. Nipal.
A tall, slender tree; wood not esteemed. Most of this geanas produce a yellow dye.
395 Symplocos floribunda, fr. Nipal.
A large tree; wood fine-grained.
396 Symplocos? Kalikath, P.; Paunlah, N. ; fr. Nipal.
A large tree.-Sp. wood white, compact, of a very fine-grain, and as soft as deal; no tubes visible; rays indistinct ; bark as thin as paper.
397 Symplocos. Bulsima, fr. Nipal.
398 Symplocos? fr. Nipal.
A large tree.-Sp. 3 inch. diam. ; wood cream-brown, moderately hard.
399 Symplocos pulcherrima, fr. Nipal.
A small tree.
400 Symplocos lucida, fr. Nipal.
Sp. 3 inch. diam.; rays indistinct ; wood rather hard, very fine-grained, with little lustre.
401 Symplocos? Kain-tha-phogee, B. fr. Tavoy.
13 to 17 feet long, 6 to 12 inch. diam.; used for posts and oars; affords good but small crooked timber.
402 Symplocos. Kunneen-keunkee or Kunneen-keunla, B. fr. Tavoy, Used for beams, posts, \&c.
Taila-oon. See Carapa.
Tantheya. See Hopea.
403 Tantheya, B. fr. Tavoy.
Tapahaw. See Laurina.
404 Tanguet nee, fr. Tavoy.
6 to 8 fathoms long, 15 to 20 inch. diam. Does not saw kindly. Tauntul. See Polygonum.
405 Taxus virgata, Wall. Dheyri, P.; Lolsi, N.; fr. Nipal.
Grows to a large size : the green branches are used to adorn houses during certain festivals ; timber strong and good. -5 Sp .6 .5 inch . diam. Axis very eccentric, $5 \mid 1.5$; all the layers cannot be counted. On the wideas side of the axis are 27 layers in 0.85 inch. beginning from the axis; near the ortside are 18 layers in 0.9 inch.; wood softer, of paler colour, and less lustre than English yew.
Teak. See Tectona.
406 Tectona grandis. Teak, fr. Martaban.
Several specimens of various qualities.
Teetakuth. See Rottlera.
Tendoo. See Diospyros.
Tengan. See Hopea.
Teotosa. See Rhododendron.
407 Terminalia. Thuphanga, B. fr. Tavoy.
408 Terminalia bialata, fr. Martaban.
409 Terminalia Bellerica. Bauri, fr. Gualpara.
6 feet in girth; used for canoes : the fruit and bark used by tanners.Ham.
410 Terminalia Catappa, fr. Bot. G.
A noble and most ornamental tree: wood very good.
411 Terminalia moluccana. Joynal, fr. Gualpara.
3 cubits in girth; used in boat-building, as the timber is both light and durable.-Ham.
412 Terminalia Hilka. Hilkha, fr. Gualpara, 6 foet in girth; used for canoes and for furniture.-Ham.

413 Ternstroemia napalensis, De Cand, fr. Nipal.
Sp. 3 inch. diam. Outer layers with very distinct rays, of a reddish brown; wood soft and spongy.
414 Ternstroemia. Puzzeen-zwa, B. fr. Tavoy. A rather large tree, used for posts and rafters.
415 Tetradium ? cymosum, Wall. fr. Nipal.
416 Tetradium ? fr. Nipal.
A very large tree.
417 Tetranthera caduca. Pangch-Petiya, fr. Gualpara. 6 feet in girth; used for chests and common carpentry.-Ham.
418 Tetranthera. Haola, fr. Gualpara.
3 feet in girth; wood close and soft ; used for coarse furniture.-Ham.
419 Tetranthera Paromouja. Paromouja, fr. Gualpara.
6 feet in girth ; wood close and soft ; used for coarse furniture.-Ham.
420 Tetranthera Dorodmeda. Vagnal or Bagonal, fr. Gualpara.
3 cubits in girth; used for coarse furniture.-Ham.
421 Teutha, B. fr. Tavoy.
Thathee. See Bignonia.
422 Thauga-et-thittoo, fr. Tavoy.
3 to 5 fathoms long, 8 to 12 inches diam. An inferior wood, used in small buildings.
423 Thau-baun-po, fr. Tavoy.
5 to 8 fathoms long, 12 to 18 inches diam. An inferior light wood, uned for small canoes.
424 Thau-baun-thau-lay, fr. Tavoy.
6 to 12 fathoms long, 13 to 20 inches diam. Wood very pliant; little inferior to Hopen, but does not saw so kindly.
Thaumma See Sonneratia.
Thaun. See Eurya.
425 Theyah, fr. Tavoy.
4 to 6 fathoms long, 10 to 15 inches diam. An inferior wood, used is small buildings.
Thikadoo. See Sterculia.
Thittoo. See Sandoricum.
Thitya. See Laurus.
$\left.\begin{array}{l}\text { Thoun-ben. } \\ \text { Thoun-pine. }\end{array}\right\}$ See Artocarpus.
Thounkheea. See Pterocarpus.
426 Thounmynga, B. fr. Tavoy.
A middle-sized tree, used in house-building.
Thounsanga. See Myristica.
Thubbae. See Mimusops, Uvaria, Ficus.
Thubboobamboo. See Anacardium.
Thuggainee. See Bignonia.
Thuggoo. See Rhododendron.
427 Thunbergia coccinea, fr. Nipal.
Thaumagee. See Elæocarpus.
Thuphanga. See Terminalia.
Thuppan. See Ficus.
Thurape. See Callophyllum.
Thurratha. See Excoecaria.
428 Thymboo, B. Thau-baun-po, fr. Tavoy
5 to 10 fath. long. 15 to 20 inches diam. Good strong durable light wood; used in boat-building; does not anw kindly.

Tima. See Quercus.
Timbhus. See Xanthoxylon.
Tirbbue. See Quercus.
Tissee. See Salix.
429 Tomex, or Litsea Japonica. Uluyanhama, fr. Gualpara.
6 feet in girth ; used for small canoes.-Ham.
Toomulsee. See Premna.
Toon. See Cedrela.
430 Town-pine, fr. Tavoy.
7 to 8 fathoms long, 18 to 30 inches thick ; used in boat-building; reckoned little inferior to Hopma.
431 Trophis? aspera. Saora, fr. Gualpara.
3 cubits in girth; used for joiner's work.-Ham.
Taknee. See Polygonum.
Tukra. See Bauhinia.
Tunabeng. See Artocarpus.
Tungnusi. See Cinchona.
432 Turpinia pomifera. (Dalrymplea), Phurasee and Signa, N. fr. Nipal.
A large tree; wood of a dull grey colour, light, soft, compact, free-working, splits easily; not applied to any particular use.- - p .3 . 2 inch. diam.; rays inditinct ; tabes very small; ;bark thin, and the inner layer almost black.
433 Ulderoo, fr. Bombay.
Very litule liable to split, and therefore used for fuses for bomb-shells.
Uluyaohama. See Tomex.
434 Uncaria pilosa, fr. Nipal.
A small and imperfect specimen.
Uriam. See Andrachne.
435 Urtica. Jeonagkun, N.; Latasishnoo, P.; fr. Nipal.
436 Urtica salicifolia, fr. Nipal.
437 Urtica pulcherrima, fr. Bot. G.
438 Uvaria. Thubboo, B. fr. Tavoy.
A large tree, used in boat-building.
439 Uvaria suberosa. Bandorkola, fr. Gualpara. 3 cubits in girth; a close-grained, sof, brittle wood; used for posta, beams, and planks.-Ham.
Vagnal. See Tetranthera.
440 Vanguaria edulis. Moyen, fr. Gualpara. A small timber tree, 4 feet in girth; used for coarse furniture.-Ham.
441 Vernonia. Magor, fr. Gualpara. 3 cubits in girth; used for coarse furniture. The only one of the numerous tribe of corymbiferous plants that grows to be a timber tree.
442 Vibernum ? Loshima, N. fr. Nipal.
443 Vibernum erubescens, fr. Nipal. A small-sized tree.
444 Vibernum cordifolium, fr. the Himalaya.
445 Vitex acuminata. Angchhui, fr. Gualpara. 3 cubits in girth. A very close, hard, brittle wood; used for mortars of oil-mills, feet of bedsteads, \&c.-Ham.
446 Vitex Babula. Babla, fr. Gualpara. 3 cubits in girth ; wood close, , oft, tongh; used for coarse furniture, but in little estimation.-Ham.
447 Vitex Leucoxylon. Bhodiya, fr. Gualpara. 3 cubits in girth; used in making ploughs; will grow on land that is inundated for weeks together.-Ham.

448 Vitis or Cissus, fr. Nipal.
Sp. 4.5 inch. diam.; wood spongy aud very coarme-grained; fibre very small in proportion to the tubes, which are many and large; rays very distinct, of a reddish brown colour, forming a handsome waved figure; bark stringy.
449 Wrightia gigantea, Wall. fr. Nipal.
A large climber.-Sp. 2.5 inch. diam.; 10 layers; wood whitish, with considerable lustre ; rather soft.
450 Wrightia antidysenterica. Lathon, B. fr. Tavoy.
A small tree; not used.
451 Wrightia tinctoria. (Indigo tree.)
The leaves yield indigo. The wood is "beautifully white, close-grained, coming nearer to ivory than any other known to me." -Rawb.
452 Xanthophyllum. Saphew, B. ; Choo-muna, T. ; fr. Martaban.
Very large; wood used for posts and rafters.
453 Xanthoxylon alatum. Timbhus, P. and N. fr. Nipal.
Wood soft and open-grained, like aspen ; bark very tubercular.
454 Xylocarpus. Keannan, B. fr. Tavoy.
Timber from 10 to 20 feet long; very durable; used for furniture and in house-building.
Zeethee. See Ziziphus.
Zimboon. See Dillenia.
Zitha. See Castanea.
455 Ziziphus incurva. Harobaer, P. ; Kadabusi, N.; fr. Nipal.
Wood in considerable eatimation.-Sp. 3.5 inch. diam.; fibre brownish white, with little lustre; rays in the outer leyers distinet, but of the same colour as the fibre ; bark coarsely fibrous.
456 Ziziphus. Zeethee, B. fr. Tavoy.
Wood hard and durable.

III.-Table for ascertaining the Heights of Mountains from the Boiling Point of vater. By James Prinsep, Sec., \&c.

A correspondent has suggested to me that many readers of the Jounnal are anxious to possess a ready means of measaring heights by the temperature of boiling water, as it frequently happens that they find themselves in situations where this simple method may be applicable when it is out of their power to resort to the more generally practised operation with a barometer.

I have accordingly drawn out a table founded on the best procurable data of the present time: but it must not be concealed that sufficient accuracy has not been attained in experimental researches on steam of low temperatures to warrant implicit reliance upon the results; for although, since the important application of steam as a motive power, numerous experiments have been made to ascertain the elustic tension which it exerts at different temperatures both below and above the ordinary boiling point ; still, below 212", the points fixed by experiment are at intervals of several degrees asunder, and there is no thorougb accordance between those of different experimenters.

Perhaps it is necessary to explain, that the boiling point is that degree of heat at which the elastic force of aqueons vapour is just capable of counterpoising the pressare of the atmosphere, or the weight of the column of mercury in a barometer. The method then of discovering the law of progression of the tensions has generally had for its basis the exposure to heat of a portion of water in a closed vessel, such as a glass tube or a small boiler, under the pressure of a column of mercary, measuring the height to which the latter is raised at different temperatures.

Betancourt, Schmidt, Dalton, Watt, Creighton, Southirn, Taylor, and more recently Ure, Arrberger, Preking, and Dulong (assisted by a commission of the French Academie), are some of the illustrious names which are connected with these researches experimentally; while Robison, Young, Ivory, Laplace, Prony, Trrdgold, Cosiolis, Lazoche and others have attempted to construct mathematical formulæ, capable of embracing the range of their experiments from the freezing point up to 500° Farh.* It is quite unnecessary for me to enter into any lengthened history of this branch of physics, which the reader will find ably discussed in Robison's Mech. Phil., Biot, Tredgold on the Steam Engine, Daniell's Meteorology, and in the report of Dulone to the Academie on the experiments made by order of the French Government to determine the elastic force of aqueous vapour at high temperatures. [An. Chim. xliii.]

All the experiments agree in proving the elastic force of steam to follow a geometrical ratio with arithmetical increments of heat. The index of the power representing the law of variation was assumed as 5.13 by Southirn, 6 by Crilarton, 7 by Youna, by Coriolib 5,355, and by Dilong 5. But the formula of Tabdeold is acknowledged to agree more closely with experiments below 300° than any other :-his exponent is also .6 , with a different co-efficient ; if $f=$ elastic force, and t temperature, then by his formula

$$
f=\left(\frac{t+100}{177}\right)^{0} ; \text { or } t=177 f t-100
$$

in logarithms

$$
\log . f=6(\log .(t+100)-2.247968)
$$

- The experiments of the French Academicians Baron de Prony, Arago, Gerard asd Dulong, in 1829, extend to the temperature of 435° Fahreuheit, or a presaure of 24 atmospheres, which they measured by absolute pressure of a column of mercury eiaty feet kigh in a glass tube attached to the tower of the Old Charch of Sainte Go-mevifre:-they were afraid of passing this limit, as the least explosion would have brought down the tottering fabric. Their glass tube was jointed and ingeniously sapported: Mr. Daniell has however since worked with single glass tubes of 40 feet loag, in his water barometer experiments. We deal now-a-days boldly with feet, where inches were formerly thought sufficient!

With this formula I had constructed a table from 214° to 180°, when I perceived that the calculated pressures gradually gained upon the experimental ones within the same range, until at 180°, the difference wal a full third of an inch. This will be seen in the diagram of Plate VIII, and in the following comparative table:

Temperature	Calculated Tepsion by Tredgold's formula	Observed Tension	Differences	Obeerver
212	$\begin{aligned} & \text { in. } \\ & 30.00 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & \mathbf{3 0 . 0 0} \end{aligned}$		assumed
210	28.86	28.88	$+.02$	Ure
210	28.86	28.82	-. 04	Robison
202	24.68 :	24.37	-. 31	Wollaston
200.75	24.07	24,00	-. 07	Dalton
200	23.71	23.60	-. 11	Ure
200	23.71	22.86	-. 85	Robison
190	19.35	19.00	-. 35	Ure
189.5	19.15	18.80	-. 35	Dalton
182	16.35	16.01	-. 34	Southern
180	15.67	15.16	-. 51	Ure
180	15.67	14.73 ?	-. 94	Watt
178.25	15.10	14.60	-. 50	Dalton
173	13.46	13.18	-. 28	Dalton
172	13.17	12.72	-. 45	Southern

Robison's numbers are much too low : the others, Dalron's, SouthsRn's, and Ure's, agree pretty well together, gradually separating from the curve of Tredgold's formula. On the supposition that the experimental results, when they evince so much regularity, are more trustworthy than the calculus, (which is indeed empirically formed to suit them), I have made a deduction of [0.01 inch \times number of degrees below 212], from the numbers in Tredgold's column, and then I find that the experimental and theoretical carves coincide very well throughout the range required for our purpose.

The extreme difference at 180° will thus amount to inches.
\log. of $\ldots \ldots \ldots \ldots \ldots \ldots .15,67=1.19511$
\log. of $\ldots \ldots \ldots \ldots \ldots .15,31=\frac{1.18611}{.00900}$
$=90$ fathoms or 540 feet, a quantity of too much magnitude to be passed over.

Having thus explained the construction of the following Table, I will proceed to make a few remarks on the mode of using the instrument to which it applies.

The Rev. F. J. H. Wollaston was the first to introduce the thermometer practically as a substitute for the berometer in measuring heights. His plan was merely to render the thermometer more delicate by increasing the bulb, and allowing the mercary to enter the capillary tube only when it approached the boiling point, so that a few degrees occupied the whole scale, and by a sliding nonius each degree could be divided into 200 parts or more. But it is evident that to compete with the barometer in accuracy of indications, the scale must have a range of the same length as that of the barometer,-say 15 inches, and the instrument would thus become fragile and unwieldy: to obviate this inconvenience, he formed a reservoir above the capillary tube, containing a small supply of mercury, so that when the boiling temperature should be so reduced as to bring the reading point to the foot of his 6 -inch scale, a portion of mercury was to be added to bring it to the top of the scale, by an operation so delicate and difficult that I may safely say, and from experience too, that few travellers would resort to it in the field, and fewer still succeed if they attempted it. In 1817, he exhibited his thermometer to the Royal Society, and in 1820, he applied it to the measurement of Snowdon. On the latter occasion, he drew up a table of the value of the degrees between 214° and 202° in feet, founded on Doctor Urb's empirical formula of tensions; but, as this range only extends to an altitude of 5405 feet, it is evidently quite insufficient for the traveller in India, who may ascend to 18,000 feet and still see Snowdons towering above his head.
The error into which Wollaston fell was an attempt at too great sensibility. His instrument is beautiful in a laboratory, where it will serve to shew minute variations in the index error, as it may be called, of a barometer in the coarse of years, as I have frequently proved. But for rough work out of doors, accuracy must in some measure be sacrificed to strength and portability, the points in which alone the thermometer can boast superiority over the barometer. Captain Hrrbert was so well aware of this, that he had provided himself from England with ordinary thermometers divided, from 180° upwards, to the tenths of degrees: half a division thus represented about 25 feet, which in most cases was ample, especially when the zero of elevation, or level of the sea, was 1000 miles distant.

All who possess thermometers, therefore, divided to tenths of inches, may convert them into measurers of height, by attending only to a few trifling precautions in their use.

1. The prime boiling point 212° should be accurately verified by comparison with a grod barometer, for the divisions of the instrumentmakers are by no means to be trusted within the requisite limits. Thus,
on some standard thermometers in the Sarveyor General's office, in our experiments on the standard bar, we found the boiling point erroneoss two degrees: and Lieut. Buanrs found his thermometer boil on the Caspian Sea at 21301 which would make its sarface 700 feet below the level of the Mediterranean, whereas it is only suspected of half that depression.
2. The metal or wooden scale should be cat off at some height above the bulb, as otherwise it is very difficult to obtain the temperature correctly, or even to attain full ebullition, on account of the rapid abstraction of heat by the scale, particularly if it be of metal.
3. The vessel in which the water is boiled should be of mettal, closed loosely with a cover or cork through which the thermometer may pass, so that the bulb may remain a trifle above the surface of the water. To those who cannot provide themselves with a boiler similer to that of Wollaston, a shaving pot will be found to answer sufficiently well. The steam should issue freely through the vent for some time before the reading is taken.
A word or two, now, on the mode of applying the following table to the calculation of the height required.
4. When the thermometer has been boiled at the foot and at the summit of a mountain, nothing more is necessary than to deduct the number in the column of feet opposite the boiling point below, from the same of the boiling point above:-this gives an approximate height, to be multiplied by the number opposite the mean temperature of the air in Table II. for the correct altitude.

Temperature of air, above, 35°

$$
\text { below, } 50
$$

$$
\text { Mean } \overline{42,5}=\text { multiplier, }
$$

Correct altitade,ft. $\mathbf{5 8 6 5 . 5}$
2. When the boiling point at the upper station alone is observed, and for the lower the level of the sea or the register of a distant barometer is taken, then the barometrical reading had better be converted into feet by the usual method of substracting its logarithm from 1,47712 (log. of 30 inches) and multiplying by .0006, as the differences in the colamn of " barometer" vary more rapidly than thomein the "feet" column.

$$
\begin{aligned}
& \text { feet. } \\
& \text { Example. Boiling point at upper station } 185^{\circ}=14548 \\
& \text { Barom. at Calcutta (at } \mathbf{3 2}^{\circ} \text {) } 29.75 \\
& \text { Logar. diff. }=1.47712-1.47349=, 00363 \times .0006=218 \\
& \text { Approximate height } 14330 \\
& \left.\begin{array}{r}
\text { Temperature, upper station, } 7^{\circ} 6 \\
\text { Calcutta, .. } 84
\end{array}\right\} \mathbf{8 0}=\begin{array}{r}
\text { Approximate height } 14330 \\
\text { multiplier } \ldots \ldots . . \\
1.100
\end{array} \\
& \text { Correct altitude, ft. } 15763
\end{aligned}
$$

3. Assuming 30.00 inches as the average height of the barometer at the level of the sea (which is however too much), the altitude of the upper station is at once obtained by inspection of table I, correcting for temperature of the stratum of air traversed, by table II.
Table I.-To find the Barometrical Pressure and Elevation corresponding to axy observed temperature of boiling water between 214° and 180°.

Boiling point of witur.	Barometer (mo dified from Tredgold's formule.)	Logarithmic dif ferences (or fa thoms).	Total Altitude from 30.00 in. or the level of the See.	Value of sact degree in feet of Alutude.	Proportional part for one-tenth or a degree.
214	mecheen 31.19		foet. -1013	feet.	foet.
213	31.19 30.59	. 00 84,3	1013	-505	
212	30.00	84,5	0	-507	
211	29.42	84,9	+ 509	+509	
210	28.85	85,2	1021	511	51
209	-28.29	85,5	1534	513	
208	27.73	85,8	2049	515	
207	- 27.18	86,2	2566	517	
206	26.64	86,6	3085	519	52
205	26.11	87,1	3607	522	
204	25.59	87,5	4131	524	
203 -	25.08	87,8	4657.	526	
202	24.58	88,1	5185	528	53
201	24.08	88,5	5716	531	53
200	23.59	88,3	6250	533	
199	23.11	89,3 897	6786	536	
198	22.64	89,7 $\mathbf{9 0 , 1}$	7324	538 -	
197	22.17	$\mathbf{9 0 , 1}$ $\mathbf{9 0 , 5}$	7864	541	54
196	21.71	90,5 $\mathbf{9 1 , 0}$	8407	543 546	
195	21.26	91,4	8953	546	
194	20.82	91,4	9502	548	55
193	20.39	91,8 92,2	10053	551	55
192	19.96	92,2 926	10606	553	
191	19.54	92,6 930	11161	556	
190	19.13	93,	11719	558	
189	18.72	93,4	12280	560	56
188	18.32	93,8	12843	563	
187	17.93	94,2	13408	565	
186	17.54	94,8	13977	569	57
185	17.16	95,3	14548	572	
184	16.79	95,9	15124	575	
183	16.42	+96,4	15702	578	58
182	16.06	< 396,9	16284	581	
181	16.70	2 $\therefore \quad 97,4$ 979	16868	584	
180	15.35	97,9	17455	587	59

Table II, of Multipliers to correct the approximated Height for the Temperature of the Air.

Temp. of Air.	Multiplier.	Temp. of Air.	Multiplier.	Temp. of Air.	Multiplier.
-		\checkmark		-	
32	1,000	52	1,042	72	1,083
33	1,002	53	1,044	73	1,085
34	1,004	54	1,046	74	1,087
35	1,006	55	1,048	75	1,089
36	1,008	56	1,050	76	1,091
37	1,010	57	1,052	77	1,094
38	1,012	58	1,054	78	1,096
39	1,015	59	1,056	79	1,098
40	1,017	60	1,058	80	1,100
41	1,019	61	1,060	81	1,102
42	1,021	62	1,062	82	1,104
43	1,023	63	1,064	83	1,106
44	1,025	64	1,066	84	1,108
45	1,027	65	1,069	85	1,110
46	1,029	66	1,071	86	1,112
47	1,031	67	1,073	87	1,114
48	1,0.33	68	1,075	88	1,116
49	1,035	69	1,077	99	1,118
50	1,037	70	1,079	90	1,121
51	1,039	71	1,081	91	1,123

Enter with the mean temperature of the stratum of air traversed; and multiply the approximate height by the number opposite, for the true altitude.

The table of Tensions (tab. I.) is still avowedly imperfect. We see that the force of vapour for 210°, as found by observation, differs several hundredths of an inch from the formula of either Dalion, Ure, or Tredoold, although only two degrees distant from the fixed point 212°. Nor can it surprise usto find it so, because its experimental determination, by heating vapour inclosed within the thick glass of a barometer tube, is necessarily subject to much more uncertainty than the obvious measurement of the boiling point, under a given pressure of the air. On the mountains of India, at Simla, Súbathú, Chirra Púnji, and even Spitf, wherever in short there may be observers in possession of good barometers, the power exists of rendering an essential service to physics by fixing so many points on the scale of tensions, in the latter more unexceptionable manner. For instance, an observer at Chirra, by carefully noting the heat of his boiling tea-kettle every morning, and inserting it in his register, together with the accurate height of the barometer, would determine that part of the thermometric scale corresponding to 25 and 26 inches of pressure. So with observations at Ságar, for 28 inches; at the Nilgherries for 21 inches; and in the Himalaya for even 15 inches : and I hope that this notice may have the effect of inducing this new and interesting species of synthetical research, as a check apon the scales framed on an opposite system in the laboratory.

IV.-Translation of a Tibetan Passport, dated A. D. 1688. By M. Alex. Csoma de Körös.

[Read 24th April, 1833.]
In Hyde's Historia Religionis Veterwm Persarum (2nd edítion, page 552-3), there is an engraving of a passport granted by the governor (or grand Lama) of Lassa, to an Armenian, of which, at the time of its publication, no European was able to decypher the characters. The learned author's account of it is in the following words :
"Secund̀ damus Scripturam Tatarorum de Boutan" (al. Boutunt) citra Imaum supra lediam. Hujus lectio est 乞 dextrat : et hocce ejusdem elegantissimum specimen est, id quod valgo sonat, wn passport, seu salviconductus literæe, a principe urbis et provinciso de Boutan dates, nuperis annis, Chogja Owanni (i. e. Domino Joanni) mercatori Armeno ibidem negotianti : et dictus princeps nomen suum (ut vides) sigilli loco et forma majusculis et implicatis characteribus infra apposuit. Talin aigilli impressio arabibus dicitur توقيع taukta; Persis et Turcis 1 bic togra, mede, apad eoa, talis majnsculorum characterum scriptor, aut talis sigilli factor, vel appositor seu principis subsignator, vocatur Togrât. Hanc chartam nobiscum communicarit singularis amicus D. Joh. Evans S. T. D. nuperis annis ex India redux."

The character of this curious manuscript proves to be the small ranning-hand of the Tibetans, written and engraved with hardly a single error. The following is a version of it in Roman characters, which may be interesting to those who possess Hyde's very learned volume.

Chhoenkhor dPal-gyi Lha-sa nas.—rGya-gar Aphags-yul bar-gyi Sa-lam-du althod-pahi Ser, skya, drag, zhan, Lhahi mi-rje rdsong bsdod gnyer las-hdsin, Sog, Bod, Hor, kBrog, ir-hchhihi hgrul hgrims, lam hphrangs bsrung bkag, rgan mi canage bye-va zhi drag-gis sné slébs bchas mthah dag-la springs -pa.-Lha-sa P'han-ts'hoge lchangelo-chan-gyi hgron-po mGo-dkari It'hang-na-chan mi bshi zhon khal behn-drug bchas nye-khohi ts'hong gyur grubs-nas rang yul-du log Agro-var stahur-gyi (? Lhabur-gyi) mits'hon gang spyihi par rog nyan-du gang hgro-las ané gor Ap'hrog bchom sogs gnod hgol-du log-par hgro-va nyan ma byedper phar phyir-du bde-var hgrims-chbug.-Zhes sa-hbrug zla ts'hes-la lugs gnyia kyi mian-sa Chhos-kkhor chhen-po dPal-gyi Lha-sa nas bris.

- Boutan, though applied by Europeans and Mohammudans to Tibet generally, is properily the name of one of the sonthern provinces, called in Tibetan Llopato: Lhasea is the capital of Tibet Proper or U-tsang. [See Journ. As. Soc. i. 123.]
+ This is of course a mistake : the Tibetan reads like the Sanskrit from the left hand.
\$ The name mGo-dkar (properly white-headed, but rendered by me, above, by Mohammedans) formerly was applied in Tibet both to the Muhammedans of India and to the Europeans. But of late the Tibetans have commenced calling the Europeans by the name of Philing-pa, and an European of British India by that of rGye-Philing (-pa) or Indo-European.

Bod-pahi zla hdres med-ching lo-thog mi-khal-syi hechri agrab des hgre byang phyin bdé-var hgrims chhug.

Translation.

"From the noble (city) Lhassa, the circumambulating race of religion.-To those that are on the road as far as Arya Désa or India, to clerical, laical, noble, ignoble lords (or masters) of men; to residents in forts, stewards, managers of affairs, to Mongols, Tibetans, Turks, and to dwellers in tents in the desert; to ex-chis (or el-chis, envoys, or public messengers, vakils or ambassadors, \&c.) going to and fro; to keepers and precluders of bye-ways (or short-cuts); to the old (or head) men, collectively, charged to perform some business of small or great importance; to all these is ordered (or is made known). These four foreign (or travelling) persons residing at Lhasea, lchang-lo-chan, Mohammedans of It'hang-na, after having exchanged their merchandize, going back to their own country, having with them sirteen loads on beasts; having nothing for their defence except some Lahori-weapons,-do not hinder, rob, plunder, et cetera, them; but let them go to and fro in peace.

Thus has been written from the noble Lhassa, the great religions race, from the senate-house of both ecclesiastical and civil affairs, in Sa-hbrug* (in the year of T. ch. 1688). On the day of the month. (These dates are wanting).

Note.-There is no Tibetan joined with them. They have about a man's load of victuals wrapped up in a bundle; with that there has been made an increase (of packages), but let them go in peace."

[^34]
V.-Proceedings of the Asiatic Society.
 Wedresday Evening, 24th April, 1833.

The Honorable Sir Edward Ryan, President, in the Chair.
The minutes of the last meeting were read.
Mr. B. H. Hodgson, Resident at the Nipalese Court, the Rev. Josiah Bateman, and Mr. D. Macfarlan, were elected Members.

Read a letter from the Secretary to the Right Hon'ble Sir R.W. Horton, Governor of Ceylon, expressing acknowledgments for his Excellency's election as an Honorary Member, and presenting a copy of the Ceylon Almanac for 1833, containing much unpublished information on the history of Ceylon.

Read a letter from the President of the Central Committee of the Geographical Society of Paris, acknowledging receipt of the $6,7,8,18,18,14$, 15, and 16 volumes of the Researches.

Read a letter from J. Forshall, Esq. Secretary to the British Museum, acknowledging the receipt of the Journal As. Soc. 1838.

Read a letter from Col. Wm. Casement, Secretary to Government, Mili. tary Department, forwarding on the part of the Madras Government :
" Results of the Astronomical Observations made at the Madras Observatory, vol. 1st, 1831, by T. G. Taylor, Esq. H. C. Astronomer."

The following books were presented by the Venerable Archdeacon Corrie; on the part of the Rev. Joseph Wolff.

1. Armenian Calendar, printed at Constantinople in the Armenian Era 1151 or A. D. 1702 .

Mr. J. Avdall pointed out the following historical memorandum written on the cover of this work in Armenian, probably at Cabul.
" In the year 1824, on the 23rd July, Habib Ullah Khan was conquered by Dost Mohammed Khan."
2. Devotional Meditations, written by St. Gregory Narekenses, in the beginning of the 11 th century, and published at Constantinople in 1185, Armenian Era, or A. D. 1736.
3. Tawárikh Khán Jahání o Makhzaní Afgháné, 1st vol.
4. Táríh Akberí.
5. Shojráwalosat Afghání o Faris.
6. Qorán Sherff.

The following books were presented by Monsieur Murelatour, their author.

1. Premier fruit des trois jours de Gloire, Paris 1831.
2. Le Siege D'Eden Allegorie Orientale, Paris 1827.
3. Triomphe de L'Amour sur le Fanatisme et le Materialisme, Paris 1828.

The following book was presented by the author.
Raseclas, translated into Bengalee, by Maha Raja Kalikishen Bahadur.
Mr. Ceoma de Körös presented a Catalogue of the Tibetan Books in the Society's Library, with a recommendation that the numerous duplicates and extra copies of several of them should be presented to learned Societies in Europe*.

[^35]
Antiquiliee.

Read a letter from W. Storm, Esq. presenting for deposit in the cabinet, the three coins exhibited to the Society on the Sth September, 1892.
These coins were found in estate No. 100 (No. 74 of Captain Prinsep's Soondurbun Map), west of the ruins of Bishenpur, on the Ishamati or Jabuna river, near an old temple called Mot Búré.
The Secretary noticed a simple method employed by the natives in taking off faosimiles of coins on paper : they daab a little printer's or pakka ink on the projecting parts of the coin, and then transfer it by pressure on to the fleshy part of the thumb -thence a faithful representation is impressed upon the paper, previousty wetted, which has the advantage of not being reversed.

Four silver coins found at Agra, 1 of Akber, 2 of Jehangir, amd 1 of Alamgír II-presented by Capt. J. T. Boilecru, Engineers.

Literary.

Translation of a Tibetan Passpert, engraved in Hyde's Rodigio Peraaruen. By M. A. Csoma de Körös.
[This will be found in the present number, p. 201.]
Selections from Mr. Csoma's translations from the bStan-hgyur were also read-among them, the letter of Ratnavali, a young Princess of Ceylon, to Smarya, and the reply of the sage. This letter is generally known is Tibet, and is introduced in every collection of epistolary forms.
[The want of Tibetan type obliges us to defer the insertion of this carious morçeau, which however is but a literal translation from the Sanakrit.]

Physical.

A gigantic specimen of Fossil Ammonite, from the Carboniferous Lime stone of Swansea, was presented by Lieut. J. A. Crommelin, Engineers.

Read a letter from Lieut. J. T. Smith, Masulipatam, forwarding the Gealogical specimens of the late Dr. Voysey, alluded to at the last meeting; also the following mentioned in Dr. Malcolmson's letter.

1. Fragment of the Meteorolite, which fell in the Cadapah district and January, 1831*.
2. Fossil Shell and Bone, noticed at the meeting of the 20th February.
3. Limestone from Warapilly, which seems well adapted for Lithographic purposes.
4. Fragment of Bone, from a Cave in the neighbourhood of Hyderabad, explored by Dr. Malcolmson, who gives the following deecription of it.
"Some interesting facts occurred to me the other morning in a ride to a large mass of granite rock near this, which is rent into fissures of great depth, forming dens inhabited by hysenas and chltat, extending through the bottom of the littie hill to unknown depths. Having entered one of the rents, I was struck with the masses of fallen rock on each side being corered with stalagmite formed from the water running down from the sides of the rent 40 feet above, and still more by obecrring that the sides of the narrow passage bore a fine polish, which my companion immediately exclaimed, must be caused by the animals passing out of a cave at the ead of the fissure he had been examining. I had the same thing in view, and was at the time observing bow far it could be caused by the water. In tracing the same appearance in other places, it was only observed where the amimale would necesse-

[^36]rily pass, and, when the stones projectod by a sharp point into the path, the angles onty were polished. The den was low, and numerous bones lay scattered in the outer parts into which I crawled: the foot marks of the animals were distinct and fresh. Most of the bones were much broken, and the dung of the hymenas near the place were full of large pieces of ribs, unbroken tarsal bomes, \&ce. During the search, I was astonished at the vast numbers of rats' heads and bones found in the place in little heaps, evidently out of reach of the hysenas, and often on the top of insulated blocks; these were below the fissures open at the top, and the dung of hawks readily suggested that they were dropped by these birds, which was confirmed by a large feather of one found with the bones. Some of the bones were surrounded with the fur of the animal, and had been only recently voided; and what was remarkable, the upper and lower jaw were not separated, but the flesh beantifully cleaned away by the digestive process; the other bones were entire, although disunited. In the larger skulls, the back part had been broken, and in one only, crushed. In a few minutes, I removed a plate full of skulls and other bones, amongst which are three species of mus, squirrel, sorex, bats, and birds. Had the rock been of lime and stone, fossil animal remains would have been found. The curious confirmation of Buckland's supposition regarding the polished blocks in the caves appears to me very interesting, as his views stood much in need of illustration from the habits of living species."

Specimens of Fossil Shells from Jabulpúr-presented by Dr. Spilsbury.
"The locality of the fossil shells, which I have at length the pleasure to send to the Society, lies about 18 or 20 miles east of Jabalpar. The first three miles cross a sandy plain, which abruptly terminates at a small rivulet; when the soil changes to the black allurial one of the valley. At six miles cross the Gour river, a rough ghat of trap: the road winds on between trap hills varying from 50 to 300 feet high. I encamped at Suleya on the same river (here 200 feet broad) : the bed intersected with veins of heliotrope, quartz, massive and crystallized. The road then led through an undulating country, with irregular masses of trap, and for less than a mile beyond, masses of the accompanying shell breecia, from a single shell to large blocks of two feet, extend, mixed with the trap, over a space about 300 feet square. The spot had been under tillee cultivation. There was no nadd or ravine near, whence I could judge of the nature of the substrata, but at no great distance I could see the trap appearing precisely as in the bed of the river. I asked the lime-burner how he came to discover them? His account was, that he is in the habit of taking amall quantities of lime to the neighbouring villages for sale, and in his travels has an eye to the geological features of the country as far as limestone is concerned:passing this field some nine or ten months ago he was struck with the very different appearance and color of the stones,-and hence the discovery of these fossil shells."

The matrix of these shells appears to be indurated clay, and the forms of the shells are in most cases replaced with silicious matter; they resemble, as Dr. Spilrbury suggests, the buccinum and other shells in the Gawelgir range of hills deacribed by Voyzéy, (Gleaninas, vol. i. p. 356*.)

Some specimens of Minerals from Manipur, Kachár, Kabú, and Assam, including fossil wood from the Ningti river-presentod by Captain R. B. Pemberton.

- We hope ere long to present our readers with drawings of these shells-ED.
VI.-Miscellaneows.
1.-Indian Metrozology.
1.-Meteorological Register kept at Bijnore, (Northern Moradabad) by
E. J. Ravenshaw, Eseq,

	At 10 a. m.		At 4 P. M.		Remarke.
	Bar.	Ther.	Bar.	Ther.	
July 21	28,86	86	28,77 28,75	87	Rain in the morning.
23	28,85	88	28,76 $\mathbf{2 8 , 7 5}$	87	Fair all day.
24	28,83	88	28,75	83	Rain in the morning and more or leas all day.
25	28,90	88	28,75	85	Fair all day.
26	23,83	83	28,75	86	Rain in the morning ; fair after 11 ocelock.
27	28,78	85	28,74	84	Wind and rain at noon.
28	28,76	86	28,74	37	High wind at 10 ; clondy; all day rain
29	28,75	86	28,73	88	Cloudy ; all day rain.
30	28,79	86	28,73	88	Clondy; all day rain.
31	28,76	87	28,74	87	Ditto.
Aug. 1	28,84	88	28,74	84	Rain ; in morning clear.
- 2	28,79	85	28,74	87	Fair all day.
3	28,78	85	28,75	88	Slight rain at 10 ; clear afterwards.
4	28,86	84	28,80	85	Clear at 10; rain morning.
5	28,86	85	28,76	84	Heary rain at I P. m.
7	28,83	85	28,76	85	Clear all day till 4 P. M. slight rain
8	$\mathbf{2 8 , 8 2}$ $\mathbf{2 8 , 9 0}$	84	28,74 $\mathbf{2 8 , 8 3}$	85 841	Cloudy.
8	28,90	82	28,83	84	Thunder storm and very heavy rain in the morning ; clear after 10 A. M.
9	28,95	821	28,85	841	Fair all day, with clouds.
10	28,96	83	28,85	861	Fair all day, ditto.
11	28,92	84	28,83	86	Ditto.
12	28,85	83.	28,75	85	Ditto.
13	28,80	82	28,80	843	Light rain in the morning ; fair all day.
14	28,86	81	28,80	84	Fair all day, with clouds.
15			28,80	83	Ditto.
16	28,90	821	28,80	84	Ditto.
17	28,86	84	28,80	87	Ditto.
18	28,88	851			Very clondy in afternoon.
19		$\ddot{8}$	28,76	86	Fair, with clouds and distant clowdo.
20	28,85	88	28,76	84	Fair, with clouds.
21	28,93	81	28,84	81	Heavy rain at night, and in morning.
22	28,90	81	28,80	84	Pair, with clouds.
23	28,86	84	25,77	86	Ditto.
24	28,90	82	28,86	88	Ditto; west wind.
26	28,80	83	28,76	86	Ditto.
27	28,90	82	28,87	80	Rain at night and afternoon.
28	28,96	801	28,88	83	Rain in morning ; fair afternoon
29	28,94	82	28,84	86	Fair.
30 31	28,89	821	28,80	86	Strong westerly wind; fair.
31	28,86	88		\because	Ditto.
Sept. 1	28,92	83	28,84	86	Ditto.
- 2	28,97	85	28,87	87	Ditto.
3	28,96	86	28,92	87	Wind and rain in the afternoom.
4	28,99	85	28,89	87	Fair.
5	28,93	85	28,85	87	Ditto.
6	28,92	84	28,83	86	Ditto.
7			28,78	88	Ditto.
8	28,90	83	28,82	84	Ditto.
9	28,90	83	28,80	86	Ditto.
10	28,91	83	28,84	86	Ditto.
11			28,90	841	Ditto.
12	$\mathbf{2 8 , 9 9}$ $\mathbf{2 9 , 0 0}$	8831	$\dot{\mathbf{8}, \mathbf{9 8}}$	88	Ditta.

Meteerological Regiotor kept at Bïnore, (Northern Moradabad,) by E. J. Ravenshaw, Esq. (continwed.)

	At 10 A. x .		At 4 P. x .		Remarks.
	Bar.	Ther.	Bar.	Ther.	
Eept 14	29,00	${ }_{83}^{83}$	28,96	87	Strong weat wind in the morning.
15	29,03 29,04	${ }_{80}^{88}$	28,97 28,96	$\begin{aligned} & 87 \\ & 87 \end{aligned}$	Ditto west wind ; fair. Ditto; ditto; clond of locusta.
17	28,96	831	28,88	87	Ditto.
18	28,96	84	28,90	86	Fair.
19	29,07	84	29,03	86	Ditto.
90	29,13 29	${ }_{79}^{88}$	29,05	88	Ditto.
92	29,03 29.10	${ }_{89} \mathbf{8 9}$	29,00	$\ddot{81}$	Ditto.
24	29,10	${ }^{79} 1$	29,00	82	
25	29,10	80	29,00	82	Rain about 1 p. M. ; clondy evening
98	29,10	79	29,04	82	Fair.
27	29,12	79	29,06	${ }_{83}^{82}$	Ditto.
29	29,23	801	29,15	83	Ditto.
Oet ${ }^{30}$	29,18	81			
Oct. 1	29,16 29,15	82 79	29,10 29,9	811	Cloudy with rain. Clonda
8	29,16	81	29,9	84	Fair.
4	29,20	80	29,9	83	Ditto.
5	29,21	79	29,10	84	Ditto.
6	29,20	81	29.6	83	Ditto.
7	29,10	82	28,98	84	Ditto.
8	29,00	79	28,97	85	Ditto ; high wind, w.
10	29.05	80	28,99	85	Ditto; ditto.
11	29,10	78	29,03	84	Ditto; ditto.
118	29,10 29,15	76 77	29,03	82	Ditto. ${ }_{\text {High }}$ easterly wind.
13	29,23	77	29,17	81	Fair ; no wind.
14	29,23	71	29,19	80	Ditto.
15	29,25	76	29,20	801	Ditto.
17	29,30	75	29,20	80	Ditto; W. breese.
17	29,34	731 74	29,23 29,20	78	
19	90,27	72	\ldots	.	
90	29,28	72			
21	99,26	73	29,19	71	
88	29,24	${ }_{73} 1$	29,18	78	
93	29,16	73	\cdots	\cdots	
25			29,12	76	
98	29,24	72	29,20	71	
${ }^{28}$	29,31	$\ddot{41}$	29,23	71 76	
29	29,36	75	
30	29,85	74	.	..	
Nor. 1	29,24	74	\because	\cdots	High easterly wind ; clouds.
Nov. 8	29,28	74	29,15	$\ddot{7}$	Ditto.
8	29,23	78	29,15	${ }_{75}^{77}$	Ditto.
4	29,24	73	29,16	${ }_{75}^{75}$	Ditto.
6	29,34	7i	29,30	74	- ${ }^{\circ}$
19			29,20	76	Rain in the evening.
19	$\begin{aligned} & 29,87 \\ & 20,33 \end{aligned}$	70	\because	\cdots	
9	29,30	68	\because	\because	
29	29,82 9983	60 70	\because	\because	Clondy ; wind easterly ; light rain.

N. B. Pever and ague provalent from the beginning of September to end of October.

2-Meteorological Register kept at Mocufferpior, Tirhoot, by T. Dashsoeod, Keq

	Barometer.		Ther. in doors.		Ther. out of doors.		Wind.	Weather.
	9,A.m	$4 \mathrm{LP}, \mathrm{M}$.	91..	4.pm	Mx.	Min		
Dec.	29,76		69		78,5	60	E.	Clear, but fogsy morning.
2	,71	29,67	69	73	79	57	\mathbf{W}.	Clear, ditto.
3	, 74	,67	67	71	78	60	E.	Clear ; thick foga.
4	, 88	, 68	${ }_{67}^{68}$	71	${ }_{73}^{75}$	59	$\underset{\mathbf{W}}{\mathbf{W}}$.	Clear, but drisaling rain in the merning.
5	,78	,70	67	68	${ }_{73}^{73,5}$	57	W.	Clear all day.
7	,78	,69	66	68	74	58	W.	Clear, with light clonds in the afternoon.
8	,72	, 67	66	68	74	59	W.	Fair, with light foating clouds.
9	,77	, 70	66	69	75	61	N. W.	Light floating cloads all day.
10	,77	,69	66	67	71,5	61	N. W.	Clondy all day.
11	,77	, 70	66	66	67,5	56	$\stackrel{\mathrm{E}}{\mathbf{W}}$	Rainy morning, fog ; but clear evening.
12	,75	, 68	64	65	${ }_{67,5}$	${ }^{53}$	\mathbf{W}.	Thick fog; clear evening,with high wind
13	,72	, 70	62	62	${ }_{67}^{66}$	47	\mathbf{W}.	Clear, with morning fog.
14	,75	,66	61	63	${ }^{67}$	53	E.	Fog, and clear day.
15	,71	,65	61	64	70	53	E.	Fog, but fine day.
16	,76	, 66	60	${ }^{66}$	72,5	55	E.	Clear.
17	,80	, 70	63	65	73,5	55	E.	Clear.
18	,78	, 67	62	65	70	52	\mathbf{W}.	Clear.
19	,68	,64	61	63	68	50	\mathbf{W}.	Clear.
20	,76	, 66	60	63	68	47	W.	Clear.
21	,73	,66	59	62	${ }^{67}$	49	\mathbf{W}.	Clear.
22	, 70	, 61	60	63	${ }_{70}^{68}$	52	W.	Clear, but morning fog.
${ }_{24}^{23}$, 61	, 69	60	${ }_{63}^{63}$	$7{ }_{71}^{70}$	49	W.	Clear.
24	${ }^{, 66}$, 60	${ }_{60}^{60}$	${ }_{64}^{63}$	73	4	$\underset{\mathbf{W}}{\mathbf{W}}$.	Clear.
26	,70	,66	59	62	66	45	\mathbf{W}.	Clear.
27	,76	,68	57	61	66	48	W.	Clear.
28	,79	, 70	58	61	67	47	W.	Clear.
29	,77	, 79	58	61	${ }_{6}^{67,5}$	45,5	\mathbf{W}.	Clear.
30	,79	, 78	57	60	65	42	W.	Clear.
8]	, 87	,78	54	59	62	41	W.	Clear.
1	29,96	23,86	55	57	62,5	43	W.	Clear ; fine frosty.
2	,92	,80	55	58	64	45	\mathbf{W}.	Clear ; frosty.
3	,87	,74	55	58	66,5	50	\mathbf{W}.	Clear; light clonde.
5	,86	,73	56	60	66,5	48	E.	Rainy morning, and cloady afternoon.
5	, 81			6	71	49 53	${ }_{\text {E }}$	Fine, with light clonds.
7	',90	, 77	60	63	72	53	E.	Fog, and clear day, and woat
8	,79	, 71	60	61	70	49	\mathbf{W}.	Clear.
9	,81	,71	60	61,5	69	52	\mathbf{W}.	Clear.
10	,85	\cdots	59,5		70	54	E.	Clear.
11	,80	, 69	61	65	71	54	W.	Clear.
12	,66	,60	61	65	${ }_{73}^{73}$	53	W.	Clear.
13	,70	, 60	61	65	73	55	E.	Fine, with light clouds.
14	,68	, 60	62	65	73	51	W.	Clear, and strong west wind
15	,79	,70	60	62	68	51	W.	Rain, and clondy.
16	, 66	, 61	60		${ }_{67}^{72}$	54	\mathbf{W}.	Clear, and strong wind.
17	${ }_{73} 7$, 61	59	${ }_{6}^{62}$	${ }_{70}^{67}$	49 50	E.	Light olonde all day.
19	,78	, 74	60	62	68	48	W.	Clear.
20	,83	, 77	59	61	68	47	\mathbf{W}.	Clear.
21	,88	,80	58	61	67	47	W.	Clear.
22	,87	,78	58	61	68	48	W.	Clear.
23	,86	, 77	58	61	69	48	\mathbf{W}.	Clear.
24	,90	, 80	59	61	69,5	48	W.	Clear, and east wind in afternoon.
25	,90	, 80	57	62	70	53	E.	Slight fog, and light cloudy aftermocen
26	,90	, 87	60	63	71	53	E.	Clear, with Aying clouds.
27	,89	,77	60	63	71	54	W.	Clear.
${ }_{29}^{28}$,90	,78	60	64	71,5	51,5	E.	Clear, and N. wind in afternoon..
29 30	,901		61	64	73		E.	Foggy morning, and wind in afternoon.
30 81	,94	, 70	64	${ }_{67,5}^{66}$	${ }_{76}^{74,5}$	568	E. ${ }_{\text {E. }}$.	Fog and hasyall day, end wind afternoon. Clear.

* 47 It

 -Rcoprod pozvio

"Vitreous glazes, whether employed simply for closing the pores of baked clay, and thus rendering it impermeable to water, or with the further intention of concealing the coarseness and bad colour of the body by a covering of enamel, appear to have originated in China; for the earliest European travellers in that country make mention of temples covered and encrusted by varnished tiles of various colours.
"The invasion and conquest of China by Zenghis Khan, in 1312, was probably the event that made known to the rest of Asia and to Europe the art of glazing earthen-ware. The empire of Zenghis extended from China across the Steppes or pastoral regions of Asia to the Caucasus, between the Black Sea and the Caspian, and his son Octar pushed through Russia into Poland and the confines of Germany. They likewise, in their victorious progress, held hostile or frieidiy intercourse with many of the Mohammedan sovereigns who possessed the countries to the south and west of them ; and the whole Mohammedan world, though broken into independent, and frequently conflicting states, was nevertheless pressed into close union by the crusades, which had hardly yet subsided, and by the now imminent danger of Tartar conquest. The Moslems were also at this time not only a warlike but an active, ingenious, splendid, andinquisitive people, possessing a language, the Arabic, in a great measure common to all who professed the faith of Mohammed. The similarity of their architecture, in the wide extent of country from the Ganges to Gibraltar, shews not only a coincidence of feeling but a community of intercourse. It appears therefore to me by no means improbable, that an invention, which was largely and generally applied to decorative purposes in Mohammedan architecture, should have travelled in a few years from the confines of China to Spain.
"The palace of the Moorish kings at Granada, called Alhambra, was built in 1280, and many of the rooms are represented as ornamented by lacquered tiles. The tomb of Sultan Mahommed Khoda-Bendeh, at Sultanieh, in Persia, was also built in the thirteenth century : and of this the cupola and minarets are atill in many parts covered with a green lacquered tile, and the great architrave is formed of a dark-blue one.
" In 1475 was built the painted masjid in the now ruined city of Gawr, in India: it derived its name from the profusion of glazed tiles with which it was ornameated; specimens of which are preserved in the East-India Musenm.
"The mother of Shar Abbas, about 1550, built a caravanserai at Mayar, near Iffakin, the front gate of which is inlaid with green tiles: and at present the domes of the mosques of that city are covered with green and blue tiles.
" Marco Polo, the Venetian, visited in 1270 the Court of Kjblai Kban, the grandson of Zenghis, and remained in the employ of that sovereign for sereral years ; at the same time, merchants from many of the commercinl cities of Italy were travelling for the purpose of trade, in most of the countries between Syria and India. By some of these the art of covering baked earthen-ware with an opaque vitreous glaze might be imported into Italy; and Florence and its territory soon became celebrated for the fine works executed on plates of this ware, which met with a ready sale throughout Europe. The name given in Prance to these worke was faience, supposed to have been derived from Faensa, a village near Florence, or perhaps the word is a mere corruption of Firenze, the Italian name of that city, Tirabosciel mentions one " Loca della Robbia, a Floreatine, born in 1388,
who appears to have been the first who made figures of terra cotta and covered them with a varnish, to preserve them from the injuries of time and weather. He aleo adorned flat surfaces of terra cotta with various colours, and painted figures on them, by which he rendered himself so famous that he received orders for them from all parts of Europe."
Howerer early the introduction of the art of glazing tiles in India may have been, it is certain that as regards ressels for holding liquors, it was little used, or at least that it has since become obsolete. Enamelling with various glazes on metal is still practised with great success up the country, but to common cheap pottery this branch of the art would be inapplicable. We have seen in Dr. Wiss's Deccription of the Hooghly Ice Manufacture (vol. ii. page 80), that the cheap earthen dishes are only rendered impervious to water by smearing their interior with grease, or wax, as was customary in Spain and Italy, in olden times, and is even so in the present day. The clay of which the common earthen-ware is made in Bengal is of so fusible a nature that it would not stand the heat necessary for the application of what is called stone.glaze, made by the vapours of salt at an intense heat, and metallic glazes are too expensive for so cheap a commodity; still there are many eases in which it is most desirable to teach the native potters how to perform this mseful process, and we therefore extract Mr. Aikin's short account of the various methode of glazing now in use in England. The Khari-matti or porcelain clay of the Rajmahl and Vindya hills has been applied to the manufacture of stone-ware botles for soda-water, by Dr. J. Jeffreys, at Farakhdbdd, with perfect success; and this, being infusible, is capable of receiving the salt glaze, as described below, of the Vauxhall manufacture.
" I shall now proceed to give a brief account of the manufacture of the common red pottery ware as practised in the neighbourhood of London, and in various other parts of the kingdom; for the principal particulars of which, as well as for the specimens in illastration of it, I am indebted to Mr. Jones, of Lambeth. The material is a yellowish brown clay, from Deptford, there being no other near London on which the glaze will spread with the equality that is required. In general the clay is used without any addition; but such parcels as are too fat or tenacious are brought to a proper state by mixture with loam. The clay is watered and turned, but not being an alluvial clay, contains no stones, and therefore, does not require to be washed over. It is finally passed through the pug-mill in order to temper it. The required form of a pot or pan, or any other article, is given to it on the wheel, and the ware is dried under cover till it has acquired a considerable solidity. The glaze is then put on in the state of cream, by means of a brush; care being taken to cover the whole surface as evenly as possible : for small articles such as pipkins, that are glazed only internally, a little of the cream is poured in and then poured out again, a sufficient quantity of the glaze adhering to the surface of the ware.
" The materials of the glaze are galena, commonly called potter's lead-ore, ground to an impalpable powder, and then mired with clay diffused in water, technically called slip. This glaze is transparent, and of a pale yellow colour, and consequentIy shews through it the colour of the ware; if a black opaque glaze is required, one part of common manganese is added to nine parts of galena. After the glaze is leid on, the ware is again dried, and is then piled in the kiln in order to be burnt or fired. For the first twenty-four hours a very low heat is applied, in order to drive
all the moisture out of the ware ; it is then exposed for twenty-fotr botrs more to a heat as high as it can bear without fusion, which has the effect of baking the clay, of driving off the sulphur from the lead-ore, and of causing the oxide of lead to form a frit or imperfect glass with the clay, the other ingredient of the gince. The fire is now fed with bavin-wood instead of coal, by which the heat is increased, the furnace is filled with flame, and the frit being converted into a perfect gless, flows uniformly over the surface of the ware. The fire is then allowed to so outh and when the furnace has become cool, the contents are removed. If the air has been still during the burning, and due care has been observed, the articles in every part of the kiln will be properly baked; but a high wind always renders the heat very unequal, so that the ware in the windward part of the kiln will not be baked enough, while that in the leeward part will be over-burnt and ron to a slag.
"All articles of earthen-ware which after being baked are opaque, are more or lese porous; and if a heat somewhat approaching to their point of fusion, 30 as to render them slightly translucent, cannot safely be applied, it is evident that such ware is not very proper for vessels employed in cookery, and for several other parposes, from the difificulty of keeping them clean, and from their liability to crack when set on the fire in a dampstate. In England, we endeavour to obviate this imperfection by means of a thick vitreous glaze; but as the ware itself is very fusible, the glase must be still more so; and as oxide of lead forms the cheapest and most fusible glaze, this accordingly is the material universally employed by us. But there is a very serious objection to the use of this glaze, namely, that it is soluble in rinegar, in the juice of most fruits, especially when bot, and also in boiling fat ; the comso quence of which is, that the food of the lower classes, by whom alone cooking vessels of glazed red-ware are employed, is often contaminated with lead, so as serioualy to impair their healh by occasioning colics, and the other usual effects of lead poison. Possibly borax, which is now a cheap article aad is very fusible, might be made to supersede the use of lead; if not, the only way of avoiding this very serious hazard to health, will be the nse of more refractory clay, which, consequently, would allow the employnent of a less fusible glaze free from lead. This has been done by Mr. Meigh, a potter in Staffordshire, to whom the Society awarded a modal for his invention; the ware produced by him is fur superior to that in comamon use, and well deserves the encouragement of the pablic. A species of ware, somewhat superior to our common red-ware, is made at Lambeth, of Maidstone ctay, heing of a paler colour and a more compact texture than the latter, but does not take a uniform covering by the common glaze for red-ware; it is therefore chiefy used for parposes which admit its employment in an unglazed atate, or in aituations where the imperfection of the glaze is not perceived, as in ornamented ehimney-pote, gas-consumers, \&c.
" A more perfect, and indeed very excollent species of earthen-ware, is that called stone-ware, originally introduced from Holland, and now made in several parts of the kingdom, aad eapecially at Lambeth. To one of the principal manufactorers of this ware, Mr. Wisker, I am indebted for the following particulars :
"The materials are, pipe-clay from Dorsetshire and Devonshire, calcined and ground flint from Staffordshire, and sand from Woolwich and Charton.
" The clay is pulverised and sifted dry, and is either used alone, when an article of great compaetness is required, as soda-water bottles, or is mixed with sand to diminiah its contraction in the fire. For retorts and other large veasels, instead of sand, the refuse stone ware, ground to a fine powder, is used. For the finer arti-
cles, cuch as figured jugs, ground fint is employed in place of sand. The composition is brought by the addition of water, to the state of mortar, and is then tempered in the pag-mill. All round articles are made on the horizontal wheel; and those of great size, i. e. of a greater capacity than two gallons, are at first of extreordinary thickness below to support the upper part; when they come off the wheel they are dried, and then put on the wheel again, and shaved down to a proper thickness. For oval, and other figures not circular, as pans for salting hams fin, the clay is formed in a mould to the required shape. The drying, especially of large articles, must be very carefully performed; and as, from custom, the tops or bottoms of jars and various other vessels made of this ware, are required to be of a deeper brown than the natural colour of the materials, they are dipped in a mixture of red-ochre and clay slip. When perfectly dry they are piled in the furnace, bits of well-sanded clay being put between each piece to prevent them from adhering. A slow fire is kept up for twelve to twenty-four hours, according to the thickness of the ware, capable of bringing it just to a low red heat. The fire is then to be raised till the flame and the ware are of the same colour, and is 80 to be continued for several hours. At this time the glaze is added, which is done by pouring down the holes in the top of the kiln, twenty or thirty in number, ledieaful of common salt.. This, being volatilized by the intense heat of the interior, atteches itself to the onter surface of the ware : here it is decomposed, the mariatic acid flying off, and the soda remaining behind in union with the earth, with which it forms a very thin, but, on the whole, a perfect glaze; at least quite sufficient, with the compactness of the ware, to render it completely proof against the percolation, not only of water, but of the strongest acids. So perfect, indeed, is the texture of the best ware now unade, that it has of late been very largely used in the construction of distillatory vessels for manufacturing chemists, instead of green glass, as being more durable and also cheaper. Pickling jars, and many other vessels in which acid substances for food or condiment are kept, as also those earthen vessels in which great strength is required, are beat made of stoneware. Vauxhall is the chief seat of this manufacture. There are now about cight houses engaged in this fabric, most of which are very actively employed, as the use of it is considerably on the increase."

In the porcelain of China, so justly celebrated for its beanty and excellence, the glase is prodaced by a wash of clay of a kind more fusible than that of the body of the ware.

Three materials are known to be employed in this manufacture. 1. Pefwnioe, which is quarried from certain rocks and contains shiaing particles : (mica ?) the lumpe of this ciay are broken up and ground in iron mortara, then lixiviated, and the creamy matter only used. Mr. Aikin supposes it to be a compact felspar; perhaps it may be a decomposing granite, from which the felspar is thues coarsely eeparated. 2. Enotion true porcelain clay, or decomposed felapar found in lumps in the clefte of monntains, covered with a reddish earth (just as it occurs in India). It is propared for use the the petmatic. 3. Foachd, which has a soapy feel, and is either steatite scapetone, or agalmatolite. It in also prepared in the same way, but is whiter, more transpareat, and in esed only for the more expensive warce.

For the fineat porcelain, four parts of hoaché are added to one of perwntoc. SomoHenes the body in made of keolim, dipped when dry into the cream of hoeche, which gives a white cont. Hocohd is also laid on with a peacil on the parts intended to have an ivory-white colour.
" The white semi-transparent glaze is thus prepared. The whitest petmentee wilh green spots is pulverized and washed over; to 100 parts of the cream thus obtained is added one part of che-kao (burnt alum) previously pulverized. A caustic ley is also prepared into which che-kao is stirred, and the cream thus produced is collected. The two creams are mixed together in the proportion of ten measures of the former to one of the latter, and this composition, washed over the dry unbaked ware, gives it its whiteness and lustre. A brown glaze is made of common yellow clay added to the above. The Chinese porcelain is never brought to the state of biscuit, by a prior baking, before it is glazed.
"The flux used with colours laid on the glaze is made of one part calcined quartz and two parts ceruse. Red is given by peroxide of iron, and a finer red by copper, but the process is not known. The enamel colours are brought to a proper consistence by a solution of glue, except those containing ceruse, which can only be tempered with water*."

3.-Phenomenon of the Japanese Mirror.

The Philosophical Magazine of Dec. 1832 contains Sir D. Brewster's explanation of the magical effect of the mirror, of which a notice was published by myself in vol. 1. p. 242.

Sir David had only received a written description from Mr. G. Swinton, and therefore it was hardly fair to expect him to give a categorical reply to that gentleman's question, " how are these strange effects produced ?" After alluding however to Mr. Swinton's conjecture that the phenomens may originate in a difference of density in different parts of the metal, occasioned by the stamping of the figures on the back, which, if metals were absolutely opaque, and if the lights they reflect never entered their substance, would, he says, be the only possible way in which the stamped figures could be reflected,-the learned Doctor proceeds to offer his own theory.
"I believe, however, on the authority of the phenomena of elliptical polarization, that in silver nearly one-half of the reflected light has entered the metal, and in other metals a less portion. So that we may consider the surface of every metal as transparent to a certain depth, a fact which is also proved by the transparency of gold and silver leaf. Now this thin film having its parts of variable density, in consequence of the stamping of the figure, might reproduce the figure by reflection. It is well known that silver polished by hammering acts differently npon light from silver that has received a specular polish; and I have elsewheret expressed the opinion that a parabolic reflector of silvered copper, polished by hammering, will from the difference of density of difierent parts of the reflecting film, produce at the distance of many miles a perceptible scattering of the reflected rays, similar to what takes place in a transparent fluid or solid, or gaseous medium. I am satisfied, however, that at the distance of a few inches from the Chinese mirror, this evanescent effect will be altogether imperceptible, and that we must seek for another cause of the phenomenon under consideration.
"Some years ago I had occasion to observe the light of the sun reflected upon paper from a new and highly polished gilt button, and I made a drawing at the time of the figure, which appeared in the spectrum. It consisted of radiations exactly like the spokes of a carriage wheel, the radiations being sisteen in number, and a little confused in the centre opposite the eye of the button. On the back of this button several words were deeply stamped, but these words did not appear in the reflected inage.

[^37]I have since eramined sereral varieties of such buttons, and I And that they almost all give either radiations or great numbers of narrow concentric rings, (and sometimes both,) whose centre is the centre of the button, and the smallest one of which is always like a dimple in the centre.
" Upon examining the surface of these buttons in the sun's light, and at the edge of a shadow*, I have invariably been able to see the same rings excavated in the polished face that appeared in the luminous image, which it reflected. They obviously arise from the button being finished in a turning lathe, and the rings are produced by the action of the polishing powder, or probably in some cases they may be the grooves of the turning tool, which have not been obliterated by the subsequent processest.
" These facts will, I presume, furnish us with the secret of the Chinese mirror. Like all other conjurors, the artist has contrived to make the observer deceive himself. The stamped figures on the back are used for this purpose. The spectrum in the luminons area is not an image of the figures on the back. The figures are a copy of the picture which the artist has drawn on the face of the mirror, and so concealed by polishing that it is invisible in ordinary lights, and can be brought out only in the sun's rays.
" Let it be required, for example, to produce the dragon described by Mr. Swinton as exhibited on one of these Chinese mirrors. When the surface of the mirror is ready for polishing, the figure of the dragon may be delineated upon it in extremely shallow lines, or it may be eaten out by an acid much diluted, so as to remove the smallest possible portion of the metal.
"c The surface must then be highly polished, not upon pitch, like glass and specula, because this would polish away the figure, but upon cloth, in the way that lenses are sometimes polished. In this way the sunk part of the hollow lines will be as highly polished as the rest, and the figure will only be visible in very strong lights, by reflecting the sun's rays from the metallic surface. When the space occupied by the figure is covered by lines or by etching, the figure will appear in shade on the wall, and vice versa."

In spite of the overwhelming suthority opposed to me, I feel reluctant to give up the theory I ventured to advance, in explanation of the anomaly in question, and I am emboldened to maintain it by the simple fact, that Sir Darid had not yet seen the mirror : indeed in this respect we stand an equal ground;-the mirror was gone from Calcatta before I had attempted to solve its nature : it had not arrived when Dr. Brewster offered his ingenious theory. The best arguments which I can advance in faror of my own are-l, that the mirror underwent several rude processes of polishing in Calcntta, so mach so, that most of its silvered surface was worn off, and yet its reflective faculties were unimpaired. 2, no signs of engraving were observed on the aurface, under the strongest horizontally reflected light, which ought to have shewn its presence as explained, by Sir David.

Dr. Brewster's theory cannot fail however to win converts: it would be presumption in me to go farther in opposing it, than to request a suspension of judgmeat until the mirror shall have arrived in England; meanwhile its magical powers must continue, as he says, " to perplex the philosophers of our eastern metropolis!"

* "By this method the figure in the Chinese mirror could be rendered visible beneath its polish."
$t{ }^{c c}$ In polished steel bnttons the reflected light is crowded with lines running at right sogles, indicating the cross strokes by which they have been ground and polished."
Meteorological Kegister kept at the Assay Uytice, Calcutta, for the month of April, 1833.

JOURNAL

07

THEASIATICSOCIETY.

$$
\text { No. 17.-May, } 1833 .
$$

I.-Origia and Classification of the Military Tribes of NEpal. By B. H. Hodgson, Esq.
 [Rem at the Meeting of the eth January, 1858.]

Try great aboriginal stock of the inhabitants of these mountains, east of the river Kali, or in Sepal, is Mongol. The fact is inscribed, in characters so plain, upon their faces, forms, and languages, that we may well dispense with the superfluous and vain attempt to trace it historically in the meagre chronicles of barbarians.

But from the 12th century downwards, the tide of Mussulmais conquest and bigotry continued to sweep multitudes of the Brahmans of the plains from Hindkstion into the proximate hills, which now compose the western territories of the kingdom of Nepal. There the Brakimass soon located themselves. They found the natives illiterate, and without faith, but fierce and proud.

Their object was to make them converts to Hiadriom, and so to confirm the fleeting influence derived from their learning and politeness. They saw that the barbarians had vacant minds, ready to receive their doctrines, but spirits not apt to stoop to degradation ; and they acted accordingly. To the earliest and most distinguished of their converts they communicated, in defiance of the creed they taught, the lofty rank and honors of the Kshatriya order. But the Brahmans had sensual passions to gratify, as well as ambition. They found the native females-even the most distinguished-nothing loath; but still of a temper, like that of the males, prompt to repel indignities. These females would, indeed, welcome the polished Brahmans to their embraces: but their offspring must not be stigmatised as the infamous progeny of a Brahman and a Mléchka-must, on the contrary, be raised to eminence
in the new order of things introduced by their fathers. To this progeny also, then, the Brahmans, in still greater defiance of their creed. communicated the rank of the second order of Hinduisom; and from these two roots, mainly, sprung the now numerous, predominant, and extensively ramified, tribe of the Khas-originally the name of a small clan of creedless barbarians, now the proud title of the Kshatriya, or military order of the kingdom of Nepal. The offspring of origioal Khds females and of Brahmans, with the honorsand rank of the second order of Hinduism, got the patronymic titles of the first order; and hence the key to the anomalous numenclature of so many stirpes of the military tribes of Nepal is to be sought in the nomenclature of the sacred order. It may be added, as remarkably illustrative of the lofty spirit of the Parbattiahs, that, in spite of the yearly increasing sway of Hinduism in Nepail, and of the various attempts of the Brahmans in high office, to procure the abolition of a custom so radically opponed to the creed both parties now profess, the Khde still insist that the fruit of commerce (marriage is out of the question) between their females and males of the sacred order shall be ranked as Koletriyas, wear the thread, and assume the patronymic title.

The original Khás, thus favored by it, became soon and entirely devoted to the Brahmanical syatem*. The progress of Isldm below daily poured fresh refugees among them.

They availed themselves of the superior knowledge of the atrengers to subdue the neighbouring tribes of aborigines, were succeseful beyond their hopes, and, in such a career continued for ages, gradually merged the greater part of their own habits, ideas, and language (but not physiognomy) in thoee of the Hindús.

The Kihas language became a corrupt dialect of Hindh, retaining not many palpable traces (except to curious eyes) of primitive barbariam.

The Ekthariahs are the descondants more or less pure of Rojpute and other Kshatriycs of the plains, who nought refuge in these mountriss from the Moslem, or, merely military service as adventures. With fewer aims of policy and readier means in their bright swords of requiting the protection afforded them tham had the Brakmans, they

[^38]had less motive to mix their prond blood with that of the vile aborigines than the Brahmaxs felt the impulse of, and they did mix it less. Hence, to this hour, they claim a vague superiority over the Khás, notwithstanding that the pressure of the great tide of events around them has, long since, confounded the two races in all essentials. Those among the Kshatriyas of the plains, who were more lax, and allied themselves with the Khás females in concubinage, were permitted to give to their children, so begotten, the patronymic title only, not the rank. But their children again, if they married for two generations into the Khis, became pare Khás, or, real Kshatriyas in point of privilege and rank, though no longer so in name! They were Khás, not Kshatriyas: and yet they bore the proud cognomina of the martial order of the Hindus, and were, in the land of their nativity, entitled to every prerogative which Kshatriya birth confers in Hindustan!

Sach is the third and less fraitful root of the Khás race.
The Ehthariahs speak the Khás language, and they speak no other.
The Thakwris differ from the Ekthariahs only by the accidental circumstance of their lineage being royal. At some former period, and in some little state or other, their progenitors were princes.
The Saks are the present royal family.
The remaining military tribes of the Parbattiahs are the Magar and Gurang, who now supply the greater numbers of the soldiers of this state.

From lending themeelves less early and heartily to Brakmanical mfftence than the Khis they have retained, in vivid freshness, their original languages, physiognomy, and, in a less degree, habits.

To their own untaught ears their langaages differ entirely the one from the other, but, in very trath, only as remote dialects of one great tongue, the type of which is the language of Tibet. Their physiognomies, too, have peculiarities proper to each, but with the general Calmuk caste and character in both. The Gkrungs are less generally and more recently redeemed from Lómaism and primitive impurity than the Magars.

But, though both Gurrangs and Magary atill maintain their own vernacular tongues, Tartar faces, and careless manners, yet, what with military service for several generations, under the predominant Khás, and what with the commerce of Khds males with their females*, they

[^39]have acquired the Khas language, though not to the oblivion of their own; and the Khd́s habits and mentiments, but with suadry revervations in favor of pristine liberty. As they have, however, with such -grace as they could muster, submitted themselves to the ceremonial law of purity, and to Brahman supremacy, they have been adopted as Hindds. But partly owing to the licenses above glanced at, and partly by reason of the necessity of distinctions of caste to Hindriven, they have been denied the thread, and constituted a doubcful order below it, and yet not Vaisya nor Sudra, but a something superior to both the latter, what, I fancy, it might puzzle the Shdestris to explain on Hindu principles.

The Brahmass of NEpal are much less generally addicted to armas than those of the plains; and they do not therefore properly belong to our present sabject. The enumeration of the Brahmass is nevertholese necessary, as serving to elucidate the lineage and connexions of the military tribes, and especially of the Khas.
The martial classes of NGpal are, then, the Khds, Mayar, and Gúrung; each comprising a very numerous clan or race, variously ramified and subdivided in the manner exhibited in the fallowing tabolar statement.
The original seat of the Khás is ardinarily said to be Gorkhé, because it was thence immediately that they issued, 70 years ago, ander the guidance of Prithivi Narayan, to acquire the fame and dominion achieved by him and his successors of the Gorkhali dynasty.

But the Khás were long previously to the age of Prithun Namatan extensively spread over the whole of the Chaubisya; and they are now found in every part of the existing kingdom of NGpal. The Khis are rather more devoted to the house of Gorkhi, as well as more liable to Brakmanical prejudices than the Magars or Garangs; and, on both accounts, are somewhat less desirable as soldiers for our service than the latter tribes. I say somewhat, because it is a mere question of degree; the Khás having, certainly, no religiaus prejudices, nor probably any national partialities, which would prevent their making excellent and faithful servants in arms; and they possess pre-eminentIf that masculine energy of character and love of enterprize which distinguish so advantageously all the military races of Nepd. The original seat of the Magars is the Báre Mangranth, or Satakung. Payung, Bhirkot, Dhor, Garahung, Rising, Ghiring, Gülmi, Arghe, Khachi, Musikot, and Isma ; in other words, most of the central and lower parts of the mountains between the Bheri and Marayand** riverm.

- The Marichengdi of our maps.

The attachment of the Magars to the house of Gorkkd is but recent, and of no extraordinary or intimate nature. Still less so is that of the Gürunge, whose native seats occupy a line of country parallel to that of the Magars, to the north of it, and extending to the snows in that direction. Modern events have spread the Magars and Gúrangs over most part of the present kingdom of Nepol. The Guirange and Megars are, in the main, Hinduis, only because it is the fashion; and the Hisduism of the Khas, in all practical and soldierly respects, is free of disqualifying punctilio.

These highland soldiers, who despatch their meal in half an hour, and satisfy the ceremonial law by merely washing their hands and face, and taking of their turbans before cooking, laugh at the pharisaical rigor of our sipikis, who must bathe from head to foot, and make puja, ere they begin to dress their dinner, must eat nearly naked in the coldest weather, and cannot be in marching trim again in less than three hours.
In war, the former readily carry several days provisions on their backs: the latter would deem such an act intolerably degrading. The former see in foreign service nothing bat the prospect of glory and spoil : the latter can discover in it nothing but pollution and peril from anclean men and terrible wizards, goblins, and evil spirits. In masses, the former have all that indomitable confidence, each in all, which grows out of national integrity and success : the latter can have no idea of this sentiment, which maintains the anion and resolution of multitudes in peril, better than all other human bonds whatever.

I calculate that there are at this time in Nipal no less than $\mathbf{3 0 , 0 0 0}$ Dakkriahs, or soldiers off the roll by rotation, belonging to the above three tribes. I am not sure that there exists any insuperable obstacle to our obtaining, in one form or other, the services of a large body of theee men; and such are their energy of character, love of enterprise and freedom from the shackles of caste, that I am well assured their services, if obtained, would soon come to be most highly prized.

In my humble opinion they are by far the best soldiers in India; and if they were made participators of our renown in arms, I conceive that their gallant spirit and unadulterated military habits might be relied on for fidelity; and that our good and regular pay and noblp pension establishment would serve to counterpoise the influence of nationality, especially in the Magars and Gúrangs.

The following table exhibits a classified view of the Brabmanical and Military tribes, with their various subdivisions.

Tabular View of the Tribes.
Brabmana.

Arjal.	Rapalkhèti.	Osti.	Dhardri.
Pondyal.	KhativAra.	Utkulli.	Bbartyal.
Khandl.	Dhakal.	Kandariah.	Panéra.
Rtgmi.	Adhikari.	Ghart mel.	Loityal.
Bhattrai.	Deoja.	Ghartyal.	8igdhyll.
Nirdla.	Rukai.	Nivapanym.	Bardi.
Acharrya,	Sywal,	Tėmralkti.	Gotamya.
Bhatt.	Rijal.	Uphaltopi.	Ghorasaini
SApan kotya.	Dhádsyal.	Parijai Kavala.	Risyll.
Mahartichtra.	Loiyll.	Homya Gai.	Châlisya.
Koiirala	Dotiyal.	Champa Gai.	Dhômgina
Pakonyal,	Kandyal.	Gâra Gait	Bharari.
Sattyal.	Katyal.	Subêri.	Bagalya.
Dobal.	Dangal.	Pandit.	Dalal.
Lamsal.	Singyal.	Têva pânya.	Parajali.
Rimal.	Bikral.	Timil Sina.	Bajgdi.
Dérakotya.	Ukniyal.	Káphalya.	Satola.
Parbatya Vash.	Bhattwal.	Gaithoula.	Ghárchofi.
Parbatya Misr.	Gajniyal.	Gairaha Pipli.	Kêlathoni.
Davari.	Chavala GAi.	Ohimirym.	Gilal.
Koikyal,	Vasta Gai.	Simkhâra.	Lahôni.
Nepellya.	Banjara.	Phunwal.	Muthbari.
Baral.	Dagi.	Chamka anini.	
Pokaryal.	Soti.	Pùra saini.	

Kbab.
let. Subdivision of the Khás, called Thapa.

Kalikotyn.
Thàmi.
Dhàmi.
Kalikotya.
Bagalya.
ai. Pokriyâl. Masiah.

Khadhetna Thateri.
Mariah.
7th. Subdivision, or Bisht.
Powhr.
8th. Subdivision, or Kwnwár.

Bijapati.

10th. Smbdivision, or Dáni.
Sijapati.
PowAr.
11th. Sxbdivision, or Gharti.
Salizotya.
Piadé.
TewAri.
Panth.
Adhitàri.
Sijapati.
12th. Subdivision, or Khattri.

True Khas not yet classified.			
Dhongyal.	Sijal.	Satouya.	Rapakbeti.
Logal.	Chouvala Gai.	ParsAi.	K batiwata.
Lameal.	Am Gâi.	Chalatâni.	Bhatt Rai.
Khacriytl,	Baj Gaii.	Kilathoni.	Neoptnya.
Dangàl.	Satya Gaii.	Mari Bhús.	Dahal.
Sikhmigal.	Devatota.	Alphailtopi.	Soti.
Bhiryal.	Garhtola.	Parijai Kawala	Onti.
Poaryal.	Sôorra.	Bamankotya.	Bhatt Ojhe.
Bikral.	Balya.	Tewari.	Kadariah.
Kanhal.	Gilal.	Porsêni.	Kala Khattri.
Batyal.	Cbonial.	Homya Gai.	Dhângâna.
Ganjal.	Règmi.	Tuimrak ot.	Pungyal.

Extharya, or insulated tribes ranking with Khis.
Bdrathoki.
Raya.
Ravat.
Katwal.
Khàti.
Maghati.

Khulal.	Làmichànya.
Suvéri.	Dhakil.
Poryal.	Phanyall.
Sakhtyal.	Bural.

Arjal.
Suvêri. Dhakâl.
Sakhtyal. Bural.
Trwe Khas not yot clasosied.
C
Am Gâi. Chalatâni. Bhatt Rai.
Baj Gai. Kilathoni. NeopAnya.
Satya Gai. Mari Bhús. Dahal.
Devakota. Alphaltopi. Soti.
Garhtola. Parijal Kawala. Onti.
Bamankotya. Bhatt Ojhe.
Tewâri. Kadariah.
Kala Khattri.
Dhângâna. Pungyal.

Chohan. Bohara. Kutal
Boghati. Chiloti. Dikshit
Khatit. Dângi. Pandit.
Savan. Rajmanjhi. Parsai.
Mahat. Bhakhandi.
Bhacal.
Chokhal.
Chohara.
Durrah.
Thanuri, or Royal lineages, ranking with Khás.

Sehi.	Singh.	Chand.	Jiva.
Malla.	Mann.	Hamal.	Rakhoya
Sésa.	Chohan.	Ruchal.	

Magars.
I.-Subdivision of the Magars, called Räná.

Bhuedr.	Gyàngmi.	Byanguási.	Kyâpchaki.
Aclami.	Pulatmi.	Phydyali.	Darra Lami
Ychayo.	Gàcha.	Lammichainya.	Mati.
Stand.	Pasal.	Gandharma.	Charmi.
Arghouale.	Thàda.	Dutt.	
	II.-Subdiv	Magars, calle	
Orlaji.	Chami.	Kèli.	Bartya.
Namjili.	Langeli.	Jhângdi.	Macki.
Darrimin	Sunâri.	Yangdi.	Phyayali.
Manyliogdi.	Chitooriah.	Jhàri.	Arghounld.
Gellang.	Sinjati.	Sârui.	Rijal.
	III.-Subdiv	Magars, call	
Yalgmi.	Sarangi.	Pâng.	Lamidl.
Sarya Vanci.	Gdoda.	Sripali.	Sayd.
Challi.	Dokhchaki.	Sijapati.	Panthi.

II.-Description of Bokhara. By Lieut. A. Barnes, Bombay Army, Asst. Resident at Kutch.

Our first care on entering Bokhara was to change our garb, and adopt the usages prescribed by the laws of the country. A petition to the minister might have perhaps relieved us of the necessity, but to do so was in consonance with our own plans, and we did not delay a moment in fulfilling them. Our turbans were exchanged for shabby sheepskin caps with the fur inside, and our kamarbande were thrown aside for a rude piece of rope or tape. The outer garment of the country was discontinued, as well as our stockings, since these are the emblems of distinction in the holy city of Bokhara between an infidel and a true believer. We know also that none but a Muhammedan might ride within the walls of the city, and we had an inward feeling which told us to be heartily gratified if we were permitted, at such trifling sacrifices, to continue our abode in the capital. A couplet* which describes Samarcand as the paradise of the world, also names Bokhara as the strength of religion and of Islam; and impious and powerless as we were, we could have no desire to try experiments among those who seemed, outwardly, at least, such bigots. The dress which I have described is nowhere enjoined by the Moran, nor did it obtain in these countries for two centuries after the prophet; not till the bigotry of

$$
\begin{aligned}
& \text { * سمرقنه مییل روى زمير است } \\
& \text { بهـارا توّكت اسلا و ديى اسـت }
\end{aligned}
$$

some of the Khaliphs discovered that the faithful should be distinguished from those who were not Muhammedans.

On entering the city, the anthorities did not even search us, but in the afternoon an officer summoned us to the presence of the minister. My fellow-traveller was yet prostrated by fever, and could not accompany me; I therefore proceeded alone to the ark or palace where the minister lived along with the king. I was lost in amazement at the novel scene before me, since we had to walk for about two miles through the streets of Bokhára before reaching the palace. I was immediately introduced to the minister, or as he is styled, the Gosk Begr, an elderly man, of great influence, who was sitting in a small room, with a private court-yard in front of it. He desired me to be seated outside on the pavement, but evinced both a kind and considerate manner, which set my mind at ease. The hardness of my seat, and the distance from the minister, did not overpower me with grief, since his son, who appeared during the interview, was even further removed than myself. I presented a silver watch and a Kashmir dress, which I had brought for him ; but he declined to receive anything, saying that he was but the slave of the king. He then interrogated me for about two hours, regarding my own affairs and the objects which had brought me to a country so remote as Bokhoira. I told the usual tale of being in progress towards our native country, and produced my passport from the Governor General of India, which the minister read with peculiar attention. I then added, that Bokhara was a country of such celebrity among eastern nations, that I had been chiefly induced to visit Twrkistan for the purpose of seeing it. But what is your profession, said the minister? I replied that I was an officer of the Indian army. But tell me, said he, something about your knowledge :-and he here entered apon various topics as to the customs and politics of Europe, but particularly of Russia, on which he was well informed. In reply to his inquiries regarding our baggage, I considered it prudent to acquaint him that I had a sextant, since I concluded that we should be searched, and it was betterto make a merit of necessity. Iinformed him therefore that I liked to observe the stars, and the other heavenly bodies, since it was a most attractive study. On hearing this, the vizier's attention'was. roused, and he begged, with some earnestness, and in a sabdued tone of voice, that I would inform him of a favorable conjunction of the planets, and the price of grain which it indicated in the ensaing year. I told him, that our astronomical knowledge did not lead to such information; at which he expressed himself disappointed. On the whole, however, he appeared to be setisfied of my character, and assured me of protec-
tion while in Bokhdra; he however prohibited our using pen and ink, since it might lead to our conduct being misrepresented to the king, and prove injurious. He also added, thrat the ronte to the Caspian Sea by the way of Khiva had been closed for the last year ; and that, if we intended to enter Russia, we must either pursue the northern route from Bokhira, or cross the Túrkmán desert below Organj to Astrabdd on the Caspian.

Two days after this interview, I was again aummoned by the vizier, and found him surrounded by a great number of respectable persons, to whom he appeared desirous of exhibiting me. I was questioned in such a way as to make me believe that our character was not altogether free from suspicion; but the vizier said jestingly, I suppose you have been writing about Bokhaira. Since I had in the first instance given so true a tale, I had here no apprehensions of contradiction, and freely told the party that I had come to see the world, and the wonders of Bokhára, and that by the vizier's favor, I had been already perambulating the city. The minister was the only person who appeared pleased with the candour, and said that he would be happy to see me at all times in the evening : he inquired if I had any curiosity to exhibit to him, either of India or my own country; but I regretted my inability to meet his wishes. On my return home, it occurred to me that the all-curious vizier might be gratified by the sight of a patent compass, with its glasses, screws, and reflectors; but I also feared that he might construe my possession of this complicated piece of mechanism into a light which would not be favorable. I however sallied forth with the instrument in my pocket, and soon found myself in the presence of the vizier. I told him that I believed I had found a curiosity that would gratify him, and produced the compass, which was quite new and of very beautiful workmanship. I described its utility, and pointed out its beauty, till the vizier seemed quite to have forgotten, "that he was but a slave of the king, and could receive nothing;" indeed he was proceeding to bargain for its price, when I interrupted him. I assured him that I had brought it from Hisdustán, that I might purposely present it to him ; since I had heard of his zeal in the cause of religion, and it would enable him to point to the holy Mecca, and rectify the Kibla of the grand mosque, which he was now building in Bokhóra. I told him, that I could receive no reward, since we were already rewarded, above all price, by his protection. The Gosk Begt packed up the compass with all the haste and anxiety of a child, and said that he would take it direct to his Majesty, and describe the wonderful ingenuity of our nation. Thus fell one of my compasees. It was a fine
instrument, by Schmalcalder, but I had a duplicate, and I think it was not sacrificed without an ample return. Had we been in Bokhära in disguise, and personating some assumed character, our feelings would have been very different from what they now were. Like owls, we should only have appeared at night ; but after this incident, we stalked abroad in the noon-tide sun, and visited all parts of the city.

My usual resort in the evening was the Régistan of Bokhára, which is the name given to a spacious area of the city near the palace, that opens upon it. In two other sides there are massive buildings, colleges of the learned; and on the fourth stands a fountain filled with water, and shaded by lofty trees, where iders and newsmongers congregrate around the wares of Asia and Europe, which are here exposed for sale. A stranger has only to seat himself on a bench of the Régistan, to know the Uzbeks and the people of Bokhira. He may here converse with the natives of Persia, Turkey, Russia, Tartary, China, India, and Kabúl. He will meet with Tarkmans, Calmuks, and Kuzzaks, from the surrounding deserts, as well as the natives of the more favoured lands. He may contrast the polished manners of the subjects " of the great King" with the ruder habits of a roaming Tartar. He may see the Uzbèks from all the states of Máwarulnahr, and speculate from their physiognomy on the changes which time and place effect among any race of men. The Uzbek of Bokhára is hardly to be recognized as a Turk or Tartar, from his intermixture of Persian blood. Those from the neighbouring country of Kokan are less changed, and the natives of Organj, the ancient Kharasm, have yet a harshness of feature peculiar to themselves; they may be distinguished from all others by dark sheep-skin caps, about a foot high. A red beard, grey eyes, and fair skin will now and then arrest the notice of a stranger, and his attention will have been fixed on a poor Russian, who has lost his country and his liberty, and here drags out a miserable life of slavery, A native of the Celestial Empire will be seen here and there in the same forlorn predicament, shorn of his long cue of hair, with his crown under a turban, eince both he and the Russian act the part of Muhammedans. Then follows a Hindú, in a garb foreign to himself and his country: a small square cap, and a string, instead of a girdle, distinguishes him from the Muhammedans, and, as the Moslems themselves tell you, prevents their profaning the prescribed salutations of their language, by using them to an idolator. Without these distinctions, the native of India is to be recognized by his sombre look, and the stadious manner in which he avoids all communication with the crowd. He herds only with a few individuals, similarly circamstanced with himself. The

Jew is as marked a being as the Hindz; his costume differs from the follower of Brabya, and a small conical cap marks the children of Israel. No mark however is so distingaishing as the well known features of the Hebrew people. In Bokhára they are a race remarkably handsome, and I saw more than one Rebecca in my peregrinations. Their features are set off by ringlets of beautiful hair, which hang over their cheeks and necks. There are about 4000 Jews in Bokhära, originally from Meshid in Persia. They are chiefly employed in dyeing cloth. They receive the same treatment as the Hindis. A strayed Armenian, in a still different dress, represents that wandering nation; but there are few of them in Bokhára. With these exceptions, the stranger beholds in the bazars a portly, fair, and well-dressed mass of people, the Muhammedans of Tarkistan. A large white turban, and a chogka or pelisee of some dark colour over three or four other of the same description is the general costume; but the Refistan leads to the palace, and the Uzbèks delight to appear before their King in a mottled garment of silk, called "adras," which is of all and the brightest colours, and would be intolerable to any but an Uabek. Some of the higher persons are clothed in brocade, and one may distinguish the gradations of the chiefs, since those in favour ride into the citadel, and the others dismount at the gate. Almost every individual who visits the King is attended by his slave; and though this class of people are for the most part Persians, or their descendants, they have a peculiar appearance. It is said, indeed, that three-fourths of the people of Bokhára are of slave extraction, for of the captives brought from Persia, into Türkistan, few are permitted to return, and, by all accounts, there are many who have no inclination to do so. A great portion of the people of Bokhára appear on horseback. Whether mounted or on foot, they are dressed in boots, and the pedestrians strut on high and small heels on which it would puzzle a Corintkian to walk or even stand. They rise about an inch and a half, and the pinnacle is not one-third the diameter. This is the national dress of the Uzbek. Some men of rank have a shoe over the boot, which is taken off on entering a room. I must not forget the ladies in my enumeration of the inhabitants. They generally appear on horseback, riding as the men ; a few walk, and all are veiled with a black hair-cloth napkin. The difficulty of seeing through it makes the fair ones stare at every one as in a masquerade. There however no one must speak to them, and, if any of the King's harem pass, you are admonished to look in another direction, and get a punch on the head if you infringe the advice. So holy are the fair ones of the holy Bokkara.

My reader will have now become familiar with the appearance of the inhabitants of Bokhara. From morn to night, the crowd which assembles raises a humming noise, and one is stunned at the moving mass of human beings. In the middle of the area, the fruits of the season are sold under the shade of a square piece of mat, supported by a single pole. One wonders at the never-ending employment of the fruiterers in dealing out their grapes, melons, apricots, apples, peaches, pears, and plums; for the continued succession of purchasers proves that the tide of men still flows. With difficulty a passage can be forced through the streets, and it is only done at the momentary risk of being run over by some one on the back of a horse or an ass. These latter animals are exceedingly common and very fine, they amble along at a quick pace with their riders and burthens. Carts of a light construction are also driving up and down, since the nature of the country, and the streets which are not too narrow, admit of wheeled carriages in all parts of the basar. Everywhere are seen people making tea, which is done in large Europeas urns instead of tea-pots, and kept hot by a metal tube. The penchant of the Bokharts for tea is, I believe, without parallel ; for they drink it at all times and places, and in half a dozen ways, with and without sugar, with and without milk, with grease, with salt, \&c. Next to the venders of this hot beverage, one may purchase " rahet-i jan," or the delight of life, grape jelly or syrup mixed up with chopped ice. The abundance of ice is one of the greatest luxuries in Bokhara, and it may be had till the cold weather makes it unnecessary. It is pitted in winter, and sold so cheap that it is within the reach of the poorest people. No one ever thinks of drinking water without icing it, and a beggar may be seen purchasing it as he proclaimshis poverty and entreats the bounty of the passenger. It is a nice and refreshing sight to see the huge masses of it with the thermometer at 90°, coloured, scraped, and piled into heaps like snow to tickle the Uzbeks' palate. It would be endless to describe the whole body of traders : suffice it to say, that almost every thing may be purchased in the Régistan ; the jewellery and cutlery of Europe (coarse enough however), the tea of China, the sugar of India, the spices of Manilla, \&c. \&c. One may also add to his stores of learning, both Trirkt and Persian, at the book-stalls, where the learned or would-be-so pore over tattered pages at a hawker's board. As one withdraws in the evening from this bustling crowd to the more retired parts of the city, he treads his way through arched basars, now empty, and passes mosques sarmounted by handsome cupolas, and adorned by all the simple ornaments which are admitted by Mahammedans. After the bazar hours, these are crowded
for evening prayers. At the doors of the colleges, which generally face the mosques, one may see the students lounging after the labours of the day, not however so gay or so young as the tyros of an European university, but many of them grave and demure old men, with more hypocrisy, but by no means less vice, than their youthful prototypes in another quarter of the world. These people hnwever are stained by vices which there find no shelter even among the most depraved libertines. With the twilight this busy scene closes, the King's drum beats, it is re-echoed by others in every part of the city, and at a certain hour no one is permitted to move out withont a lantern. From these arrangements, the police of the city is excellent, and in every street large bales of cloth are left on the stalls at night in perfect safety. All is silence till the morn, when the bustle again commences in the Registan, the busy hive of men. The day is ushered in with the same gazzling and tea-drinking, and hundreds of boys and donkeys laden with milk hasten to the busy throng. The milk is sold in small bowls, over which the cream floats: a lad will bring twenty or thirty of these to market, in shelves sapported and suspended by a stick over his shoulder. Whatever number may be brought, speedily disappear among the tea-drinking population of this great city.

Soon after our arrival, I paid a visit to our late travelling companions, the tea merchants, who had taken up their abode in a caravansery, and were busy in unpacking, appraising, and selling their tea. They sent to the bazar for ice and apricots, which we sat down and enjoyed together. One of the purchasers took me for a. tea merchant from the society I was in, and asked for my investment. The request afforded both the merchants and myself some amusement, but they did not undeceive the man on my mercantile character, and we continued to converse together. He spoke of the news of the day, the late conquests of the king at Shahr Sabs, and of the threats of the Persians to attack Bokhdra, all without his ever suspecting me to be ought but an Asiatic. In return, we had visits from these merchants, and many other persons who principally came to gratify their curiosity. We were not permitted to write, and it was an agreeable manner of passing our time, since they were very communicative. The Uzbeks are a simple people, with whom one gets most readily acquainted : they speak in a carious tone of voice, as if they despised, or were angry with, you.

They never saluted us by any of the forms among Muhammedans, bat appeared to have another set of expressions, the most common of which is, "May your wealth increase" (doulat zyída). They nevertheless
always said the "fathan" or blessing from the Qordn, stretching out their hands and stroking down their beards before they sat down. Many of our visitors betrayed suspicions of our character, but still evinced no unwillingness to converse on all points, from the politics of their king to the state of their markets. Simple people, they believe a spy must measure their forts and walls, they have no idea of the value of conversation. With such ready returns on the part of our guests, it was not irksome for me to explain the usages of Europe; but let me advise a traveller to lay in a good stock of that kind of knowledge, be. fore he ventures to travel in eastern countries. One must have a smattering of trade, arts, science, religion, medicine, and, in fact, of every thing; and any answer is better than a negative, since ignorance, real or pretended, is construed into wilful concealment.

I took an early opportunity of seeing the slave bazar of Bokhára, which is held every Saturday morning. The Uzbèks manage all their affairs by means of slaves, who are chiefly brought from Persia by the Tárkmans. These poor wretchesare here exposed for sale, and occupy thirty or forty stalls, where they are examined like cattle, only with this difference, that they are able to give an account of themselves viva voce. On the morning which I visited the bazar, there were only six unfortunate beings, and I witnessed the manner in which they are disposed of. They are first interrogated regarding their parentage and capture, and if they are Muhammedans, that is, Sunnis. The question is put in that form, for the Uabeks do not consider a Shiah to be a true believer, since with them, as with the primitive Christians, a sectary is more odious than an unbeliever. After the intended purchaser is satisfied of the slave's being an infidel (kaffir), he examines his body, particularly noting if he be free from leprosy, so common in Thrkistuia, and he then proceeds to bargain for his price. Three of the Persian boys were for sale at thirty tillas of gold a piece*, and it was surprising to see how contented the poor fellows sat under their lot. I heard one of them telling how he had been seized sonth of Meshid, while tending his flock; another, who overheard a converation among the bystanders regarding the scarcity of slaves that season, stated that a great number had been taken. . His companion said with some feeling, You and I only think so, because of our own misfortune; bat these people must know better. There was one unfortunate girl, but she had been long in service, and was now being sold by her master because of his poverty. I felt that many a tear had been shed in the court where I surveyed the scene, but I was assured from every
quarter that slaves are well treated and well fed, and the circumstance of so many of them remaining in the country after they have been manumitted seems to establish this fact. 'The bazars of Bokhare are chiefly supplied from Organj. Russians and Chinese are also sold but rarely. The feelings of an European revolt at this odious traffic; but the Usbeks entertain no such notions, and believe that they are conferring a benefit on a Persian when they purchase him, in hopes that he may renounce his heretical opinions.

From the slave-market I passed on that morning to the great bazar, and the very first sight which fell under my notice was the offenders against Muhammedanism of the preceding Friday. They consisted of four individuals, who had been caught asleep at prayer time, and a youth who had been seen smoking in public. They were all tied to each other, and the tobacco-lover led the way, holding his hooka or pipe in his hand. The officer of police followed with a thick thong, and chastised them as he went, calling aloud, "Ye followers of Islam, behold the punishment of those who violate the law !" Never however was there such a series of contradiction and absurdity as in the practice and theory of religion in Bokhire. You may openly purchase tobacco, and all the most approved paraphernalia for inhaling its narcotic qualities; yet if seen smoking in public you are straightway dragged before the Qazi, punished by stripes, or paraded on a donkey with a blackened face, while the innocent hooka hangs before you as a warning to others. If a person is caught flying pigeons on a Friday, he is sent forth with the dead bird round his neck. seated on a camel. If seen in the streets at the time of prayers, and convicted of such habitual neglect, fines and imprisonment follow; yet there are bands of the most abominable wretches who frequent the streets in the evening, and encourage the violation of the Qoran. The laws of the Faithful punish this offence with death, but the Commander of the Faithful (the King is so called) sets an example to his subjects, and follows the customs of his fore-fathers. Every thing indeed presents a tisse of contradictions, and none were more apparent to me than the panishment of these culprits, who were marching with all the pomp of pablicity, by the very gate way of the court, where human beings were levelled with the brutes of the earth, no doubt against the laws of humanity, but as certainly against the laws of Mahammed.

The Hindus of Bokhára sought our society with great avidity, for that people seem always to look upon the English as their saperiors. They visited us in every country we passed, and would never speak any other language than Hindustant, which seemed a bond of union between us and them. In this country they appear to enjoy a suffici-
ent degree of toleration to enable them to live happily. An enumeration of their restrictions might make them appear a persecuted race. They are not permitted to build temples, set up idols, or walk in proceasion; they do not ride within the walls of the city, and must wear a peculiar dress. They pay the jizzya, or capitation tax, which varies from four to eight rupees a year; but this they only render in common with others, not Muhammedans. They mast never abuse or ill use a Muhammedan. When the King passes their quarter of the city, they mast draw up and wish him health and prosperity. When on horseback ontaide the city, they must dismount if they meet His Majesty, or the Qarr. They are not permitted to purchase female slaves, as an infidel would defile a believer; nor do any of them bring their families beyond the Oxus. For these sacrifices, the Hindús in Bokkára live unmolested, and in all trials and suits have equal justice with the Muhammedans. I could henr of no forcible instance of conversion to Islám, though three or four individuals had changed their creed in as many years. The deportment of these people is most sober and orderly: one would imagine that the tribe had renounced laughter, if he judged by the gravity of their countenances. They themselves however speak highly of their privileges, and are satisfied at the celerity with which they can realize money, though it be at the sacrifice of their prejudices. There are about three hundred Hindus in Bokhíra, and they live in a caravansery of their own. They are chiefly natives of Shikairpúr, in Sinde, and their number is on the increase. The Uabeks and indeed all the Muhammedans find themselves vanquished by the industry of these people, who will stake the largest sums of money for the smallest gain.

Among the Hindús we had a singular visitor in a deserter from the Indian Army at Bombay! He had set out on a pilgrimage to all the shrines of the Hindr world, and was then proceeding to the fire temples on the shores of the Caspian. I knew many of the officers of the Regiment (the 24th N. I.) to which he had be: longed, and felt pleased at hearing names which were familiar to me in this remote city. I listened with interest to the man's detail of his adventures and travels, nor was he deterred by any fear that I would lodge information against him and secure his apprehension. looked upon him as a brother in arms, and he amused me with many a tale of our friend Munad Bra of Kuindis, whom he had served as a bombardier, and followed in his campaigns. This man, when he first shewed himself, was disguised in the dress of a pilgrim ; but the carriage
of a soldier is not to be mistaken, though he has travarsed the monntains and deserts to Bokkira.

- The house in which we lodged was exceedingly small, and over: looked on every side; but we could not regret it, since it presented an opportunity of seeing a Túrki beauty, a most handsome young lady, who promenaded one of the surrounding balconies, and wished to think she was not seen. A pretended flight was not even neg. lected by this fair one, whose curiosity often prompted her to steal a glance at the Firingís. Since we had a fair exchange, she was any thing but an intruder, though unfortunately too distant for us to indulge in the sweet " music of speech." The ladies of Bokhara stain their teeth quite black, they plait their hair and allow it to hang in tresses down their shoulders. Their dress differs little from the men; they wear the same pelisses, only that the two sleeves, instead of being used as such, are tucked together and tied behind. In the house even they dress in large Hessian boots, made of velvet and highly ornamented. What a strange taste for those who are eternally concealed, to choose to be thus booted as if prepared for a journey. On the head they wear large white turbans, but a veil covers the face, and many a lovely countenance wastes its fragrance beneath this netting. The exhibition of beauty, in which so much of a woman's time is spent in more favored countries, is here unknown. A man may shoot his neighbour, if he sees him on a balcony at any but a stated hour. Assassination followa suspicion. The laws of the Qorás regarding the sex are here moes strictly enforced.

In my travels through Cabuil I had often enjoyed the luxuries of the bath, according to the custom of the Orientals. I now had the same pleasure in Bokhéra, but it was only admissable in some buildings since the priests had asserted that the water of certain baths would change into blood if polluted by a woman or an infidel! \mathbf{A} bath is too well known to require a description, but the operation is really mos $\$$ singular. You are stretched out like á fish, rubbed with a hair brush, scrubbed, buffetted and kicked about, but it is still very refreshingThe baths of Bokhara are most spacious. They are constructed on the plan of a panoptagon, many smaller domes surrounding a great one and heated to different temperatures. In the day time the light is sdmitted from coloured glasses over the large dome, in the night a single lamp under it suffices for all the cells. The portion of the circle towards Mecca is appropriated as a mosque, where the luxurions Muhammedan may offer up his orisons while he is enjoying one of the
promised blessings of his prophet's paradise. There are eighteen bathe in Bokhára, one or two are of very large dimensions; but the generatity of them bring in an annual income of 150 tillas (1000 Rapees). This is a calculation which may serve to number the inhabitants. Each individual pays to the keeper of the bath ten pieces of brass money, of which there are 185 in a rupee. About an handred people may therefore bathe for a tilla, and 150 tillas will give 15,000 people to each bath. Fighteen baths will give a total of $2,700,000$, who enjoy the luxury yearly. But the baths are only used during the cold months, and some of the poorer people are never able to afford the expense.

I did not omit to pay my respects to the minister while I ram. bled about the city, and Dr. Gerard in the course of ten days was sufficiently recovered to accompany me. The Vizier was equally inquisitive with the Nawab at Cabul regarding the manufacture of medicines and plasters, and the Doctor endeavoured to meet his wishes. We had however got into a more civilized region on our approach to Europe, since the Vizier had received quinine and other medicines from Constantinople. We sat with the minister, while he was transacting business, and saw him levy his daties on the merchants, who were never more liberally treated in any country. The webs of cloth are produced, and every fortieth piece is taken in place of duties. This gives the merchant his profits, nor distresses him for ready-money. A Muhammedan indeed has only to take the name of the prophet, stroke down his beard, and declare himself poor, to be relieved from all duties. One man said he had witnemes to prove hia being in debt, and would produce them. The minister replied, Give as your oath, we want no witnesses: he gave it, every one called out " God is great," and said the "fataha," on which the goods were retarned without an iota of charge. With every disposition to judge fao vourably of the Asiatics, (and my opinions regarding them improved, as I knew them better,) I have not found them free from falsehood: I fear, therefore, that many a false oath is taken among them. No people could be more liberal encouragers of commerce than the ralers of Bokkíra. Daring the reign of the last monarch the duties on goods were never paid till they were sold, as in the bonding syatem of a British castom-honse. The Vizier on this occasion conversed at great length on subjects of commerce relating to Bokhara and Britain, and expressed moch anriety to increase the communication between the countries, requesting that I myself would return to Bokkarre, and not
forget to bring a good pair of spectacles for his uise. Our intercourse was now eatablished on a footing which promised well : I took oocasiok therefore to express a wish to the Vixier of paying my homage to the King. I bad touched on a tender point, for it appeared that the minister had feared our being charged with some proposals to His Majesty, which we concealed from himself. "I am as good as the $A \mathrm{mmr}$," (80 the King is called,) said he, " and if you have no matters of business to transect with the ling, what have travellers to do with courts ?' I told him of our cariosity on these points, but he did not choose that we should have the honor, and that was sufficient for abandoning the suit.
I was nevertheless resolved to have a sight of Royalty, and at mid-day on the following Friday repaired to the great moeque, a building of Timourlane, and saw His Majesty and his court paesing from prayers. The King appears to be under thirty years of age, and has not a prepossessing countenance; his eyes are small, his visage geunt and pale. He was plainly dressed in a silken robe of "udrus," with a white turban. He sometimes wears an aigrette of feathers, ornamented with diamonds. The Qorán was carried in froat of him, and he was preceded and followed by two golden mace-bearecs, who exclaimed in Turkish, " Pray to God that the Commander of the Faithful may act justly!" His saite did not excood an huadred people; most of them were dressed in robes of Russian brocade, and wore gold ornamented sworde-I should call them knives, the mark of bonor in this country. His present Majesty has more state then any of his predecessors; but he may consider it necemery to affect humility in a temple, and in returning from a religious ceremony. The people drew up by. the way side as he passed, and with a stroke of their beards wished His Majesty peace; I did the same. The character of this King, Banasur Kian, stands high among his countrymen; at his elevation to the throne, he distributed all his wealth. He is strict in his religions obeervances, and less bigotted than his father Mir Hrpsz. He acts scoording to the Qoran in all cases, and it is pretended that he even lives on the capitation tax which is levied from the Jews and Findso.
The revenues of the country are said to be spent in maintaining mullahe and mosques ; but this young King is ambitious and wariite, and I believe that it is therefore more probable he turns his treasure to the increase of his power.
The life of this King is less enviable than that of most private men. The water which be drinks is brought, in sking from the river;
meder the charge and seal of two officers. It is opened by the Vizier ${ }_{\text {a }}$ and first tasted by his people, and then by himself, when it is again mealed and divpatehed to the King. The daily victuals of His Majesty. modergo a like examination: the minister eats, he gives to those around him, they wait the lapse of an hour to judge of their effect, when they. are locked up in a box and dispatched! His Majesty has one key and his minister another. Frait, sweetmeats, and every eatable undergo the same examination, and we shall hardly suppose the good King of the Uzboks ever enjoys a hot meal or a fresh-cooked dinner. Poison is in frequent request, as we may judge by the homely occupations of a minister of state. The rise of His Majesty himself to the throne he sow holds is not however without strong suspicion of a free distribution of such draughts ; but the detail of those events belongs to another portion of my subject.

I expreseed a wish soon after reaching Bokhára to see some of the unfortunate Russians who have been sold into this country. One evening, a stout and manly looking person fell at my feet and kissed them. He was a Russian of the name of Gregory Puluiofy, who had been. kidnapped when asleep at an outpost, about twenty-five jears ago; he was the son of a soldier, and now followed the trade of a carpenter. I made him sit down with us, and give an mccount of his woes and condition. It was our dinner time, and the poor carpenter helped us to eat our pilao. Though but ten years of age when captured, he yet retained his native language, and the most ardent love to return to his country. He paid aeven tillas a year to his master, who allowed him to practise his trade, and keep all he might earn beyond that sam. He had a wife and child, also slaves. "I am well treated by my master," aaid he, "I go where I chose, I associate with the people and personify the part of a Muhammedan, I appear happy, but my heart burns for my native land, where I would serve in the most despotic army with gladness. Could I but see it again, I would willingly die. I tell you my feelings, but I smother them from the Uzbiks. I am yet a Christian, (here the poor fellow crossed himself after the manner of the Greek Church, and I live among a people who detest with the utmost cordiality every individual of that creed. It is only for my own peace that I call myeelf a Muhammedan." The poor fellow had acquired all the habits and manners of an Uzbek, nor should I have been able to distinguish him but for his blue eyes, red beard, and fairer akin. He inquired of me with much earnestness if there were any. hopes of him and his comrades being released; but If
could give him no further news than the floating rumours which I had heard of the Emperor's intention to suppress the traffic by an army. He told me that the last embassy to Bokhara under M. Nsori had failed to effect that desired end, bat that the sale of Russians had ceased in Bokhara for the last ten years. There were not at present 130 natives of Russia in the kingdom.
The whole of those in Bokhara would have been released by the Ambassador, had not some religious discussion arisen on the propriety of allowing Christians who had become Muhammedans to relapse into their idolatry! The mullahs had seen the pictures in the Greek Charch, and no argument will reverse what they state to be the evidence of their senses, that the Russians worship idols. There is generally some difference of opinion on all points, and that of the Russians and Bokhóris on the subject of slavery was much at variance. The Muhammedans are not sensible of any offence in enslaving the Rassians, since they state that Russia herself exhibits the example of a whole country of slaves, and particularly in the despotic government of her soldiery. " If we purchase Russians," say they, "the Russians buy the Kazzaks on our fronticr. We are Muhammedans, and they tamper with these people by threats, bribery, and hopes to make them forsake their creed and become idolators. Look, on the other hand, at the Russians in Bokhära, at their liberty, comfort, and toleration, and compare it with the black bread and unrelenting tyranny which they experience in their native country, and which has on some occasions driven them voluntarils to us." We shall not attempt to decide between the parties, but it is a melancholy reffection on the liberties of Russia, that they admit of a comparison with the institutions of a Tartar kingdom, whose pity, it is said, is only upon a par with the tyranny of the Afghan.

With Russians, Hindús, and Uzbeks, our circle of acquaintance at Bokhára soon increased, and most of the Afghan and Cabal merchants sought our society, and we could not but feel gratified at the favorable opinion entertained by them of the British in India. One of them, Sirwar Kian, a Lohanee merchant of great opulence, to whom we were never introduced, offered us any money we might require, and did it in a manner that left no doubt of his sincerity. We were assailed by him and his countrymen, and even by Usbeks, to give notes of hand, certifying our acquaintance with them; for the Afghans believe the hand-writing to be a bond of union between Englishmen, and that the possession of it secures them an honorable reception in India. We complied with the wishes of those who deserved
our confidence. Among our other friends was a Cashmír merchant, who wished me much to assist him in the preparation of cochineal, which is, I believe, found in Bokhara, as a worm attached to the root of a wild shrub. There was also an old man named Haji Miruy, who had seen the world from Canton to Constantinople, and secretly brought many old coins and rarities which are acceptable to Europeans. The most intimate perhaps of all our acquaintance was our landlord, an U:bek merchant, named Maxhsum, who traded to Yárkand. He paid us a daily visit, and generally brought some of his friends along with him. I shall mention an incident regarding this person, which is creditable to him. He was a most communicative man, and gave me much interesting information: as our intimacy increased, I interrogated him closely on the revenues and resources of Bokhíra, on its extent and power, and produced a small map of the country to exhibit before him. He replied to all my inquiries, and then begging me to shut up the map, besought me never again to produce sach a paper in Bokhúra, since there were innumerable spies about the King, and it might be productive of very serious consequences. He still continued his visits, and his information with the same freedom as before. On our first arrival in the city, the keeper of the caravansary refused us quarters, becanse we had no character, that is, we were neither merchants nor ambassadors ; but this good man had let his house to us. He had boen attacked by his neighbours, terrified by his friends, and he himself trembled at the risk which he had incurred. The keeper of the caravansary now hid his head in shame, and the landlord shared our intimacy; his neighbours curried favor with him to be brought to us, and our society was more courted than was agreeable.

III.-On the Climate of Nagpur. By Wi. Geddes, Surgeon, Mad. Eur. Reg.

 To the Editor of the Journal of the Asiatic Society. W. T.At the request of my friend, Mr. Malcolmson, of the left wing, Madras European Regiment, I have the pleasure to forward the resalt of some meteorological observations, which he tells me may be interesting to you. I am much afraid that he may have given you reason to expect more useful information on this sabject than I have it in my power to give you; but the truth is, that I have generally confined my observations to the appearances on the sky, in the shape of clouds, and have paid less attention to the indications given by instruments; as I
have been so situated that I have either not had sufficient leisure to make a regular series of observations on the latter, or those instruments in my possession have not been sufficiently correct to allow me to depend much upon them. This you will at once observe from the circumstance of my barometrical inquiries being made on the sympicsometer, in the accompanying table; and you will perceive that the instrument I have, which was received here apparently in good order, in the month of Jannary, 1831 , from England, has become liable to the objections made to it, by yourself, in the 15 th volume of the Asiatic Researches*, and this to such a degree, that I am doubtful whether you can make any use of the results which I now send you. They fully bear out however your own observations. In Europe, it appears, the instrument is conceived to rise in its indications, instead of lowering, as with $\mathrm{us}_{\text {, }}$ at least if I may judge from a note made in the l0th volume of Brewsige's Journal of Science; although, by the bye, the remark is rather obscure. With respect to the hygrometer used by me, it is one upon Katere's plan of the oubina grasst, made by Rosinson, in Devonshire Street, which is convenient from the facilities of ascertaining its indications. Its extreme dryness is 0 , extreme moisture 9.05 , and the state of the atmosphere is at once shown from the index on the top of the instrument. By some trials made with Danirle's hygrometer, 1.64 of Katez was equal to 31 degrees of dryness, and 1.96 of the former to 26 of dryness, and 3.69 to 10 degrees, as indicated by the dew-point on Danirlif. You will perceive that I have not made my observations at the extremes of the diurnal changes in the atmosphere; but as I have already said, I have been in the habits chiefly of noting the state of my instrument more as explanatory of the appearances on the sky, than with other objects, and have accordingly chosen the periods which were most convenient to myself, for recording their indications. The state of the seasons, as extracted from my medical reports, will explain some points regarding the thermometer, and the quantity of rain given is that observed to have fallen at Nagpur at the distance of nine miles of this place, and which was recorded by Dr. Wrlliz, late Residency Surgeon there.

[^40]Meteorological Observations made at Kampti，near Nagpír，from Feb．1831，to March 1833，inclusive．

Monfh．	Sympiesometer，									Kater＇s Hygrometer．									Fahr．Thermoneter．									
	9 A．M．			$2 \mathrm{P}, \mathrm{M}$ ，			8 p．M．			9 A．M．			$2 \text { Р. м. }$			$8 \text { P. M. }$			Surise in the opes nir． 2 P．M．in the house．						8 p．M．in the house．			
		$\begin{aligned} & 6 \\ & 8 \\ & 8 \end{aligned}$	昔											宽						$\begin{aligned} & \frac{1}{8} \\ & \frac{1}{3} \\ & \underline{3} \end{aligned}$	兄		$\begin{aligned} & \mathbf{8} \\ & \mathbf{0} \\ & \mathbf{0} \\ & \hline \mathbf{0} \end{aligned}$	욜		$\begin{aligned} & \text { H } \\ & \text { N } \\ & \text { \% } \end{aligned}$		易
Feb．1831，	29.2	28.91	29.02	29.13	28.72	2887	29.12	28.75	28.92								－	－71		54	62					1	$74 \frac{1}{2}$	
	-12	$-.76$	28.95		． 62	－79	－． 03	－65	－． 83	3.36	1.20	2.03	3.18	1.03	1．89	3.16	1.15	1.71	83	55	69 2	88	72	801	88	72	80°	"
April，．．．．．	28.92	－． 54	－． 74	28.80	－4	-60	28.82	． 45	63	2.63	0.53	1.77	2.30	048	1．54	2.47	0.45	1.48	86	69	78,	931	83	88	93	80	87	
May，．．．．．．	$-.59$	－32	． 49	－． 46	$-.20$	－． 36	-47	$-.22$	． 39	1.22	0.33	0.69	1.03	0.32	0.62	0.94	0.25	0.58	93	80	88	99	92	951	98	93	95	
June，．．．．．．	－．60	$-.30$	． 45	． 50	． 13	35	-53	$-.14$	-37	4.57	0.52	2.72	5.21	0.48	2.59	4.98	0.47	2.58	95	74， 2	81	99	81	89	99	88	89	3.78
July，．．．．．	-67	$-.43$	，	． 55	－． 33	－． 41	． 59	$-.33$	－． 44	5.55	2.50	4.22	5.28	2.12	3.78	5.58	2.15	3.84	831	73	78	93	761	861	91	80	85	7.22
August	-67	43	． 55	． 55	－． 35	$-.46$	$-.60$	－． 37	$-.49$	5.75	4.57	5.49	572	3.87	5.10	5.70	4.53	4.97	78 2	73	75.	861	78.	82	83	79	81	14.58
Septemb	-68	－． 45	－， 56	． 55	$-.32$	－． 44	． 63	$-.40$	$-.50$	6.12	4.35	5.13	5.96	3.03	4.61	5.85	3.40	4.89	78	73	751	85°	79	821	83	80	81 娄	1.90
October，．．．	． 86	－． 55	－． 68	-70	－． 43	． 53	． 76	$-.50$	$-.60$	5.82	2.75	4.48	5.10	1.95	3.32	5.10	2.17	3.53	77	59	71^{2}	85	77	81	84	76	81	7.24
November	-96	-70	． 87	－．82	$-.55$	$-.73$	． 87	－． 61	－． 78	5.68	2.26	3.23	5.48	1.37	2.63	5，25	1.61	2.66	71	49	581	81	71	741	79	70	73	2.27
December	29.00	$-.83$	．91	$-.89$	-70	-80	－． 92	-74	－．84	5.75	4.90	5.32	5.93	3.57	4.97	5.83	3.98	5.11	69	60	$63{ }^{2}$	77	70	72	74	． 70	72	8.24
Jan．1832，	－．05	－，87	． 98	$-.87$	-70	． 77	－．93	-80	$-.84$	5.03	2.50	3.49	3.75	1.35	2.51	3.82	1.45	2.99	62	47	52.	74	661	693	78	66	681	
Februar	28.94	－6	． 78	$-.77$	－． 42	． 61	－． 8	－． 46	$-.69$	5.58	1.99	3.09	5.67	1.20	2.45	5.27	1.27	2.61	661	52	59	801	68		77	69	711	2.98
March，		-5	． 6	$-.61$	$-.30$	． 44	6	$-.37$	-50	3.56	1.16	1.73	3.88	0.91	1.22	3.16	1.03	1.31	70^{2}	53	62λ	84	73	80	82	71	77	．
April，	d	． 22	． 3	． 36	－． 05	$-.18$	－． 42	$-.06$	$-.24$	1.62	0.53	0.97	1.23	0.33	0.66	1.35	0.32	0.71	82	70	75	99	87	93	92	83	87	
May，	26	$-.06$	． 15	－． 12	27.93	－． 04	$-.13$	27.98	$\bigcirc 05$	1.47	0.56	0.81	5.70	－	－	－	－	－	8612	711	80	103	92	97	94	89		
June，	$-.16$	27，90	． 02	－． 02	-80	27.89	$-.04$	－80	27.92	5.85	0.77	2.31	5.70	0.73	1.80	562	0.63	2.25	894	75	813	104	82	94	98	82		
July，．．	18	－．92		-10	－． 83	－． 97	-10	$-.87$	2800	5.45	3.64	4.63	5.48	3.08	4.18	5.34	3.20	4.30	79	7312	761	87	79	844	86	79	8	14.49
August，．．．	$-.28$	28.1	，	-20	$-.98$	28.09	－． 22	28，04	－． 12	5.63	4.18	4.84	5.56	3.55	4.49	566	3.79	4.65	75	72	731	831	78	80	811	78		3.46
September，		－． 15	5	$-.13$	28.00	－． 14	－． 30	－．08	－ 20	5.78	3.08	3.99	5.81	1.66	2.74	5.72	2.26	3.45	75	68	72	86	75 ${ }^{1}$	82	84	761	81	7.77
October．．．		－ 20	． 38	－． 3	－． 06	－． 24	$-.43$	$-.13$	－． 28	3.50	1.56	2.55	2.65	0.85	1.73	3.07	0.96	1.89	76	$58 \frac{1}{2}$	67	$85 \frac{1}{2}$	78	813	84		801	
November．		－． 47	5	．	$-.33$	$-.42$	$-.55$	$-.37$	－． 47	12.32	1.90	2.11	1.82	1.27	1.24	1.89	1.48	1.67	631	54	58.	80	731	761	78	73	75	
December，	． 06		－． 52	$-.54$	－， 26	－．	$-.60$	-31	$-.44$	3.70	1.31		3.08	1.14	1.74	2.98	1.14	1.75	62	48	541	77		72 닌	741		71	
Jan．1833，	.72	－． 40		－． 55	－． 28	$-.43$	－． 64	$-.32$	－． 49	3.04	41.30	1.78	2.60	1.08	1．54	2.71	1.33	1.68	65	47	55	78		73	75	68	72	
February，	． 52	-32	－． 43	－ 35	$\triangle 16$	$-.26$	－． 42	$-.21$	-3	2.40	0.75	1.37	1.99	0.62	1.06	1.87	0.72	1.07	68	$50 \frac{1}{4}$	59	831		78	79	72	76	n
March	－． 38	－． 18	－． 21	－． 2	981			－． 03	－ 14		0.45	0.71	0.87	0.35	0.54	0.86	0.36	0.5	763	60	68	89	80	85	87	79	8	$\text { I } 9$

Rentracts of Meteorological Remarks made in the Periodical Redwors from the Medical Department of the Right Wing, Madras Ewropean Ragiment, stationed at Kampti.

First quarter of 1831.-" The period includes the last half of the cold and the commencement of the hot season. In January of the present quarter, the sky was for the most part clear throughout the month, the cloudy appearances never extending beyond a little cirrus, or cirro-cumulus, or a few cumuli dissolving in the evening; and the wind was most generally from some part of the west in the morning, and the east in the course of the day, but seldom blowing with great strength from any quarter, or continuing past sunset. The last day of January and first five days of February exhibited appearances of a more moist state of the atmosphere, with a greater variety in the clondy formations, and there was a slight rain through the greater part of the second of this month, and again more heavily in the afternoon of the fourth. During the remainder of February, likewise, a greater degree of humidity prevailed, than in January, and nimbal masses were frequently to be seen around the horizon in the afternoon, or evening. The sky was generally covered with a layer, more or less dense or irregular, of a cirro-cumulous nature in the morning, and from this occasionally a few drops of rain were found to fall about sunrise, while cumuli succeeded to this in the course of the day. On the third the sky was obscured by a fog in the morning, and again on the 2 ast and 22 nd a less degree of this description of cloud was present at the same time, in either case ending in cumuli. These cumuli, from whatever source originating, often changed into cirro-cumuli in the evening, and in other cases went on at an earlier part of the day, to form cumulo-strati, or nimbal clouds an various parts of the horizon. Excepting from the latter cloods, cirrus was but rarely seen, and there were only three perfectly clear days throughout the month. The wind, which was occasionally modified in the afternoon by the presence of clouds, observed the same general course as in January ; but occasionally southerly wind began early in the forenoon, changing afterwards to one from the north-east, and this also was often found blowing more steadily than in the preceding month. The month of March presented occasional short periods of a moist description, having cumulo-stratus masees formed in the afternoon, and from one of these a considerable fall of rain took place on the night of the 10th. At other times, the appearances were mach like those of the preceding months, but in a less degree, and the wind in general followed the same course as in February."

Second quarter of 1831.-"This period, as mentioned in former repert, includes the height of the hot eeason, and the commencement of
the rains. The seasons in general in this country, succeed to each other with so much regularity, and each in its appropriate period exhibits so little variety in the circumstances of diferent years, that it appears unnecessary to enlarge upon those of the present season, further than to point at same period of last year. Referring therefore to my report for this quarter of 1830, I have to state, that the chief peculiarities of the present season have been a greater, and more continued; degree of heat, than in the hot months of last year, a somewhat more early occarrence of the rains, and their being in greater abundance than during the month of Jone, in 1830. In the beginning of April, several showers fell, and one* of these, on the 8th of the month, consisted of hailstones, the largest of which varied from six to nine inches in circamference. From this period, however, on to the commencement of the monsoon, with the exception of a few drops at distant periods, no rain took place, and this space of two months was one unbroken continuation of hot-weather. During this time a registering thermometer, exposed to a breeze in an outer room, shewed the rising of the quicksilver daily from the 27th of April to the 7th of June, with three exceptions, to from 100 to 107. To this succeeded the rains, which commenced on the afternoon of the latter date, and throughout the remainder of the month showers took place almost daily; the quantity of rain by the end of the month being nearly double that of the same period of last year."

Third quarter of 1831.-" This period comprises the chief part of the rains, and at the same time the most unhealthy portion of the year. As mentioned in last report, a great quantity of rain fell in June; but this was followed by a dry period of twenty days, viz. from the 22nd of June, until the llth of July. The remainder of the latter month was, generally speaking, wet, especially towards the end of the month ; bat altogether the rain which fell in July was somewhat below the quantity in the same period of last year. The month of August in both years has been attended with the most continued rain of the season, and this has kept up a continued degree of moisture on the sarface throughont the month. In September, there have been a few larger intervals of fair weather, but occasionally heary falls of rain have taken place, and the ground has been in a constantly moist state in consequence. The monsoon, on the whole, has been accompanied with the verage quantity of rain, the chief peculiarities being the extensive fall in June, and the succeeding dry weather until the middle of July. The wind, as usual, has been chiefly from the westward, and, at times, the early part of the season, has blown with considerable strength.
. Vide page 5.
Digitized by Google

In the month of August, however, and more especially in September; there have been occasionally north or south easterly winds, and some of these have been attended with heavy falls of rain."

Fourth quarter of 1831.-"The weather throughout the quarter has shewn little of that settled appearance which formed its priacipal feature in the same period of last year, and which is usual at this season. A greater tendency to the formation of cloudy masses upon the sky. and the frequent deposition of rain from these, has continued to prevail after the termination of the usual rainy months, than was manifested during the same period of 1830 , and has given altogether to the present season the peculiarity of a combination of cold and moisture; bat. at the same time, a less degree of extreme heat and cold, than are usual at Kampte at this period of the year. The rain has fallen particularly. from the 15th to the 20th of October, in the first and last week of Noveaber, and in the beginning, and from the 15th to the 26th of December. The winds have in the intervals of settled weather followed their usual course in these months, of blowing slightly from the centward in the fore and afternoons, and occasionally in the evening; while, in the night and morning, there has either been a calm, or a alight wind from the westward. In the more unsettled portions of the quarter, the wind has either been irregular, or modified by the presence or passage of raining clouds, or it has shifted from either the northcant or south, to another quarter, from whence it has blown for a day or two, and the change has been generally attended by a greater or less degree of rains."

First half yearly return of 1832.-"The period, comprising the last half of the cold season, the whole of the hot-weather, and tie commencement of the rains, has altogether been a favourable one with respect to the health of the regiment : and this circumstance appears to be referrible to the genial nature of the season, the temperature of which remained cool to a much later period than is usual ; while along with this coolness, there has been more generally present a dry state of the atmosphere, than in the same seasons of the preceding years. The extreme heat, in the table prefixed, of Fahrenheit's thermometer appears greater, from the observations being taken in the two latter months, on a registering thermometer, and the records being made from the hottest period of the day. The general features of the weather have, as recorded in former reports, consisted, in the early part of the half year, of cool, generally cloudless, days, with little wind。 diversified on the 20th of February by a considerable fall of rain, with wind from the eastward; and, latterly, until the 8th of Jone there hae been a gradual or irregular increase of temperature, with occasional
marks of greater moisture in the atmosphere ; but excepting slightly on the 20th of March, no rain has fallen beyond a few drops till the period of June above-mentioned. The course of the season altogether has been observed to be more backward than is usual. The temperature has remained low to a later period; the progress of vegetation, as exhibited in the time of flowering of trees, and the maturation of their fruits, has been considerably behind what has been observed in previous years; and connected perhaps with the same cause, the rains have been beyond their more regular season of shewing themselves. Thus, after a little partial rain on the 8th of Jone, the hot winds recommenced, and there was no further fall of rain until the 17th of the month; since which period, till the date of this report, the season has resumed ita unal course, and the weather has become moist and cool, with occamional falls of rain."

6th. Second half year of 1832.-"The period which-includes the greater part of the rainy season, and half of the cold weather, has been diatinguished by the abrupt cessation of the former, and the long continuance accordingly of a dry state of the atmosphere, with its necessary consequence of a less degree of moisture of the soil, and of vegetation ; and, as will be supposed also, of sources of malaria. The regular mins may indeed be said to have terminated in the end of July in the present season; for in the month of August, in which usually the most continued or heavy falls take place, there has only been about a quarter of the usnal supply, divided however very generally over the whole month; while in September, about half the quantity of the last two years has fallen, the greater part of which took place in the first four days of the month, and again on the 20th and 21st. Since this period, with the exception of a single shower on the 7 th of October, and a slight rain on the 10th of December, the weather has been perfectly dry, exhibiting a settled appearance, with a cloudless sky; or it has been more or less disturbed by the presence of rain or storms in neighbouring latitudes, chiefly, it would appear, from other observations, to the eastward. Altogether, the quantity of rain of the present season does not exceed half of that of 1831, or two-thirds of 1830; and the fall is further peculiar in this, that unlike that of last year, which continued heavily on through the months of August, September, October, November, and December, and of 1830, which was also heavy in August and September, with a considerable fall likewise in October, the chief portion of the present year has taken place in the months of June and July, with only a scanty supply afterwards."
Dering the months of Jannary, February, and March, 1833, the chief feature has been the continued dry state of the atmosphere; and, accord-

Ingly, the cloudy appearances, which have for a day or two, at times, shewn a less degree of this state, have never gone on to rain further than a few drops; while the weather has generally continued for long periods of an extremely settled appearance.

The hail-storm on the 8th of April, 1831, was referred at the time to the occurrence of an opposite current of dry winds, which appeared to impinge upon the sheet of rain presented to its influence, and the following description, taken from notes immediately afterwards, seems to confirm this idea. Neither the sympiesometer or thermometer shewed any thing worthy of notice at this period. The hygrometer had through the 6th and 7th of the month ranged from 1.40 to 1.72 , and during the 8th, it stood at 2.17 at 9 A. M., 2.12 at 2 p . m., and 2.22 at 8 p. M. Until past 2 p. m. the appearances on the aky had been cirrus from a distant nimbal cload in the morning, cirro-camulas, loose cirro-ztratus, and some cumuli, passing below this, also of a loose structure. The wind had been blowing from the eastward in the morning, changing in the forenoon to the south-east, and continuing from thence afterwards; but towards 2 p. x. the course of the comuli above shewed a current of air flowing there from the westward. Shortly after two, some distant thunder was heard, and the sky had become nearly covered with cirrus. Cumuli were observed to commence nining in the west, and they increased in size, and approached from that direction about 4 p. M. Another nimbus was seen in the south-eastward, while that in the west was advancing, and lond gusts of wind with much dust began blowing from the former towards the latter. In the mean time, the western cloud kept approaching, the rain falling from it, presenting a whitish appearance above the dust, some scad was seen passing before it, in a course towards the east, and immediately a heavy fall of hail took place, driven by a wind from the weatward. The hail continued to fall for several minates, and the course of the cloud towards the east could be traced for at least four miles, by the damage done to the fruit trees, glazed windows, \&c. in the cantonment. The breadth of the shower however was extremely small, the ground being found quite dry at a few hundred yards to the sonthward from where the hail, or rather the masses of ice, fell in greatest quautity. These masses were irregular, and clean on the outer sarfice; but in the centre presented a white crystallized appearance. Throughout the evening afterwards, several large cumulo-strati were seen in the east, with much lightning there; and a cool breeze blew from thence. with cumulous fragments of clond on a clear sky.
IV.-Table shewing the Rise of Spring tides in Bombay Harbour, during night and day, for the year 1832, commanicated bg Ben. Noton, Esq.

Date and state of the Moon.	Rise of the Tide.				Date and state of the Moon.		Rise of the Tide.			
	Day.		Night.				Day.		Night.	
January 14		in.				11		in.	ft.	${ }_{6}{ }_{6}$
		6		0		12	13	9	15	6
16		3		5		13	14	6	15	9
017		0		9		14	15	6	16	0
18		9		11		015	15	9	16	0
19		0				16	16	0	15	5
20	16	0	17	6		17	15	8	14	6
21	15	6	0	0		18	15	2	1	0
28	0	0	12	6		26	0	0	12	9
29		3	13	6		27	12	9	13	9
30	12	0	14	3		28	13	6	14	3
31	12	6	15	0		29	14	6	14	9
Pehruary 1	13	2	15	5		$\bigcirc 30$	15	6	15	0
		6	15	7	May	1	16	3	15	5
3		0	15	7		2	16	7	15	3
4	14	2	0	0		3	16	9		0
12	0	0	13	6		10	0	0	13	3
13	12	6	14	8		11	13	3	14	0
14	13	6	15	9		12	14	3	14	3
15	14	6	16	9		13	14	9	14	3
016	15	3	17	5		014	15	0	14	3
17	16	9	17	5		15	15	0	13	9
18		9	17	0		16	14	9	13	3
19	15	3	0	0		17	14	3		0
27	0	0	11	6		26		0	13	
28		0	12	9		27	' 13	6	13	6
March ${ }^{29}$	11	6	14	0		28	14		14	3
March ${ }^{1}$	13	0	15	0		29	16	0	14	6
\bigcirc	14	0	15	9		\bigcirc	16	3	14	6
3 4	14	6	15	9		31	16	9	14	6
4	15	0	15	6	June	1	16	9	14	3
5	14	9	0	0		2	16	6	0	0
12	0	0	13	6		9	0	0	13	0
13	12	6	15	0		10	14		13	6
14	14	0	16	3		11	14	9	14	0
15	14	9	16	9		12	15	3	14	3
016	15	6	17	0		013	15	6	14	6
17	15	9	17	0		14	15	9	14	9
18	16	0	16	6		15	15	11	14	9
19	16	0	0	0		16	15	9	0	0
27		0	12	3		24	0	0	13	0
28	11	6	13	6		25	14	0	14	0
29	12	9	14	9		26	15	6	14	6
30	13	9	15	0		27	16	6	14	9
Apri ${ }_{1}^{31}$	14	${ }^{6}$	15	3		$\bigcirc 28$	17	0	15	0
April ${ }^{1}$	15	3	15	9		29	17	6	15	3
2 3		9	16	0		30	17	9	14	9
3		0	0	0	July	1	17	3	0	0

Date and state of the Moon.	Rise of the Tide.		Date and state of the Moon.	Rise of the Tide.	
	Day.	Night.		Day.	Night.
July 8	$\begin{array}{rr}\text { ft. } & \text { in. } \\ 0 & 0\end{array}$	12 in.	October 5	ft. ${ }_{0} \mathrm{in}$.	$\begin{array}{ll} \text { th. } & \text { in. } \\ 11 \end{array}$
9	130	126	6	129	126
10	139	129	7	139	136
11	143	130	8	140	143
12	147	130	9	145	150
013	147	130	O10	150	153
14	1411	130	11	150	156
15	$14 \quad 11$	00	12	149	00
23	00	120	20	00	139
24	140	130	21	149	149
25	153	140	22	153	156
26	163	150	23	156	163
-27	17 3	156	-24	156	163
28	176	160	25	153	160
29	179	163	26	149	156
30	173	00	27	135	00
Anguat $\begin{array}{r}7 \\ \\ \end{array}$	$\begin{array}{rr}0 & 0 \\ 13 & 3\end{array}$	$\begin{array}{ll}11 & 9 \\ 12 & 3\end{array}$	November $\begin{aligned} & 4 \\ & \\ & 5\end{aligned}$	$\begin{array}{rr}0 & 0 \\ 13 & 3\end{array}$	$\begin{array}{rr} 12 & 6 \\ 13 & 16 \end{array}$
9	143	128	6	139	146
10	146	133	7	143	159
011	149	136	$\bigcirc 8$	14.9	163
12	150	1310	9	1411	166
13	151	1310	10	147	163
14	151	00	11	140	00
22	00	123	18	00	140
23	143	133	19	140	149
24	156	146	20	146	156
25	166	150	21	149	163
-26	169	159	-22	149	163
27	169	160	23	143	163
28	169	159	24	140	159
29	163	00	25	136	00
September 5	00	116	December 3	00	130
. 6	129	119	December 4	130	140
7	136	126	5	136	150
8	143	133	6	143	166
9	149	140	7	149	170
10	150	143	$\bigcirc 8$	150	178
011	153	146	9 9	150	178
12	153	00	10	150	00
20	00	120	18	00	140
21	143	130	19	133	149
22	150	143	20	133	153
23	160	153	21	133	159
24	163	1510	$\bigcirc 22$	136	160
25	163	160	23	136	160
26	160	156	24	130	153
27	149	00	25	130	0 O

V.-On the Native Manufacture of Twopentine.

It would be an useful point of inquiry to discover in how far we may turn the natural as well as artificial prodncts of this country to account, without looking elsewhere, and particularly to Eagland: in the shape of magazine stores, Government has from the beginning been importing articles of various descriptions at a great expence, and at great risk; many of which are not only procurable in the country, but to be purchased at a rate much lower, and of a quality infinitely superior, to those from England. No person acquainted with the interior of an arsenal or magazine, who has given the matter any consideration whatever, can be at a loss to see how the question applies, and both as a matter of economy, and as a method of introducing stores of a better description into the public depôts, a professional officer could not better apply his attention, than in endeavoring to prove to Government the value of such an inquiry. I will, as opportunity offers, bring forward points that come under my immediate observation; and although to many people the subjects of discussion may appear trifling and uninteresting, or unworthy of that consideration, that I am inclined to give them, it must still be recollected, that a very trifling saving on the rate of an article much in requisition is a matter of considerable importance, where the consumption of the article in question is great.

In commencement of the subject, I will take the common fir (Pinus longifolia), native name chir, in great abundance in the lower line of hills that skirts the Dúms, or valleys (at the foot of the Himalayas), and separating them from the plains. From this tree the natives obtain, in their rough way, tar and turpentine, and use the wood for work where lightness is required. The tar made by them, I imagine, is equal to that obtained by a more refined process, and the turpentine merely requires that attention which every establishment under the eye of skilful management could give, in producing the article as good as that from Europe. The method of obtaining tar, as put into practice by the natives at.the foot of these hills, is more simple, and apparently better than what is described as the custom in Norway, and other countries in Europe, where tar is made by the foresters. The wood selected for the purpose is that which has either been cut or blown down the previous season, and which is dry. This is cut up into small pieces, and put into large earthen pots, holding about 10 seers (or gurtass), with narrow necks, through the bottom of which holes of about $\frac{1}{3}$ of an inch have been drilled. A pot so filled with the wood is then lated over with wet mud on the top and siden, and a hole being dug in the
ground, a smaller pot, holding about $\frac{3}{4}$ of a seer of the same description as the above, is placed in it, over which the large one is put, and the space round refilled with earth; a heap of cow-dang, about 15 seers, is then piled over the whole, (which during the operation requires replenishing. with about an equal quantity;) this is set fire to, and kept burning for about eight or nine hours, after which, the pots are remored, and the tar which has run off into the lower vessel, is put aside into a receptacle for that purpose: each pot runs off about five chittaks of tar, and gives a refuse of about a seer of charcoal-five men will make about two maunds and 10 seers, or nine of these pots full of tar, during the month, and the expence of the article will be as follows:

> 1. One head man, at per month,.................... 500
> Four men, at each four rupees, 1600
> Purchase of pots and sundries,.................. 100

Total,.................
Which on $2 \frac{4}{4}$ maunds will give arate per seer of three annas and 11 pie, nearly, from which is to be deducted the value of the charcoal, which in a large manufactory is considerable ; in the above seven maunds, 35 seers, which in the forests would sell for two rupees, reducing the rate per seer of tar to three annas seven pie nearly. This tar is used on the boats on the Doab Canal, and also on the wood-work of the dams and regulating bridges, and wherever a weather boarding mixture is required; and I believe it may be recommended in every way. The common native turpentine is used also with the tar for these purposes. The fir wood itself is good for boxes, table, planks, and articles of that description, and also makes floats for rafting the heavier varieties of wood: it has also been used in making boats, (an experiment tried from its lightness, and cheapness of working,) but without that success that was anticipated, the planking having become completely rotten and unserviceable after the work of two seasons. The natives hold the wood in no esteem whatever, but experience has shewn that for the purposes above-mentioned, namely for boses, \&c. this fir is as good as the common deal, and from its excessive lightness is certainly to be highly prized.

Fig. 1. of Plate IX. exhibits a sectional view of the simple turpen-tine-still of the natives; a is the vessel in which the wood is heated; b that in which the turpentine is collected.
B.

Northern Doab, Marck 26th, 1833.

VI.—Description of a Sun Dial in the Cowrt of the Moti Masjid, in the Fort of Agra. By Capt. J. T. Boileav, Engineers.

Among the curiosities of this once great emporium of learning and art, which have attracted the attention of strangers, is a dial-plate of white marble, with lines inlaid on its surface of a black slate; similar to the accompanying sketch. The style, which appears to have been an upright round pin, is gone, and the inlaying has been pulled out ; but the configuration of the lines is still perfect, being marked by the channels wherein the inlaying fitted. The breadth of these channels is about ${ }_{8}$ th of an inch.
The dial-plate is set up in the court of the Moti Masjid, a building which was constructed in the latter end of the reign of Aurangzib, about the year 1673, and it is probable that this dial was put ap about the same time; but whether in its present site and position, or elsewhere, I bave not been able to ascertain.
The absence of hour lines, excepting xiI and VI A. м. and p. м. would lead to the supposition, that the object for which the dial was constructed had reference only to the times of Mussulman prayer; but the object of the circular arc, which subtends an angle of about 95 degrees, has never been explained, although many celebrated Moulavis have visited the Masjid and examined the dial as it stands.
The surface of the dial inclines south about $\frac{3}{8}$ ths of an inch, which leads me to believe, that it has been removed from the place where it was originally fixed; for the inclination is too small to affect the projection of the shadow of the gnomon in any sensible degree, and I believe, therefore, that it stood originally in a perfectly horizontal position.
With regard to the true north point of the dial, it is difficalt from the mere inspection of the lines upon it to come to any determination. The Moti Masjed stands in lat. $27^{\circ} 9^{\prime}$ nearly, and the sun's greatest declination N. being $23^{\circ} 27 \frac{1^{\prime}}{}$, he of course can never approach nearer our zenith than $3^{\circ} 41^{\prime}$. to the south. It is not possible, therefore, that the circular arc, which is inclined about 29° to the present meridian line, could under any circumstances mark the path of the shadow of a style placed as the style of this dial was, in a vertical position.

Agra, Marck 21st, 1833.

VII.-Catalogwe of the most remarkable Celestial Objects visible in the horison of Calcutta, arranged in order of Right Ascension. F *

We have obtained permission to give publicity to the following catalogue, which was drawn up by Sir J. S. W. Herscrelle, to accompany the ten feet reflecting telescope sent out to India by that distinguisbed astronomer for the private use of his relations in this country. It will of course answer equally well for other telescopes, and will in some measure serve as a test of their goodness and space-penetrating power.

The names and numbers in the last two columns refer to Boot's maps of the constellations, which afford a ready means of finding the place of the object in the heavens, as they represent the stars of the celestial sphere direct, whereas upon the globe they are necessarily reversed. But to those who do not possess Bodz's maps, the right ascension and declination will, with a little more troable, enable the common observer to discover their position, while the astronomer with his transit will find out the whole with ease*.

Eapplanation of the signs used in the Catalogue.

Cohumen 1, contains an enumeration of the whole. One asterisk (*) pleced agoinat a number denotes that the object is striking; two "asterisks (*) that it is particularly curions.
Columen 2, contains the right ascension in hours, minutes, and seconds.
Columen 3,——— the declination in degrees and minutes.
Coturn 4, N and S, indicate whether the declination is north or south.
Cohumen 5, gives the authority whence the objecta are extracted. The Roman numbers ' I. II. III.' \&c. refer to Sir W. Herscrizli's catalogue of nebule and donble stars by classes.
Δ refers to Dunlop's catalogue of southern nebnle. Δ^{\prime} ditto to ditto, double stars. M ditto to Messier's nebule.
Comman 6, describes the object by the following signs.
N , nebula.
D, double.
\oplus, globular cluster.
O, planetary nebule.
8, cluster of irregalar figure.
\bigcirc, nebulous star.
Cohmm 9, refers to the numbered maps of "Bode's Comotellatione."

- Our readers will remember the announcement at Bombay, in October hat, of the discovery of Biela's Comet, which from its being so stationary was supposed to be coming direct towards the earth : the situation of the object proved it to be the nebula in Andromeda, No. 3. When really seen by Sir John Herescrill on the 23rd September and again in November, the comet did however really appear eract y similar to a faint circular nebula.

	$\begin{aligned} & 4.8 \\ & 4.8 \\ & 8 \\ & 8 \end{aligned}$		$\left\|\begin{array}{c} \infty \\ \vdots \\ \vdots \\ \dot{z} \\ \dot{z} \end{array}\right\|$	寅	-0	Description of Object.		\%
1	$\left\|\begin{array}{lll} \boldsymbol{A}_{1} & \text { n. } & 0 \\ 0 & 6 & 50 \end{array}\right\|$	${ }_{40} 10$	S.	A 507	N.	"A beautiful long nebula.	Apparatus Sculptoris.	17
2	02316	6356	S.	$\left\|\begin{array}{ll} \Delta^{\prime} & 1 \end{array}\right\|$		β Toucani. iv. class. 4th $=4$ th mag. a superb D. Star-but barely rises above the Calculta horizon.	Toucan.	20
-3	03326	4021	N.		N.	The great nebula in Andromeda.	Andromeda.	4
4	03851 03913	5655	N.		D.	η Casoiepeim. A Binary star, of finely contrasted colours.	Cassio- peis. Cetus.	17
\bullet		2616	S.			A very large long neb.	Cetus.	
,	14.6	639	N.		D.	§ Piscium.		1
8	11943	3331	S.	$\Delta^{\prime} 3$		"A star 7 m of a very uncommon red-purple colour. Very dusky, \&c.'	Machina electrica.	17
9	12415	2952	N.	M. 33	8	A fine large cluster, 18' diame-	Pisces.	11
10	14413	1827	N.		D.			11
11	14720	3655	N.	VII. 32	8	A large and very rich cluater.		4.
-12	15316	156	N.		D.	a Piscium. II Class.	Pisces.	11
13	15329	4131	N.		D.	$\boldsymbol{\gamma}$ Andromeds. A superb double star of strongly contrasted colours.	Andromeds.	4
14	2653	5622	N.	VI. 33	8	$\left\{\begin{array}{c} \text { A pair of fine rich clusters, } \\ \text { almost joining. In the } \end{array}\right.$	Perseus.	*
15	2946	5621	N.	VI. 34	88	sword-handle of Perseus.		
-16	2310	4159	N.	M. 34	88	The Brilliant cluster in Perseus.	Persens.	4
17	23412	044	8.	M. 77	N.	Very bright nebula.	Cetus.	17
18	25119	410	S.	$\Delta^{\prime} \quad 9$	D.	θ Eridani. Magn. 4 and 6 ; dist. $10^{\prime \prime}$.	Eridanus.	20
19	3747	5553	S.	- 337	\oplus	A small bright globular cluster.	Horolo-	20
$\begin{aligned} & 20 \\ & 21 \end{aligned}$				IV 63		A pretty bright planetary ne-		
21	35140	6025	N.	IV. ${ }^{33}$	O	A pretty bright planetary nebula. 1^{\prime} diam. invis. to naked eye.	Camelopardalis.	5
22	35828 4638	30 20	N.	IV. 69	3	A star 8 m with a mebulous atmosphere. A most curious object, but probably difficult to find, being invisible to the naked eye.	Persens.	17
24	44352	2814	1N.	IV	O	A very bright pianctary ne A ruby-coloured star 8 m .		$1 \begin{aligned} & 17 \\ & 18\end{aligned}$
25	5622	824	8.		D.	Rigel. The companion is very small, and only $\mathbf{9}^{\prime \prime}$ distant from	Orion.	12
-26	570	4115	8.	A 508	\oplus	the large star. Described by Dunlop, as the brightest small nebula he has seen, diam. $1^{\prime} \frac{1}{2}$.	Cala.	18
27	51434	3538	N.			The claster in Auriga.	Auriga.	${ }^{5}$
28	5248	2149		$\left\lvert\, \begin{array}{ll} \mid & 1 \end{array}\right.$		An irresolvable nebula (near	Taurus.	12

	安宫			忘京	$\stackrel{\text { ¢ }}{0}$	Description of Object．		｜ris
51	$\left\lvert\, \begin{array}{cc} \text { h. m. } \\ 11 & 11 \\ \hline \end{array}\right.$	1356		M． 66	N．	A very bright lengthened ne－ bula．	Leo．	13
${ }^{-52}$	121650｜62	${ }^{62} 7$		$\Delta^{\prime} 123$	D．	a Crucis，2nd class．The brightest and most remarkable double star in the southern hemis－ pheret．Barely rises ubove the Calcutta horizon，high enough to be tolerably well seen． \dagger a Centauri excepted．	Crux．	0
53	122752	2655 N		V． 24	N．	A long sword－shaped nebula．		7
－	12333	031			D．	$\boldsymbol{\gamma}$ Virginis．One of the most re－ markable of the Binary stars． Period of revolution 513 years． Close and difficult，and becom－ ing more so．	Virgo．	4
－55	123356	3329 N		V． 42	N．	A very long narrow nebulous	Canes Venatici	7
56					D．	a Canum．Cor．Caroli，4th class． Contrasted colours．	Canes Ven．	7
57	124832	2236 N		M． 64	N．	A nebula with a nucleus and a black recess．	Coma Ber．	7
	$3 \begin{array}{ll} 13 & 477 \end{array}$			M． 53	\oplus	A condensed globe of stars．	$\begin{gathered} \text { Coma } \\ \text { Ber. } \end{gathered}\{$	7
59	$\left\lvert\, \begin{array}{ccc}13 & 7 & 4 \\ 13 & 15\end{array}\right.$			M． 63	－	A very bright extended mass of stars like the finest dust．	Canes Ven．	7
	13153	2858 S		$\Delta \quad 628$	\oplus	A globular cluster suddenly con－ densed toward the centre to an extraordinary degree．	Centau－ rus．	19
1	$1,13160 \mid 4$	4634	s．	$\triangle 440$	\oplus	∞ Centauri－not a star，but a very large and splendid globu－ lar cluster－the finest in the southern hemisphere．	Centau－ rus．	19
＊＊62	132240	483	N．	M．51	©	A most wonderful object．A globe surrounded by a dou－ ble ring of nebula．－It has a neb．near it，as a compani－ on．It is unique in the hea－ vens．	Canes Ven．	7
63	133449	2913	N．	M． 3	\oplus	A much compressed cluste		7
64	1358115	15513		M． 101	N．	A very bright nebula	Ursa	6
65	141027			$\Delta^{\prime} 159$	D．	$\boldsymbol{\gamma}$ Centauri，3rd class， 5 and 8 m ．		20
－66	14280	606	S．	$\Delta^{\prime} 165$	D．	a Centauri，4th class，lst and 4th magnitudes．Distance 19．＂The brightest double star in the S ． hemisphere．Very low in the S．horizon，but may be occasi－ onally pretty well seen．	Centan－ rus．	20

				宮号	＋	Description of Object．		g 8 8 8 8
＊89	$\left.\begin{array}{lll} h . & m . & s \\ 18 & 3 & 48 \end{array} \right\rvert\,$	650	N．	Strave．	0	A very bright planetary disc，5＂ diameter．	Scutum Sobieski．	9
90 91	181045	1615	S．	M． 17	N．	The 10 －feet will probably only shew this as an oval nebula，but its true shape is \quad 亿o and it is one of the most curious objects in the heavens． Very bright and pretty large．	$\begin{gathered} \text { Scutum } \\ \text { Sobi- } \\ \text { eaki. } \end{gathered}$	15 9
91	181937	3231	S．	M． 69	\oplus	Very bright and pretty large．	Sagitta－ rius．	15
92 $* 93$	$\left\lvert\, \begin{array}{lcc}1825 & 41 \\ 1838 & 6\end{array}\right.$	$\left\lvert\, \begin{array}{cc}24 & 3 \\ 39 & 30\end{array}\right.$	S．	M． 22	\oplus	Very large globular cluster， $\mathbf{8}^{\prime}$ diameter．	Sagitta－ rius． LyTa．	15
－93	1838 6｜	3930	N．	［ 2	D．	e Lyre．A double－double star， each pair，being a Binary，and probably the whole a com－ pound quarternary system： a very pretty object，and very easily found．		8
94	184159		S．	M． 11	\oplus	The cluster in Antinous．		9
		3250	N．	M． 57		An elliptic ring－a most singu－ lar object．Is easily found，as it lies hardly half way be－ tween β and $\boldsymbol{\gamma}$ Lyrse，and is visible in the finder（but barely）．	L	
－96	192352	2737	N．		D．	B Cygni．A beautiful coarse D star of finely contrasted co－ lours．	Cygaus．	
$\begin{array}{r}97 \\ \hline 98\end{array}$	$\left\|\begin{array}{lll} 19 & 28 & 55 \\ 19 & 34 & 6 \end{array}\right\|$	3120 1433	S．	M． 55	\oplus	Very large rich cluster， 9° dia－ meter． $10^{\circ \prime}$ or 15°	Sagitta－ rius． Sagitta	15
－989	$\left\|\begin{array}{lll} 19 & 34 & 6 \\ 19 & 52 & 48 \end{array}\right\|$	$1 \begin{aligned} & 1433 \\ & 2220\end{aligned}$	S．	IV． 51	O	$10^{\prime \prime}$ or $15^{\prime \prime}$ diameter．Considera－ bly bright．	Sagitta rius．	15
－99	195248	2220	N．	M． 27	\mathbf{N}.	A most extraordinary object． a dumb bell，and involved in an elliptic faint atmosphere． N．B．The 10 －feet reflector will not shew the atmosphere，but the body will be well seen．	Vulpecu－ la．	
100		2224	S．	M． 75	\oplus	Very bright，large，round．		${ }_{16}^{15}$
101	20155	1933	N．	IV． 16	\bigcirc	45＂diameter．Round，pretty bright．	Do．	${ }^{16}$
102	$\left\lvert\, \begin{array}{lll} 20 & 25 & 17 \\ 20 & 38 & 8 \end{array}\right.$	710 1529	N．	I． 103	N．	Very beautiful，large，easily re－ solveable． $\boldsymbol{\gamma}$ Delphini．	Delphi－ nus． Delphi－	10
104	205456	121	S．	IV． 1	0	One of the largest and finest of the planetary nebula，near y Aquarii，by which it is easily found．	nus． Aquari－ us．	16

VIII.-Description of a Compensation Barometer, and Observations os Wet Barometers. By J. Prinsep, Sec. \&c.
Where a daily register of the Barometer is kept, it becomes a serions labour to apply the correction for temperature to every obserration : this inconvenience has led to the sappression of the correction altogether in the tables published at the Surveyor General's office; but whoeyer may have occasion to use these valuable meteorological records must himiself reduce the indications of the Barometric columns to the freering ppint, and therefore little is gained by omitting the correction in the first instance.

With a stationary barometer, in a climate liable, to but small and regular alternations of atmospherical pressure, it is yery easy to avoid all this labour, by attaching a compensation tube for the adjustment of the index point. I have been in the habit of using one with the instrument of which a register is kept at the Assay Office, and as it is very simple and easily made, I shall beg leave to describe it, referring to the drawing of it in fig. 3, Plate VIII.

The height of the mercurial column in a barometer depends directit upon the weight of the atmospliere, and inversely upon the density, or specific gravity, of the quicksilver, which is liable to alteration by

Jour. As.E. ©

D, Daltan
B, Southere
$\boldsymbol{U}, U_{r e}$
R, Robison

190
-1
\vdots
\vdots
\vdots
\vdots

change of temperature. When the accurate pressure of the air therefore is required, the height of the column must be reduced to what it would be at some fixed temperature; and the freezing point, 3° Farh. has been universally adopted for this purpose.

Suppose, therefore, by the side of the barometer tabe another truly cylindrical tabe of glass to be arranged (as in the plate), closed at its lower end, and having mercury filled in to the same height as that in the barometer: it is evident that this mercurial column will expand and contract with heat and cold, (or alter its density) in the same proportion as that within the barometer itself; and if the scale of inches be connected with an index-mark or sight capable of sliding on the second-or, as it may be called, the compensation tabe, so as to afford the means of adjustment with the variable surface of the mercury within the latter, the barometrical height will be read off at once with the requisite correction. It may be objected, that a different length of mercurial column will require a different length of compensation tube; but where, as in India, the utmost variation of the pressure does not exceed one inch, nor the variation of temperature, 40 degrees; the trifling error from this cause may be neglected; for the expansion of mercury being 0.0180 from 32° to 212°, or .0001 per degree, we have the expension of 30 inches for 40 degrees $=.0040 \times 30=.120$.
ditto for 29 inches, $.0040 \times 29=.116$.
extreme difference, 004
which is not more than the usual errors of observation.
There is another point to be attended to, however, in which the celebrated meteorologist Danirle was at fault, until corrected by Gay Lussac. On account of the expansion of glass with heat, mercury will appear to expand less in a glass tube than it actually does expand in the proportion of $\frac{r^{2}, ~}{}$ to $3_{x^{1} 3^{*}}$: that is, in the example given above, the expansion in the compensation tube of 30 inches long, for 40 degrees, instead of .120 will only be .103 ; whereas in the barometer, which is open to the cistern below, the height of the mercury is determined on hydrostatic principles, and is altogether independent of the dimensions of the glass tube. To obviate this source of error, the length of the compensation column must be increased in the above ratio of 555 to 648, or where the barometer stands on an average at 30.000 inches, the compensation column must have a length of $30 \times \frac{9}{i z i}=35.0$ inches.
where the mean height is 29 inches the length will be

[^41]\[

$$
\begin{array}{ll}
\text { for } 29 \text { inches. } & 33.8 \\
28 \text { ditto. } & 32.5 \\
27 \text { ditt. } & \text { \&c. }
\end{array}
$$
\]

But, should such length be inconvenient, advantage may be taken of tubes that are not quite cylindrical, by placing the tapering end uppermost, and calculating the effect of the excess of mercury below apon the range of the narrower part of the column : thus, in the instrument of which the drawing is given, 32 inches was the compeasating length required.

To prove that the indications of this instrument were equally trastworthy with the equated results of a common barometer, a series of comparisons was made both with the Surveyor General's standard instrument (through the medium of the printed register) and with an excellent Dollond's barometer placed close to mine : the results were as follows:
My barometer lower than Surveyor General's in June, 1832.
in March, 1833.

These accordances at opposite seasons of the year are sufficient to establish confidence in the compensation barometer. I should add, that am indebted to Mr. Barrow, H. C. Instrument maker, for carrying my views into practice, and adapting the slow-motion screws and clamps in a neat and efficient manner.

While on the subject of barometers, I would take occasion to cantion all observers who are in the habit of using Enolizizıd's open tabes, that they should only be filled with mercury when the air is in a very dry state. This remark was elicited by a series of experiments made by Lieutenant Waver of the Engineers, when comparing his stock of Englifirld barometers, with my standard, before his departure on survey to the hills of Amerkantak.

One tube having been filled with every precaution was found to stand 0.211 lower than the standard Barometer. It was emptied and refilled : it then stood,
-. 499
a third time refilled, . -. 609
a fourth, .652
a fifth,. -. 659
a sixth, .. -. 653
a seventh, -. 700

an eighth,
.687
a ninth time .702
It is needless to say, that in all these cases every care was taken to exclude air. It appears, therefore, that after filling two or three times, the mercurial column stood nearly $\mathbf{. 7 0}$ too low. The hygrometer at the same shewed that the aqueous tension was .60 , which so nearly agreed with the former (making allowance for capillary action), that we had no doabt at the time that the depression was caused by moisture, attracted by the tube from the air, the frequent renewal of which allowed the surface of the glass to attain a state of hygrometric equilibrium with the latter. That such was the case was further proved by repeating the operation on a subsequent day, when the air was much drier ; the hygrometer then shewing a tension of .45 , the barometer stood between .394 and .415 lower than the standard.

It is well known how pertinaciously water adheres to the surface of glass : in damp weather an electrical machine cannot be worked unless dried by heat; and any glass tube, even in dry weather, if heated in one part, will shew the presence of water by a condensation of minute globules in the colder parts of the tube. Such facts, in conjunction with the positive testimony now adduced, prove that implicit reliance should not be placed upon this kind of 'barometer, eapecially for the measurement of heights. The different quality of the glass may also have great influence on the aqueous action, according to the predominance or otherwise of alkali in its composition.

Mr. Faraday has recommended that borax should be substituted for alkali in the composition of glass for astronomical purposes, on account of the liability of the alkaline glasses to inju:y by the wet, but we have not yet seen any notice of the result of such trial on a large scale. Perhaps the barometrical effect now noticed might be turned to advantage, as a mode of measuring the hygrometrical quality of glasses of different founts. Of five dry tubes of the same bore, filled together and placed upright in the same reservoir of mercury, no two were found to agree together, whereas apon wetting the interior of the same tubes, they then agreed very well together, and (after making correction for the aqueous tension corresponding to the temperature of the mercury) also very nearly coincided with the standard barometer, without any allowance for capillarity.

This circumstance suggested an easy and certain method of turning the tubes to account in the survey, namely, to use them alwoys wet and make the necessary addition. The most defective and dirty tube might in this way be rendered as serviceable as the cleanest, and I
would certainly recommend those who possess such tubes to use them in this manner. It is besides much easier to free them from air. All that is necessary being to fill the tubes first with water that has been well boiled, and then to pour in the mercury, allowing it to drise out the water as far as possible before inverting the tubes. The temperatare must be accurately noted at the time of registering.

Lientenant Wavar has promised me a series of observations with the wet barometer, which I hope ere long will be forthcoming.

IX.-Proceedings of the Asiatic Society, Wedneeday Evening, 29th May, 1833.

The Right Rev. the Lord Bishop of Calcutta, in the Chair.
The Proceedings of the last meeting were read.
Mr. W. M. Manuk, proposed by Babu Ram Comul Sen, seconded by Mr. D. Hare, was elected a Member by ballot.
Some matters of account were referred to the Committee of Papers
The Secretary brought up the Report of the Committee of Papera, on the manuscripts of the late Mr. Moorcroft, pat at the Society's dispoeal by Government in January leat. It recommended the whole to be transmitted to England to be published, either the whole or a copious digest, on account of the Society, under the charge of Professor Wilson, who had kindly proffered his services in arranging the matter for the prese before his departura. Mr. Trebeck, brother of the companion of Mr. Moorcroft's travels, had also presented the whole of his brother's journals, letters, and drawings, in order that the valuable information contained in them might be incorporated in the proposed digest, on consideration of his receiving 12 copies of the printed work. The meeting adopted the suggestion of the Committee, and an offer from Lieutenant Burnes to convey them to England was accopted with thanke.

Library.

The following books were preeented :
Roxburgh's Flora Indica, 1st and 2nd vols.-by Captain James Rasburgh, an the gert of himself and brother, editors of the woork.

Journal Asiatique, No. 58-from the Asiatic Society of Penis.
Chezy's Sacountala ; Sanskrit teat and French translation-by the Trawelator.
Notice de l'ourrage intitule 'Lettre id M. Abel Remusat-by the Baron Hwanboldt.

* Baron Sylvestre de Sacy's Recherches, sur les contes des mille et une nuitsby the Author.

Ferussac's Bulletin Univernel, 1827-28-29, 36 vols.-presented by Mr. F. Corbyna in the name of Dr. Bogie.

* The letter accompanying the above three worke was dated in 1890 , they were pra. bably detained a long time in England on their way.

Stirling's Cursory Notices on the Isle of Prance, 1827-by the Author.
Meteorological Registers for March and April-by the Swweyor General.
From the Society's Booksellers :-
Lardner's Cahinet Cyclopedia,-History of England, rol. iii.
Ditto —_M__ Military Commanders, vol. iii.
A letter was read from Captain F. Jenkins, presenting a Burme manuseript from Ludiga, in the dialect of the Kametrs, the tribe who pomese that part of Assam.

Antiquitics.

Lieutenant Burnes exhibited to the Meeting his collection of ancient coins made between Cabúl and Bokhára, and an explanatory note was read by the Secretary.

Two papers were read by Lieutenant Burnes in further elucidation of the same subjects.

1. On the Tope or mound of Manikyala, and other similar topes in the Panjab.
2. Account of a sect calling themselves the descendants of Alexander the Great in the valley of the Oxus.
[These will appear in a fature number.]
Physical.
The following donations for the geological cabinet were precented:
3. A fragment of a large foesil bone from Jabalpúr-by Dr. Spilsbury.

In connection with the same subject Dr. Row writes from Benares, that he has despatehed under charge of Mr. Colley a box containing a further supply of Jabalpher foesil bones.

Doctor Spilsbury has since had the good fortune to make a further enviable dis. covery at a plece aboat 60 miles from Jabalpar,-the jaw of a fosail elephant with the teeth quite perfect. It remains to be seen whether this interesting specimen belongs really to the elephant or to some of the gigantic quadrupeds of the same genus brought to our knowledge by the great Cuvier; the Mastodon of America, which is supposed to occur in no other part of the world; the kippopotamus of Peru; or the rhinoceros of northern Asia.

Dr. Row has forwarded tbe section and plan alluded to by Dr. Spilsbary in his communication read to the Society at the meeting of March last.

The following specimens from Arracan-by Mr. H. Walters, acting com missioner.

1. Two bottles of water procured by Lieut. Mackintosh from a thermal spring found near the top of the Aeng pass.
\&. A bottle of mineral oil or naphtha, from Ramree.
2. A few specimens of rocks picked up at Ramree and the Aeng pase
3. Coal from the Sandowy district.

The red hill of Ramree is composed of red clay iron, enclosing nodules of steatite, of a light grey colour, black streaked ateatitic iron oxyd resembling hematite and a conglomerate of felspar and quartz pebbles. At the foot of the hill occurs silicions breccia, which appears as if it had been an infiltration of silicious reins in the crevices of the red clay which was subsequently crumbled or washed away, the interatices being now filled with common mud.

Iron mines were worked on the iolend of Ramree by the Burnesee, sad the metal was highly prized; but it has been driven out of the field by the cheapness of Erylish iron in all the bazars.
The limestones and corals of Arracan are deserving of attention; lime might be burnt and sent to Calcutta at a cheaper rate than that paid for the silbet lime

- The sandstone of Ramree is of a softer natare than the bect of Chamar; is resembles the Mirzapúr quarry, and is woll adepted for minute and charp sculperre.
The specimens from the Aeng pass are quartz rock, indorated clay, and decomposed talc-schist. A coarse granular limestone is stated to be very common in the Sandowy district.

The coal from the Kingtellie circle in the same district, is a very rich lignite, shewing the woody structure in great perfection : it has a spec. grav. 1.308, andgives out much bitumen and gas on ignition. The coke was small in quantity but good.
Composition. Volatile matter, 66.4
Carbon, 33.0
Ash, 0.6
100.0

One specimen of coal mixed up with silicious matter is said by Mr. Waltens to form the subatance of an entire hill.

Of the mineral water, cne bottle was found to be perfoctly pure, sp. gr. 1000 and not acted oa by tests : the other contained a large deposit of yellow ochreom silt.

Specimens of coal discovered in the lower range of hills in the North Moradabad district-by Mr. E. J. Ravenahaw, colloctor, Bijnore.

The following extracts from Mr. Ravenshaw's letters illustrative of this discovery, and of the presence of gold in the streams of his district were read.

Himalayan Coal.

"I had lately an opportunity of paying a rapid visit to the source of the coal of which I lately sent a specimen to the Society. From Judpar, a town about 10 miles cast of the Ramgunga, I gallopped about 18 miles to Laldikong, a village at the foot of the lower range of hills, and situated on the banks of the Phika Nad.. The latter nine miles of the road lay through the forest, which abounds with tigen, wild elephants and other animuls. In the evening I proceeded on an elephant three or six miles along the foot of the hills in an easterly direction to Mokra Dhbla, a village situated at the point where the river Dhela issues from the hills. We traced the river about a mile within the hills, and the nyarias (gold-washers) whom I had previonaly depated to explore these regions, pointed out in several directions thin seams of coal, varying from one to four inches broad, running along betreen ledges of sandetone, whioh was covered with a white subetance (decomposed prrites?) The coal is aleo conted with a yellow subetance (iroa pyrites), and amils strongly of sulphur when burned.

About a mile up the river we came to a procipice about 200 foet high, compend of a heterogeneous mixture of sand, clay, and stones, (from the opecimen matis in a conglomerate with calcareous cement.) It was of various colourb-rted, bithgreen, but the white coating predominated over all.

The raine bad washed down masese of the hill, and among.these we found a great deal of the coal, in fact it seemed to abound here more than in any other part. The nyerfee whom we sent ap to scale the precipice, brought down their kemerberads full of it. The next morning I rode about four or five miles up the Phike Nadt, and foumd the coal in similar situations, in veins stratified with sandstone, and occasiosally conglomerate rocks. In the evening I explored the Chala Nadk to the west of the Phike, and foumd several large veins in the face of a perpendicular rock of the same description. I send specimens of the several varieties :-some appear to te mere lignite, bat others are genaine coal. It is found however in such narrow. veins as to give but little promise of a profitable application. The natives tell me. that it is found in almost all the rivulets up to Hardwar, wherever the lower range is composed of hecha (unripe) materials: they call it momyai, and use it as a me: dicine for caring wounds, and as an infallible remedy for Choleral for the latter parpose they pound up about half an inch square of it, and mixing it with a lota foll of warm milk, drink it off."

The specimens of coal sent down by Mr. Ravenshaw are all nearly of the same character, strongly impregnated with sulphuret of iron, which forms thin fibres streaking some of them, and passes into thick masses of pyrites decomposing in others :-a clean lump had a specific gravity of 1.968 in consequence, and the residual ash was principally iron oxyd; it burns with good flame, does not coke, and retains sulphur enough to ignite spontaneously after being charred.

$$
\begin{aligned}
& \text { Volatile matter, } 35.4 \\
& \text { Carbon, . } 50.0 \\
& \text { Perruginous ash, . } 14.6 \\
& 100.0
\end{aligned}
$$

Gold**

Mr. Ravenshaw in other communications of a recent date, mentions a discovery that all the rivers and streams descending from the same range of hills are impregrated with gold. The river in which it is most abundant is the Koh, which flows a few miles to the east of Naginah, and falls into the Ramgunga, four or five miles below Sheakdi. "There are two parties of nyarlas or gold-workers on this river, one at Kot,kditr, twelve miles from Kot, dwar, whence the Koh issues from the hills, and the other about ten miles lower down opposite to Barapura. At the former the nyarias pay 50 rupees per mensem to the zeminddr, and at the latter 30 rapees. At Lakherghaut on the Ramgunga, about four miles from the bills, another party is established, and a fourth to the eastward at Amangarf on the banks of the Phika Nadf, a tributary of the Ramgunga.
*The reader will find some valuable remarks on the gold of the Ramgonga tribetarice by Captenin Herbert, in his notice of Himalayan minerals printed in the Plywioal Resocrches Asiatic Society. He notices the mane curions fect of no gold being dion covered in these streams mutil they enter the lowernoot rampe of hills: -he aloo menGoms having a specimen of the gold in its parent roek, but properly concludes that shlough wo may be certrin of the existence of the wetal within this range, wo must mationlly wait until the progrese of popolation and indectry shall press upon the hitherto mexplored rescorces of the monntaine ere we reap the advantage of our knowledge. A. individual might be ruined in the search, anless indeed some locky ehance should give him a prise in the mining lotters?

In the above rivers the gold is found at all periods of the year, but in the Dheke, about 10 miles to the eastward, it is only found in the rains. The nyerices live at Kheloroh, about seven miles north of Kdotpur ; but the site of their researches is about six miles higher up the river, hetween Sheondthpif and the hills. A tax of 2rs. 8ans. is levied upon each katouti or washing-trough, which (in the abeence of any other zeminddr) is paid to Government. The gold found in this stream is mid to be of a finer quality than that of any of the other rivers.
In the rivers to the eastward of the Dhela, viz. the Kosillah, Dabka, ace. no gold has been discovered; I have no means of ascertaining whether it exists in the samds of the rivers in the Barelly district.

It is evident that these golden sands must have a source, and as they here probably flowed for centuries from the mountains it is presumable that source is extensive. The uniformity also with which it is found in all the streams from the Ganges to the Kosillah where it ceases, seems to indicate the existence of a vein of ore more or leas interrupted, co-extensive with the above limits. Gold-dost is found on the other side of the Himalaya also : the Bhotias bring it with their borax from Fiundbs, where it forms the currency under the name of phetting, (a small lump of gold-dust melted into a lump, value eight rupees.) I have employed an intelligent nyarta to search the small rivers to their source in the first or second range of hills, to wash the sand and mark where the gold-dust ceases, and to briag away specimens of the rock on either side. He is also instructed to look for conl."

A minute portion of gold is found in the sands of most rivers, but it is seldom plentiful enough to make it worth the labour of extraction. In the Indus, the Irswadk, the Ningthi, and the Brahmupitra rivers, 'the process of washing is practived with success, bnt it can only be undertaken where labour is cheap. A specimen of the washed sediment extracted from 40 maunds of the sand of the Brabimapitra, lately sent by Mr. W. Cracroft, weighed 396 grains ; from this the magnet separated 147.3 grains of magnetic oxyd of iron: the remainder digested in boiling nieromariatic acid yielded 1.9 grains of gold, in value about $2 \frac{1}{2}$ annas.

Specimens of the limestone rocks of Sehroan and of the banks of Induo at and east of Tatta, of the Jesalmir yellow limestone, and of the bituminous limestone of Persepolis-by Lieut. A. Burnes.

The limestone of the Indus resembles much that of the Silhet hills:-it appears also to contain shells : the specimen from the top of the Seheran mountains is more crystalline, and of a yellow colour like that of Jesalmatr, of which a description in given in the Gleaninge, vol. iii. p. 108.

The limestone of Persepolis, used for most of the buildings of that ancieat town, is of a dull brown colour and semiconchoidal fracture; it emits when rubbel a strong bituminous smell.

Specimen of the granite of $A b u$ in Gueverat, and of limestone between the Oarus and Bokhara-by the same.
The latter is an oolitic limestone, the first which has been discovered in Indis, of fine small grains about as large as mustard-eced. It is compact and capable of being quarried.

Belemnites from the eastward of the Aral, and a small foesil bivalve from Bokhara-by the same.
The shells are converted into a solid of white marble; they are used in medicine by the Perrians; the under valve in worn round as if from grinding.

Specimen of the. Indus Coal-by the same, from Kohat near Peshdwar.
The following note on the subject by Lieut Burnes was read:

Peskanoar Coal.

On my arrival in the plains of Peshheorr in March 1832, I made various inquiries from the Doorana chiefs of the country regarding coal and other minerals. They did not comprehend the meaning of coal, but Peer Muhamud Khan, the chief, who bolds Cohut on the southern bonndary of the plain, informed me that there were wells in the petroleum or naphtha in Cohut, and that the people used the subrtance in lamps instead of oil. He also told me that within these few months, the villagers had found that the atones near these pits were available as fuel. At my request he despatched a messenger, and brought the apocimen of coal which I now present to the Society. It has been taken from the surface, and can give therefore no correct idea of the substrata further than proving that coal exists in the neighbourhood. The coal is slaty and of a greyish-brown colour, it readily ignites at the candle and emits a sulphnreous smell.

The discovery of a coal-mine at the head of the Indus may prove of the utmost importance in these times, since the narigation of that river is open from the sea to the town of Attok, which is only forty miles distant from the deposit. An excellent road intervenes, and Peshdwar is a large city where labour is cheap.

It is a singular circumstance, that coal should have been discovered both at the month and head of the Indus (in Cutch and Cohut) within these few yoara, and since stoam has been used in India. It is seldom that discoveries are so well-timed, and I trast that they augur farorably for the opening of a new route of commerce by the Indur.

The Indus coal is little better than bitumainous shale-slaty and dull in atructure and appearance: specific gravity 1.670 : burning freely in a candle-not coking, and leaving a large quantity of brown earth on incineration. Its composition. on analysis proved to be,

$$
\begin{aligned}
& \text { Volatile matter, } 37.0 \\
& \text { Carbon, } 6.2 \\
& \text { Earthy matter, } 56.8 \\
& 100.0
\end{aligned}
$$

It is most probable that where this shale is met with, coal of a superior quality may also be found.

X.-Miscellaneous.

> 1.-Ruotic Bridge. P1. X.

The sccompanying is from a hasty sketch, taken in the April. of 1831. It represents oae of two bridges similarly constructed, which were thrown scrose the Jimnn, at a plece where that river is divided into two branches by an island. These bridges were for the convenience of communication to some iroa-smelting works, situated ou the right bank of the river, at some diatance below the bridge erected by Major Youxe, where the Simia and Masatiri road crosecs the Jimns.
As there is ingeauity dieplayed in their rough Shakesperian mode of construocion, I am iaducod to eend you this aketch, which I truast is sufficiently intelligible. to supessede the mecomity of a deccription. No rope was amployed, the differpat
parts being bound and suspended by strong twisted withes. The bridges were m may be supposed very vibratory, but were sufficiently strong to sidmit of the hill men carrying their loads of iron or charcoal across them with safety.
If this short notice of a somewhat ingenious and picturesque object is worth pablishing in the Jounnal of the Asiatic Societx, it is rery mach at yourservice.

Nots.-We are always happy to give insertion to notices of this natore, and especially of the simple inventions and processes of the natives. In the present case, we regret that our correspondent has not given us the dimensions and spas of his rustic bridge.
2.-Remarks on the Paper on the Trisection of an Angle in No. 14 of the "Jousnal of the Abiatic Society."
The difficulty of the problem is touched on in the second proposition of the paper in question, which is as follows: "To draw the base of a triangle so that of the interior angles at the base, one shall be double of the other, the vertical angle of the triangle being a given rectilinear angle, greater than half a right angle""

The construction is, to take $B P=2 B A$, inflect $A C=3 A B$, from the point A on B C, and make B C=BPif C. The writer has failed, as he admity, in his first attempted demonstration of this construction, nor in his supplementary emendation of it is he more successful. The phrase " which it does not," in line 12th, and repeated in line 14th, is mere assertion; the eighteen following lines are superfluous; for if the angle K D G is a right angle, the question is settled.

A numerical example or two will perhaps be the easieat way of consincing Mr. Morrieson of his failure.

Suppose then $B=90^{\circ} B G A$ is by hypothesis 30° and calling $A B=1$ A will be equal to 2 , and $B G=\sqrt{4-1}=\sqrt{ } 3=1 \cdot 7320508$; but $A C=3, B C=\sqrt{9-1}$ $\pm \sqrt{ } 8=2 \cdot 8284271$ and $B \quad=2$ to $B C-B \quad F=8284271$, y of which is 2761423 , and this taken from 2 , leaves $\mathbf{1 . 7 2 3 5 7 7}$, the length of $B \mathbf{G}$ by $L t$. Morrieson's sherring ; but it ought to be $1 \cdot 7320508$.
If B be taken=45, the limit of Mr. M.'s problem B G will come out by Mr. M.'s construction $=1 \cdot 65363908$, but it ought to be $1 \cdot 4142136$.

If 60 be taken, the difference is smaller again; B G ought to be 1.53207 , whereas Lt. Morrieson's construction makes it $1 \cdot 542579$, \&c. On the whole the method is a very good mechanical rule for trisecting an angle; mathematical solution it is not Mr. M. has hit on the difficulty in the problem which is "to draw the base of a triangle, so that of the angles at the base one shall be double of the othera."-ln different words, the problem comes to this, "To draw a line GA such that GD shall be equal to the radius of the circle which has B as a centre and $B A$ is a radius," and this rule will answer in all cases where B is equal to $45, D$ and A coincide when greater D falls between A and G, when less D falls begond A, and further from $\mathbf{G}^{\mathbf{\prime}}$.
But the problem is not to be solived by straight lines and circles : if a conchoid (pl. ix. fig. 2) having A for its pole and B C for its assymptote be described, it will cut the circle $A \operatorname{D} E$ in the points D, D^{\prime} and $D^{\prime \prime}$ and straight lines joiniog these potas with A, or their extensions will form with $B G$ triangles $B G A, B G^{\prime} A, B G^{\prime \prime}$ A, \&c. of the species required. This follows from the natare of the curre, is which $G D$ is a constant quantity, and here equal to $B D$ the radive of $A D E$.

DE drawn parallet to IH gives IE an arc which mensures of of AB Or $\mathbf{D}^{\prime} \mathbf{F}^{\prime}$
gives H E^{\prime} which mesesures of of $\mathbf{A} C$ the supplement of the former and $D^{\prime \prime} E^{\prime \prime}$ gives $A E^{\prime}=1$ A BH considered as valued at B or of $\&$ (ABI +18). The point A^{\prime} corresponds in some degree to a pole and D, D^{\prime}, and $D^{\prime \prime}$ if joined from an equilateral triangle, as a little consideration will shew.

Tirhoot, 27th March, 1833.
L. D.

Capt. Alpazd Burron, if 1 am not mistaken, employs for the trisection of an angle a cardwide of which the generating circle is E A D and the constant quantity A B. This curve at any rate answers very well, as will be evident on construction.
3.-New Patent Improved Piano-Forte.

Mr. T. Lovd, jun. of Philadelphia has invented a new and useful improvement in the horisontal Piano Forte, whereby the tone is greatly improved, the instrument is less subject to get out of tune, and the strings are less liable to break, for which inveation and improvement he has taken out a patent.

The improvement consists in placing either the action above the strings, or the strings and bridges turned upside down above the action. So that the hammer in atriking the string shall act in the direction of the bridge, instead of as at present in an opposite direction. Upright Piano Fortes, it may be noticed, are already in posession of this improvement.-Areana of Science and Art.

We are not disposed to consider this improvement (for an improvement it is, as far as tome is concerned) at all efficacious in preventing the instrument going out of_{f} tune. Every one who knows any thing of the Piano knows that it is by the slipping of the round iron pega in their wooden sockets that a piano gets out of tune; the extraordinary thing is that for an evil the source of so much vexation and annoyance no remedy should have been yet discovered for, or we should rather say applied by the trade : the remedy is in reality as obvious, as is the interest of that trade to avoid applying it. We have seen the piano of a gentleman in Calcutta much strengthened and improved by the adaptation of a cast-iron case to the front block in which the pegs are inserted; in fact if the whole frame could be made of a triangle of cast-iron, the piano would be infinitely more durable than it is at present, altbough it is probable that its tone might be prejudiced.
We mast confess, however, that within the last few years, many real improvements have been introduced in the adaptation of the Piano to the vicissitudes of our Indian climate: the metal bars, thrown across in the direction of the strain, tend materially to prevent the instrument form warping, and by themselves expanding and contracting with heat and cold in the same ratio nearly as the wires, they keep the latter under an nniform tension, and consequently always in tune; whereas those Pinnos, which depend upon a wooden frame alone, require to be tuned with every change of weather. Another real improvement in small Pianos has been the introduction of the metal plate, to which all the wires are attached : the advantages gained by this construction are twofold, the sounding board is left free underneath, and the strings of the upper octaves are deprived of that long neutral space between the fixed pegs and the bridge, which always caused the upper notes of these instruments to flatten much faster than the lower octaves. In fact, the liability to stretch or slip, and the chance of flaws or imperfection of elasticity (which are the only causes of getting out of tune), being in direct proportion to the length of wire, every wire should have the same proportion beyond the bridge to maintain uniform tune. Some makers have ingeniously made use of the tail pieces of the wires, in grand pianos, to produce a doubling of the tone; the wires beyond the bridge have precisely the earse length to the fixed pegs as before the bridge, or within the action : on raising
by means of a pedal the damper that naually covers them, the sonnd will be doabled by the reciprocal vibration of the extra strings : the thought has much ingeauity, and all that can be urged against it is that the bulk of the instrument is somewhat increased, and with it the chances of derangement and getting out of tume.

4.-Specific Gravity of Metallic Alloys.

In the second number of Brewster's Journal N. S. are some curions resalta obtained in experiments on the melting points and densities of different alloys, by M. Kupffer. It appears that in every proportion of tin and lead from ore of tim with one of lead, to one of tin with four of lead, and from one of tio one of lead to six of tin one of lead, there was expansion, i. e. the specific gravity of the alloy was found to be less than that given by calculation. At two of tin one of lead, and still more at three of tin one of lead, the difference was trifling; and as the difference increased each way it was conjectured that at some intermediate proportion between those two, the resulting specific gravity would agree with the calculation. It was found that one noluwe of lead to two of tin gave a specific gravity almost exactly that of calculation.

In amalgams of tin and mercury, again, contraction was found to take place; it being null when one combining volume of tin was added to two of mercury. In amalgams of lead and mercury the least contraction is found when one combining volume of lead is united to three of mercury.

The following melting points were observed:
Centigrade Fahrenheit.

These temperatures were determined by noting the weight of mercary driven oat of a small bulb furnished with a capillary tube, in the same manner as practised by Messrs. Dulong and Petit. They will therefore require some correction.
5.-Proportion of Recent and Fossil Shells.

The following notice of the numbers of known species of recent Testaceons Mollusca and of Fossil shells is taken from Loudon's Magasine of Natural History.

	Simple univalves	Bivalres and multivalves.		Total.
Testaceous Mullusca of the present world, Species of British Fossil shells,	$\begin{array}{r} 1961 \\ 401 \end{array}$	$\begin{aligned} & 874 \\ & 634 \end{aligned}$	58 230	2893 1265
Of the 1265 Fossil Species, the following is the distribution.				
1st Division, 1st Section, Carboniferous order of Mr. Conybeare,	27	80	33	140
1st Division, 2nd Section, to the Lias inclusive,	9	38	50	97
2nd Dirision, from the Lias upward to the Chalk inclusive,	106	375	139	690
3rd Division, Tertiary Beds above the Cbalk,	259	141	8	40

The anthor of this paper draws the conclooion "that in proportion as we deccend the vast series of depocits that overspread this portion of the earth, so do we recede, step by step, from the circle of existing organised beings, and from the phenomena attendant on their structure, their habits, and their adaptations."
D.
a-Table of the Lengthe in British Miles of the Degrees of Latituds and Longitude from 00. to 300. with the Arcas bownded by them in Eqmare Miles.

	No. of miles in a Meridional Desтее.	Mean.	Logarithm	No. of miles in a Lon. gitudinal Degree.	Mean.	Logarithm ${ }_{\text {b }}$	Sums of $a+b$	
8	68.7160			68.4870				
		68.7177	1.8370705		68.3983	1.8350434	8.6721139	4700
-		68.7214	1.8570696		68.2107	1.8338544	3.6709439	4087
10	68.7233	68.7254	1.8371147	68.1118	68.0025	1.8325217	3.6696364	4673
11	68.7276			67.8933				
12	68.7391	68.7298	1.8571463	67.6540	67.7736	1.8310631	3.6682094	4658
		68.7346	1.8381779		67.5242	1.8294582	3.6866361	4641
13	68.7372		1.83720	67.3944	67	1.8277	3.6649276	4623
14	68.743\%		1.	67.1143		1.8207181	3604920	
		68.7453	1.8372411		66.9641	1.8268414	3.6630805	4603
15	68.7482	68	1.83727	66.8139	66.65	1.8238262	3.6611052	4589
16	68.7543			66.4933				
		68.7574	1.8373169		66.3229	1.8216348	3.6889811	4660
17	68.7606	68.76	1.8373611	66.152	65.9720	1.8195597	3.6567208	4596
18	687675			65.7916				
		68.7710	1.8374063	65	65.6010	1.8169105	3.6543158	4511
19		08.7782	1.83744%		65.2103	1.8148149	8.6517687	448\%
20	68.7820			65.010			6490751	44%
21	68.7897		1.	64.6896	64.7	13	. 64	440
		68.7937	1.8375506		64.3605	1.8086768	3.6469274	4428
28	68.797	68.8019	1.88760	64	6	3066	3.6432359	4398
23	08.8061			636900				
		68.8104	1.8376516		63.4505	1.8024316	3.6400832	4366
24	688147	68.8	1.8377084	63.2111	62.9620	1.799078:	3.6367869	4393
36	08.8236			62.713				
		68.8283	1.8377652		62.464	1.793660	3.65	88
96	68.8528	68.837	1.8378219	02196	61.9278	1.7918871	86897090	4908
87	688422			61.6597				
		68.840	1.8578050	61.10	61.3	1.7800	3.02	4200
28		68.8568	1.8379481		60.8183	1.7840321	3.6219802	4188
9	68.8618	688689	1.8380112	60.5816	00.2066	1.7790661	3.6178073	4148
50	08.8980	-man	. 6300112	59.9893				

Note.-The ahove table was compiled in the Sarveyor General's Ofice, and will be foum of great nos to Revemae Surveyorn, \&cc. as it comprehende the latitnde of all parts of the plain of Indin.
Meteorological Register, kept at the Assay Office, Calcutta, for the month of May, 1833.

JOURNAL

05

THEASIATICSOCIETY.

$$
\text { No. 18. -June, } 1833 .
$$

L-On the Marriage Rites and Usages of the Juts of Bharatpur. By © $\boldsymbol{E P}^{\text {L }}$ Lushington, Esq. C. S.
[Rend at the Meeting of the Asiatic Society, March 97, 1838.]
In the month of May, 1832, the present Raja of Bharatpur*, Balwant Singe, was married to a daughter of the Bechore Raja, a Jat chief, of a very respectable family residing near Gwalior.

Though there is no mention of the Bechore Rajas in the "Ayeen Akberi," nor in any English work on India, that I am acquainted with, I am assured by the Bharatpur ministers and other respectable natives shat the Bechore Princes once possessed territories in the neighbourhood of Gwalior, which yielded an annual revenue of from three to four lakhs of rupees. They add that the greater part of these territofries are now in the hands of the Sindia family, and that the present Bechore Raja has only a small Jagír of about fifteen thousand rupees per annum.

The Bharatpur Raja was betrothed in 1824 (Samvat 1881), to the Bechore Princess, by his father, the late Baldeo Singe, and under ordinary circumstances the marriage would have been solemnized many years ago. The Hindu law indeed censures the delay of marriage (for females) beyond 10 years, but the Bharatpur Jets as "SaranSankdurs or a mixed caste, deriving their origin and military habits

[^42]from the Lanar (Chandravansi) race of Rajpats, and poseessing at the same time the patient industry, agricultural skill, and religious laxity of the Sudra or servile classes, do not strictly adhere to the minutix of Hindú law. Whilst they retain many parts of the ancient ritual they omit others, and substitute in their place peculiar forms and usages (as will be noticed hereafter), which though evident innovations are held, by them, in the highest esteem.
But in this particular case the delay alluded to arose not from Jat laxity. It was owing in the first place to the untimely death of the late Raja Baldso Singi, and the troubles arising out of that event, which were terminated only by the capture of Bharatpur, in January 1826, and the restoration of his son Balwant Singe, a minor, to the masnad; and secondly, to the domestic intrigues and contentions which took place at the capital between the Majii or Rasi mother and the Regent ministers, as to the selection of a Gura or spiritual adviser for the young Raja. The Maji is eldest wife of the late Raja, and step-mother of the present Raja; and as ahe once had the reputation of possessing some ability, the Supreme Government nominated her in the first instance to the office of Regent.

Her subsequent conduct however speedily did away with the favorable opinion entertained of her. It soon became evident that any portion of talent or acuteness which she might once have possessed, was neutralised by the lasting effects of a vicious education, and by a more than ordinary share of feminine caprice and weakness. Being naturally of a violent and imperious temper the possession of power appeared, day by day, to strengthen and augment the worst features of her character, until it at last led her to the commission of acts alike injurious to her own repatation and fatal to the interests confided to her.

Remonstrances and exhortations having been in vain addressed to her by the British Government, it became necessary to place the administrattion of Bharatpur affairs in other hands. The Ranf wes accordingly removed from the office of Regent, (a suitable establish-

[^43]- He ie a Chandravanar Rajpito
ment being assigned her ip the Mehál or inner apartments,) and the old ministers of the Raja appointed to succeed her. Of these, the Dewán, or principal minister, Jswahir Lax, was fortumately a person of considerable knowledge and experience in business, having held the Dewoimi with distinguished honor to himself and advantage to the state during the reign of Ranjit, Ramdian, and Baldpo Singe. By his prudent and equitable measures tranquillity was speedily restored and the old system of management re-established.

But though the Rant, as above stated, had been formally removed from the Regency, she never relinquisbed her hopes of a return to power. After repeatedly attempting to blacken the character of the Regent ministers, and as often failing in her attempts, as the charges advanced by her proved on investigation to be entirely groundless, she determined to change her plan of attack, and to apply all the means at her disposal to the establishing such an influence on the mind of the young Prince as would eventually throw him into her hands. With a view to this end she revived a story which she had herself invented and circulated when Regent, of the Raja's initiatory necklace* having been tied on by a favourite priest and emiseary of her own, by name Oni' Rax ; and on the strength of this story, she asserted the right of this person to be elected Gurit or spiritual adviser to the Raja, well knowing that if she could effect this object, she would secure to herself the greatest spiritual and political influence, and become de facto mistress of the state.

The Regent ministers on the other hand had from the first attested that the pretensions of Parokit Sar Ran to the Gúruship were altogether false and ridiculous; that the father of the Raja had actually selected as Gura for his child the saperior of the very temple of which this Sri' Ram was the mere Pujart or officiating priest; that, the circumstance of Sri' Ran's being a Pujari was a sufficient refutation of his claim; as the Mehant or superior of a temple, alone, was qualified for the office of Guru; and that in addition to these proofs, Haxi Das, the superior in question, was atill living, and deposed that he had tied on the necklace with his own hands during the life time, and in the presence of Baldso Singu.

[^44]To this statement, a flat denial was given by the Raú and her favourite priest, and amidst the bickerings and intrigues that ensued, the Raja's marriage was for some years considered inerpedient; it being contrary to usage that a person should be married prior to the ceremony of investiture being completed by his Gikri's pronouncing the Guir Mantra, or mystical words of initiation.
Such was the state of this question up to the beginning of 1832 , when the advancing years of the young Prince convinced the regent ministers that a further delay would only tend to "defer* the remedy of the evil, not the evil itself," and that some decision must be forthwith resolved on ;-after much doubt and hesitation they determined to solemnize the marriage, leaving the choice of a Gari to be decided on by the Prince himself on his attaining his majority. Before venturing on so unusual a proceeding, an opinion was obtained from the Brahmans, that though it would doubtless have been proper for the Prince to have become the disciple of some Gura previonaly to entering upon the holy state of matrimony, still it would be better for him to marry at once, and afterwards select a Guru, than continue in his unhallowed state of celibacy.

At the same time it was decided that the marriage ceremonies should be solemnized at the town of Dtg† (24 miles to the north of Bhanatporr), that the bridegroom should go out thus far to meet the bride, and after the performance of the ceremonies, conduct her to his palace at Bharatpur.

It has been stated above that the Raja was betrothed in the year 1824, and I now proceed to describe the manner in which the betrothal (Sugai) takes place. I am well aware that in doing so I run the risk of wearying the patience of the reader. But it is necessary in this as in other things to begin with the beginning; neither am I ignorant that the ceremonies which form the subject of this paper have been pronounced by the historian of British India (see vol. 1. note c.), to be "trivial, multiplied, and tiresome." Such they would doubtless appear to be to the philosopher and historian of Earope, who, calmly seated in his stady some thousands of miles from the country in which these customs obtain, looks with wonder or contempt at the

[^45]"trivial and multiplied" details, and in sorrow or anger records his. opinion of their absurdity. Bat the Hindú, alas! looks upon these very absurdities in a totally different light-he considers them as part and parcel of his religion, as forms which were in the first instance inculcated by his deities, and which the practice and veneration of ages has hallowed. We may lament that he should do so, but we ought not surely to condemn him withoat inquiry. It appears to me that some of these very ceremonies, of which so sweeping a conderanation has been passed, are not only interesting and curious, but evenvaluable, inasmuch as they tend to throw light* upon the feelings and. domestic genius of our subjects.

The betrothal takes place in the following manner-a message is first sent by the father of the girl to the bridegroom's father, intimating that as alliances have formerly taken place between their families, and as Providence has kindly blessed him with a daughter, \&c. he is anxious to bind the knots of amity closer than ever. Should the father of the boy approve of the suggestion, he dispatches a Parohit or fa-1 mily priest to the lady's father, both to measure the height of the girl and ascertain her personal appearance, \&c. On the return of the Perokit to his employer, the height of the young lady is compared with that of the boy. Should it appear to be of the orthodox proportion, andthe report made by the Parohit of her beauty be favourable, the genealogies and affinity of the parties are then inquired into; and in the event of their not coming within thet prohibited degrees, the betrothal is agreed to, and considered binding apon both parties.
The betrothal having been adjusted, and the Tika or marriage present sent by the bride to the bridegroom, it remains for the Brahmans to select what they may be pleased to consider a "fortunate hour" for the marriage. Regarding this important point, long and tiresome disputes are sometimes carried on between the astrologers of the two

* "We cannot," says the talented and discriminating Sir H. Stracher, "study the genius of the people in its own sphere of action. We know little of their demeatic life, their knowledge, converaation, amusements; their trades and castes, or any of those national and individual characteristics which are essential to a complete knowledge of them." Perhaps the acknowledged existence of this lamentable defect may excuse the attempt on my part to illustrate one of the most important events in the life of a Hindg.
+ The prohibited degrees among the Bharatpur Jats are the Gots or families of the boy's paternal and maternal grand-fathers and grand-mothers. In this, as in many other points, they depart widely from the strictness of the Hindin system as promnlgated in the "Institutes of Menv'," where prohibitions of the most extraordinary nature are enumerated, and directions for choosing a wife minutely laid down.
darbars. These diaputes would indeed be endless bat for the interference of the superior party, who may always command or obtain the silence of the priests by a well-timed fee, or the promise of a grant of land. All opposition then ceases; difficulties and scruples founded upon texts from the sacred writings vanish, as soon as the land of promise appears in sight : a little ingenuity and a considerable portion of hardihood is all that is required; for with the aid of these two auxiliaries the very Shastras which at first appeared to condemn tho arrangement may be clearly shown to favour it. There is an especial advantage in this sort of arrangement to the soothsaying Brahmans, Should the Mohrat prove a fortunate one, they take good care to attribate all the happy results following it to the skill with which it was arranged by them, but if on the other hand any antoward eventa should happen; if for instance the bride should prove barren or prolific only in female* children, they represent that they had from the first had a divine presentiment of the evil, but yielding to the opinion attempted by the anger of the Prince had consented to fix the Mohrat agreeably to his wiehes.

As before stated, many years elapse between the act of betrothal and the celebration of the marriage rites. It is however expedient that the number of years thus intervening should constitute an uneven sum, as $3,5,7$, not $2,4,6$, which would be deemed unlacky. A similar belief in the virtue of uneven numbers has obtained amongst many nations from the earliest ages. It is especially laid down in the matrological books of the Hindús. Thus in the Mohrat-Chintaman, (a book abounding in the most extraordinary absurdities,) it is written that it is always fortunate to meet the black antelope on the righthand side, and if the number of antelopes be odd, it is even fortunate to meet them on the left side. A bad omen occurring to a person starting on a journey is removed by eleven inspirations, and twenty-five steps with the right foot should then be taken. Perhaps this belief may have given rise to the Hindú Triad, and triliteral monosyllable for the three worlds-earth, sky, and heaven. The number three being

[^46]uneren, and as such supposed to be of especial sanctity. At any rate, wherever or however the belief originated, it was at one time prevalent throughoat the world. Even the Platonists appear to have inclined to it, and it was certainly esteemed by the other philosophical sectenor is it perhaps much more absurd than the belief in alchemy, which formerly mastered the intellects of the sages and philosophers of Christendom, and for a time at least is supposed to have influenced the sublime genius of Nswios*.

The time for the marriage having thus been fixed, the day on which the lagan-patri (or letter containing the marriage horoscope) shall be sent by the bride to the bridegroom, is then adjusted. This is brought by the Parokit or family priest of the bride's father, and is simply a large scroll of paper, on which the day fixed on for the wedding, the aspect of the planets, the number of days during which the bridegroom's body is to be anointed with jasmine oil (Chambeli-ka-tel), and the number of rejoicings (mangal) or days during which the ceremony is to last, are specified.

The lagan is written in Sanscrit, and together with the kkilat which accompanies it, is received by the Raja in the inner apartments, on which occasion none but the females of the family, the Brahmani and Parohits (who have,always access to the mehal), and Raja himself are present.

The lagan-patri having been brought by the Parohit to the Raja, the latter places it on his head, in token of respect, and delivers it to the Brahmaans in attendance, who read and explain its contents. The Raja is then lifted \dagger up by the naf \ddagger in waiting, and carried into the inner apartments, where the Maji or Rani mother resides, and to her he gives the lagan-patri and khilat which accompanied it. I should have stated above, that the lagan is tied up with yellows

[^47]threads (this colour being esteemed fortunate) ; that didb* grass, an emblem of increase, is put on it; and that gold coins, betelnut, rapees, kaldi or yellow curry-powder, and yellow rice are placed within the folds of the paper.
The lagan-patri is intrusted to the keeping of the Rani mother until the day of her death, whilst the khilat is sent out by her for the inspection of the Sirdars assembled. When the Parohit or his followers, who escorted the lagan, have returned to their tents, which are pitched outside the city, it being contrary to etiquette that the bride's party should partake in any way of the bridegroom's hospitality, Gur (unrefined sugar) is distribated to the populace. On the third day after this, the Parohit returns with presents to the bride.

From the receipt of the lagan, the marriage is considered to begin. Marriage songs (Barna and Barni) are sung in the houses of the bride and bridegroom, and presents are distributed to the women who sing; these are for the most part females of the same stock ($\mathcal{G O t}^{(}$) as the bridegroom. The subjects selected by them, and the language in which they are illustrated, are alike coarse and ludicrous, resembling perhaps the "sales et convicia" sung by the Roman boys at marriages, or the rude jokes and indecencies which pervade the songs of our older poets.
The Raja's mother sits in the midst of the singers, listening to the tongs, and frequently joins in the chorus herself. The singers are rewarded for their labours, and their songs are always in proportion to the reward. There is a common saying, taken from this circumstance, which has passed into a proverb, "Jysa tera kourf sysa meri git," or the goodness of our song will depend upon the number of rupees bestowed on us.

The marriage songs having been instituted, and the body of the bridegroom anointed with jasmine oil, which is applied with dîb*

[^48]gress to his feet, arms, and shoulders, the worship of the potter's wheol (Chakr-puja) is then performed by the Mají and female relatives of the Raja. This consists in visiting the shop of the family potter, and in offering up sweetmeats, betelnuts, and rupees on his wheel. The prais es of this instrument and the article produced by it are chaunted by the women, and the ceremony concludes by a demand on the part of the potter* for a present; upon which there ensues a mock diapute between him, the Ranis, and the women, the potter demanding exactly twice the sum to which he is entitled, and the females as stoutly refasing to comply with his demaand. The dispute is generally ended by a compromise between the belligerent parties, and the female disputants return to the mehal.

Two days prior to the marriage, the women of the mehal repair to a tank within the interior of the palace, and having with their hands dug up the wet mud on its banks, bring it on their heads into the inner apartments, where they proceed to constract a miniature store-house or gramary for the bridegroom. The meaning of which is obviously this, that it becomes the bridegroom to lay up ample store of provis sions for his future wife and family, whilst it is no less incumbent on them (his relativee) to assist him in so doing.

After the worship of the potter's wheel the Raja and the whole of his Sirdars repair in state to the shrine of Sitla, the goddess of the small-pox. Propitiatory prayers and gifts are offered up to this dreaded personage, and various articles of food and incense placed before her. So general, I may add, is the worship of this goddeast throughout these parts, that every village has an altar consecrated to her, which consists generally of a mere heap of stones loosely piled ap, with one slab placed perpendicularly, on which a rude image of the goddess is engraved.
The appearance of this goddess is said to be similar to that of an ald and wrinkled woman, and, for this reason, the Hindus consider it

- Two remsons are assigned for the worship of the wheel ; lat, that it is the weapon of Vismmo. 2ndly, Its great ntility to the married couple, as furnishing them with atensils of every description.
+ She is said to ride on a donkey and to have a potter as a groom, and for this reason potters are entitled to the food offered up at her shrine, should it be Sukri, or food cooked in a chulha, but if Nutri or sweetmeats (which by some convenieat texit are held to be lawful to all Hindús, though cooked by strangers), the Brahmans take good care to secure them.
\ddagger Provided they are inhabitants of the Mudh Doe, or comatry between the Ifimo Lue and Vindlya rangee.
proper that persoris seized with small-pox should be attended by odd women alone.

Another still more extraordinary act of devotion is then performed, the worship of the Gokra or place in which the filth of the palace is deposited. The worship consists in sprinkling water, perfumes, and sweetmeats on the mass; and it is eaid to be indicative of the wish on the part of the worshipper, that his progeny may increase and multiply even as the heap of rubbish before him. In like manner, the Hindus are accustomed to throw their sucking teeth on a dunghill, uttering at the time a prayer that their new teeth may quickly appear, and increnso even as the dunghill has increased. Strange as this worship may appear to us, we should not forget that it may be defended by classical precedents. If the Romans adored their "Cloacina," surely a less civilized people may be excused for worshipping the Gohra.
Upon the termination of these several acts of devotion (rite peremptis), there remains the ceremony of the Bhatt to be performed, which is the presentation by the brothers and other male relatives (of the Ranis), of marriage clothes, and presents to the Raja. The presents consist of elephants, horses, camels, clothes for the Raje and Ranis* and ashrafees; and are given first to the Parohits, then to the Ranis and female attendants, and lastly to the Raja. In return for these presents the donors receive rice from the Raja. Hence the name of the ceremony.

When the Raja's mother has put on the marriage \dagger dress thus presented to her, and the circumstance has been communicated to friends and people assembled, the marriage is considered to have commenced, and the liveliest marks of rejoicing are exhibited.

The day before that on which the "barit" or marriage cavalcade starts for the place at which the wedding is to be solemnized, the deputations sent by foreign states in honour of the marriage are fented by the Raja; after the entertainment is over the whole of the Raja's relatives stand up, and whilst the Prince himself remains seated on the guddee throw rupees, \&cc. into a flat iron dish. The women singing the following words:
" Tüni khayo pet \ddagger pusár yún to lejaega múnh már," or you hare

- His mother, grand-mother, \&c. not his future wife.
tThe act of putting on the dress thus presented is called "bhat pahercene", a carions idiom enough.
\ddagger This is an allusion to the Pethya, or allowance of food given by the state to the relatives of the Raja. A Pethya is literally a bellyful, but varies in quantity and quality according to the pleasure of the granter and rank of the grantee. The
filled your bellies famously. In the same way shall it be taken from you (even) by blows (i. e. should you refuse).

The time having at length arrived at which the marriage procession is to set out, the attendants proceed to array the bridegroom in his marriage garments, which, as will be seen from the following list, are sufficiently numeroas.

On his feet he has shoes of embroidered velvet. His paíjamas or loose trowsers are composed of kimkhab, and under these he has a dhoti of yellow silk.

As an under vest or garment he has a jámá of cotton cloth, trimmed with silver lace, and dyed of a yellowish red colour (kesiria). Over this jämá he has an embroidered vest, studded with pearls, (jerrika jamá,) and over this again a girdle ornamented in the same way. The panarth, a sort of long handkerchief, is tied to his girdle, and thrown over his shoulder, to enable him to keep the dust from his eyes, or wipe it off should any find access thereto. ' On his head he has the mor*, or marriage chaplet, which is richly ornamented with pearls and gold embroidery, and is supposed to resemble the helmet of KANBYA, with its plume of peacock's feathers.

His eyelids are stained with kajul or lamp-black, his feet and hands with mehndít, and on his feet, hands, arms, and neck, he wears a

Pethya of a Ranl, for instance (see Appendix, B.) comprises all sorts of grain, spices, sauces, \&c. and that sine qua non of Indian life, shirni or sweetmeats. The fondness of all classes, high and low, men, women, and children, for these sald sweetmeats is to us quite marvellous. I have been assured, that some Brahmans -will eat a 100 balls of laddu (sugar, gbee, and pounded gram) at a sitting!! There is a curious character of an "eating Brahman," a grand gourmand,", in the Hinda Theatre."

- It has a curious sort of veil in front, formed of gold threads, hanging loosely from the head to the breast, which is intended to protect the wearer from the "evil eye." A belief in demonology and witchcraft prevails throughout Hindastan. As a curious instance of "public opinion" among the Jats on this subject, I may relate the following anecdote, told me by a very respectable native of Bharatpur. In 1815-16, the Bharatpur Raja, Randiir Singe, had an interview with Lord Hastings at Futtehpur Sikrt, and was received by that distinguished nobleman with his usual kindness and affability. The Raja was highly pleased with the interview, but happening in the course of the next year to lose his eyesight, by an attack of ophthalmia, some of the people about him, who from the first had endeavoured to dissuade him from meeting the Governor General, gave out that his blindness was the effect of "witchcraft " practised on him by Lond H. daring the interview, and this tale was generally believed throughout the Bharatpur Raj !!
+ Every one has witnessed the beautiful vermilion dye which the natives extract from this plant. It is considered as essential an ornament by Hindu and 002
variety of jewels, both such as are peculiar to mon, is aleo some whict are ordinarily worn only by women. Thas, besides bracelets on his wrists, he wears the ponchi, a sort of bangle usually worn only by females. On his neck too, in addition to the common necklace which all Hindás wear (kanthk), he has the hansi, a kind of collar made of gold or silver, and the shape of which is that of a horse sbica, thas 8 . He has also rings on his little and fore fingers.

Thus attired, the bridegroom proceeds to his mother's apartment, where he has one more ceremony to go through prior to starting: after the usual obeisances, the Raja applies his month to his mother's breast, and affects to imbibe some of the milk contained (or supposed to be contained) therein. This is of course a mere form, bat it is never omitted by any caste of Hindús, and is obviously meant to remind them of the period when they derived strength and nourishment from their mother's breast alone, and of the duty imposed on them of proo tecting the parent who cherished them in the days of helplessness.

This sentiment is simply and beautifully expressed in one of Skim's odes, of which I presume to offer the following version. (See Appendix, C.)
Having received his mother's benediction, the bridegroom leaves the inner apartments, and joins the marriage procession, which is marshalled outside the mehal. He is then lifted into a palankeen or howdah, as the case may be, or rather as the Brahmans may have directed. The chief thing at issue is the direction in which he is to proceed, particular kinds of conveyances being considered fortunate to persons traveling in particular directions: thus, should a person be journeying towards the east, he should proceed on an elephant; if to the south, in a rath; to the west, on a horse; to the north, in a palks. These directions are of course seldom observed by persons of inferior condition; indeed, they are manifestly intended only for
indeed by all Asiatic women as.rouge was (I will not venture to say io) by our own fair country women. There is this distinction however to be observed in the two otherwise similar cases, no Hindu would think it ungallant to inform his mistress that she was in the habit of "rouging." The custom is prevtily alloded to in the "Hiada Theatre," Vikrame and Uroasi, Act 4, Parura Vas thus speaks: "How shall I learn, if she hath passed this way : the pleasing soil, softened by showers, perchance may have retained the delicate impression of her feet, and show some restige of their ruby tincture." The subjoct has been somewhat differently handied by the wits and poets of Europe from the days of Marisal down to those of Brebset, who is said to have produced no less than 150 coscoite on this topic. Some specimens are given by Bland in his " Illustrations to the Greek Anthology."
people of rank and wealth. The mokrarat, however, is never wiolated even by the poorent Hindu, and judging from my experience at Bharatpur, I would say their faith in its efficacy is as firm as ever.

On passing through the city, the Raja stops at the "Behari ji masmis," the temple of the playful god Karsina, and makes his obeisences to the Mehant or high-priest of the establishment.

There is a tradition still current at Bharatpur of the " sable god*" being the killedart of the fort (though not properly within the land of Bruj), and for this reason, both he and his ministering priests are entitled to greater honors than are rendered to the other forms of the deity. On entering the mandir the Raja seats himself on the ground near the Mehant, who does not rise from his gaddi or cushion. The Raja humbly \ddagger invoken the blessing of the holy man, which is accordingly given, the Mehant throughout the interview maintaining the tone and manner of a superior, whilst the Raja acts the part of the suppliant. The same forms are observed when the priest visits the Prince in full darbair. The Raja rises to meet the saint as he enters the hall of audience, and taking him by the hand, seats him on the maonad, himself sitting on the ground beside him. Some idea may be formed from this circumstance of the important part which these Mehants play in Hinda states. The high esteem in which, they are held by all clasees of Hindas, from the Raja down to the " unwashed artizan," necessarily gives them the greatest influence in state affairs, shnald they be of an intriguing turn of mind, and especially when they contrive to-become the Gwru or spiritaal adviser of the Raja. The notorions Sai' Ji of Jeypur, the Guru, and as the Jats affirm evil adviser of Durjan Satl, whom he instigated to his hopeless resistance to our arms, may be taken as a good specimen of an unprincipled intrigaing Mehant ; nor is Bharatpur without a similar character, s is well known to the sapreme authorities. In general, however, the Mehexts are said to be quiet, well disposed personages, and I believe that a poitical Mehant subjects himself to as much odium among the Hindas as a political priest does with us. As all the mandiros have

[^49]grants of land from the state or a share in the assessments levied upon villages, they are of course more or less dependent on the will of the reigning Prince.

I may mention here, in order to preserve myself from the imputation of having mistaken the ground on which the extraordinary marks of respect above detailed are paid by the Bharatpur Rajas, to the Mehant of the Behari Ji Mandir, that the present Raja, for reasons which have been already mentioned, had not become the Chela of any Giaris at the time of his marriage, and that consequently it was not as his Gwou or spiritual adviser that he reverenced the Mehant, but as being the superior of a temple especially dedicated to Kersinn.

Quitting the temple, the cavalcade proceeds on its way. As it .passes through the city, the inhabitants crowd the tops of the houses, anxious to obtain a sight of the precession, and compare it with those of former princes. The streets are illuminated, with chiraighs fixed upon bambu trelles work; and as the Prince himself advances, the lood cries of "RAM! RAM!" become more and more frequent; uttered as they are by all ranks and ages, from the grey-headed men of sixty down to the child of three or four years old; add to these sounds, the "concordia discors" of the large shamkh or shell ; the blowing of fifes and trumpets, and beating of drums on the part of the Paltans, whice precede the Raja; the deep bass sounds of the Nakioras or kettle-drumas .borne by the camel Sowars; the shrill piercing tones of the bamber .pipe ; the tinkling of the elephants' and camels' bells; the waving of chouries; "the dancing of the tall spears" on which the nations standards* are fixed; the discharge of fire-works and jingalls, and we have a pretty correct enumeration of the attributes of pomp (and melon dy !) with which a Hindú Prince goes forth to his wedding.

The women of the different villages through which the Barút passes advance to meet it, singing the songs of rejoicing usually sung at the Hulit. In return for this mark of respect presents are given them, generally about five rupees per each village.
them by the state upon all villages. The number of villages is aboat $\mathbf{1 , 2 0 0}$, and the Chanda varies according to the Ratba, being seldom if ever above two rupees, nor less than four annas. Besides the Chaxda, they have the "Changt" or tithe in kind, levied upon all sorts of grain when exported for sale in the besars, and a pious or superstitious Prince occasionally makes them a grant of a rillage, i. e. of the government share of the produce, which is collected by the Metreat instead of by the Sirkar.

[^50]The procescion moves at a slow and measured pace : immediately in front of the bridegroom's elephant are stationed a number of water carriers, bearing skins of water, which they occasionally pour on the ground before him ; not with the intention of laying the dust, for that would be considered absurd, bat to convey to all beholders the notionthat the presence of the bridegroom is as grateful to his mistress and. all created things as water is to the parched-up earth.

When the barát has arrived to within a mile or two of the town at which the wedding is to take place, it is met by the nearest male relative of the young lady, who comes out thas far to honour the bridegroom, and to condact him to his tents. This is called the Peshowr or Istakbal, and is considered an important part of native etiquette ${ }^{*}$ It obtains I believe throughout Asia, certainly in all Mubammedare countries.
The whole of the bridegroom's Sipahis, attendants, and sirdars; constitating a body of about 8000 men , are dressed in marriage garments, as also those of the bride. In fact, no one would be allowed to. form part of the proceasion, or to be present at the marriage feast who was not so attired. This piece of etiquette throws light on a passage in Scripture, Matthew xxii. "And when the king came in to see the guesta, he saw there a man which had not on a wedding-garment, and he said unto him, Friend, how comest thou hither, not having a wed-, ding-garment? and he was speechless. Then said the king to the servants ${ }_{*}$ Bind him hand and foot, and take him away and cast him into outer darkness." A similar violation of established rule and etiquette would meet with a similar punishment, I believe, in any native state.
I shall now describe as shortly as possible the ceremonies which areperformed after the arrival of the bridegroom. In the first place, a hookah, bhang, tobacco, cardamums, and sherbet are sent to him by the " Samdhr" or father of the girl, and the "Samdkl" himself waits. on him. He is received with much respect by the Sirdars of the court, but the bridegroom neither rises from his seat nor returns his salutation. The natives consider the bridegroom to be a sort of Divinity* for the two or three days during which the ceremonies last, and for this reason he neither returns his father-in-law's greeting nor that of any one else. When the two or three days are over, he relapses. to his former " earthly" state.

* However low the caste and station of the bridegroom, he is called a "arhat roz ke Bedehah," or a "King for two and half days," i. e. during the performance of the ceremonies, which last two or three days, according to the resources of the bride's father, who is expected to feast the cavalcade for at least two and generally three daya.

In the ovening of the first day, the ceremony of the Tbrem takes place, and at midnight that of the Hom. Though there is no mention of the Toran in Mr. Colsmoors's Essays, nor any allusion to it in the "Findí Theatre," or law, it is considered by the Jats, and I ama sesured, by all Hindás is Upper India, as a very important ceremony, and as evoch, is never omitted. The Toran is a wooden ornament, or rather the figures of certain little birds, carved in wood, and gilded over with gold leaf. These are fixed above the doorway leading into the Mandap or marriage pavilion, and the ceremony consists in the bridegroom's striking or touching them with a sheathed sword.

As soon as this feat has been accomplished, a gemeral sprinkling of Hull powder and explosion of fire-works takes place. The Sirlars partake of a syafat at the Samdla's house, whilat the bridegroom returns to his tents, it being considered improper that he should bo feasted by his father-in-law prior to the performance of the Hom .

Though I have made repeated inquiries as to the origin and meaning of the Toran, I have not hitherto received any satisfactory explanantion of it :-oue reason aneigned, and it is certainly a plansible one, in that the touching it with the sword is intended to represent the bridogroom's superiority over the bride, and to convey a hint to her and all present, of the treatment she will receive, if refractory. The New Zealanders, if I recollect aright, convey a similar hint to their intend ed wives, though in a nomewhat coarner faabion, by knocking them down with large clubs previously to the marriage; or perhape, the Teren is eome allusion to the kind of wedding or rape entitled Rakhase, whioh took place between Krisina and Ru'chmani', and is one of the forms eanmerated by Mznv.

The sacred ceremony of the How or burnt-offering takes place $*$ midnight, and as it is decidedly the most classical and interesting of all the Hindé sacrifices, I shall endeavour to describe it minutely. I shall not attempt to give the Mantras, or incantations used on the occaion : first, because on account of my very alight knowledge of Sanecrit I was unable to determine the particular Mantra chaunted by the priesta ; and eccondly because the Mentras generally used on such occasions have already been given by Mr. Consbroors in his admirable papers on the religious ceremonies of the Hindús.

The Hom was performed under the Mandap or marriage pevilion, at the gateway of which the ceremony of the Toran had taken place. The pavilionis erected by the bride's father, and is constructed of wooden posts, gaily ornamented and gilded with gold leaf, having niches for the reception of the small earthen lamps which serve to illaminate the
compartments into which it is divided. The whole of the pavilion is carefully covered over with long cloth; and from the roof of it numerons lamps of coloured glans or paper (is which the purest ghve is burnt) are mespended by long string: ; gildod cocosauts are aleo to be soen dangling after the same fashion, and the appearance of these and of the many-coloured lampe is at once fantaatic and pleasing.
The apot of gronnd on which the searifice is to be performed having boen selected by the Brahmans, the Nains or female attendants of the bride proceed to decorate it in the prescribed manner: "The figure of the sacred lotus (nymphiea nehumbo), on which, according to Hindí belief, the deity floated amidat the waters of chaos, is drawn upon the ground in the centre of the chouk or square. On the figure of the lotus. amall wooden stools are placed for the bride and bridegroom, their; froes being tarned to the enst.
Immediately opposite to the chouk is the bodf, or altar on which the Agheme or sacrifieial fire is lighted. The altar is square, formed of earth, and ought to be one hav'h (cubit) in height, but the dimensions vary. In the centre of it is placed the holy fire, which may be formed of the aix following woods; viz. the Pules (Butoa fromoloal), Pepul Ficws roligiosa), Chonkra (Prosopis spicigera-Shumar in Sanscrit), Akk. (Asclepias gigantea), Kher (Acacia Catechu), and Onga (Achryasthes. aperw*.)

The futher of the girl (sammilk as he is calied), the bridegroom's maareat male relatives, and the Brahmans who are to perform the ceremonies, having seated themselves round the sacrificial fire, the bridegroom caters the pavilion, carried or supported in the arns of a mai. The saindkt honours him with a respectful salatation (dendevart), and pronences a short benedictory prayer, expressive of gratitude for the high honour comferred on his daughter. To this prayer no answer is given, sor is any retarn made to the salutation.

The semplicithen bringa a carpet for the bridegroom to mit on. This is pheed on the right-hand stool, that on the left-hand being reecrved for the bride. He aleo brings water for the bridegroom's feet, and the Brahmans chaurt a mantra in praine of water; but as the mentra and this particular ceremony are both described in Mr. Connseoors's third Essay, any further notice of them would be presumption on my part. The holy element, water, which Pindar declares to be the best of things, is honoured with three adorations. The first, or the abletion, is called snan; the second, or the pouring the water on the

[^51]ground from a vessel in the shape of a boat, arghd; and the thind is the sipping, or achimán. Surely, there is nothing very "absurd or trivial" in these alluaions to the three great purposes to which water is applied in India, and throughout the world, viz. ablution, irrigation, and nourishment.
After the adorations of water, the bride enters the pavilion, and being. carried to her father, is by him received with extended arms. He then presents her to the bridegroom, places her hand in his: the latter joining his two palms together to receive hers; as is castomary throughout Hindústan with persons when a gift is conferred on them. The Brabmans now proceed to chaunt the sankalp, or votive prayer, expressive of the solemn vow by which the bride has been dedicated and given away by her father, and thus after one or two other meentras, the kanya-dan, which precisely answers to our giving away of the bride, is accomplished.

The Bharatpur Pandits assert, that the kanya-dan irrevocably fires the marriage, even though the Hom or burnt-offering should not take place. This appears to be contrary to the text in Menv, which declares that a marriage is irrevocable after the seven steps have been taken at the Hom. Mr. Colsbroorz also states that the reventh step renders it irrevocable.

The kanya-dan is succeeded by the parkrama or pridakshana, in other words, the circuits round the altar. The clothes of the bridegroom are tied to those of the bride; their hands bound together with kusa grass, or a yellow thread : and in this state they have to perform seven circuits round the altar. The Shastras indeed prescribe four circuits as the proper number, but the Jats always make seven.

The number of circuits having been finished, maxtras are recited and ablations offered in honour of Aghana, (the god of fire,) the purest symbol of the all-pervading principle of life and power, which, as in the Platonic scheme, is supposed to diffuse itself throughout the mass of created things, and to vivify and animate the countless particles of matter.

> "Coelum et terras camposque liquentes
> "Spiritus intus alit, totamque infusa per artus
> " Mens agitat molem, et magno se corpore miscet."

Well would it bave been for Hindúism, and the myriads who profess and have professed it, had all its symbols and objects of adoration been equally pure and innoxious as Aghana.

The worship of Aghana being completed, and the marriage rendered indissoluble and irrevocable by the seven steps, the attendant priesta
chaunt the Sakiochar or marriage hyma in honour of the affianced parties' ancestors. The priests present on the part of the Raja contented themselves with enumerating the praises and virtues of three of his forefathers. Of these Suras Mal, the founder or consolidator of the Jat power, and Ranjit Singe, the fortunate opponent of Lomd .Lane, naturally obtained the largest portion of the eulogium. There is a very spirited ode in Brij Bhákha in praise of Suraj Mal, nor has the martial prowess of Ranjit Singe been less honoured, but alas! for the credit of poetical prophecy. The Jat bard who celebrates the fame of Ranjit Singh, after describing with some minuteness and most woful anachronisms the progress of the British power, which he depicts as a raging flame, kindled in the south, and acquiring heat and consistency as it spread through the country of Tippu and Mahárcishe tra, to the imperial city of Delhi, proceeds to immortalize the valour of Ranjit Singe, by whom this raging element of destruction was checked and extingwished.

But though the lapse of a few years has proved the vision of the Jat bard (like most other poetic visions), to be vain and empty, it - would be ungenerous to deride the feeling which prompted it. The Jats are and ever have been deeply national ; even in these (their) days of weakness and prostration they cling to the memory of former triumphs, nor are the feelings of the man to be envied who would sneer at them for sodoing. The sentiment which inspired the glowing numbers of Tyrtsens, which animated and immortalized the " fatal eloquence*" of Demosthenes and Cicero, and which in modern times has called forth the powers of the bards and orators of Europe, cannot and should not be deemed noworthy of sympathy, though expressed by a Jat poet in his own peculiar language.

After the praise of ancestors, the Pandits read a lecture on the marriage duties to the bride and bridegroom, to which they are both ex'pected to testify their assent. Presents are then distributed to the attendant priests, and the bride and bridegroom proceed in one palan keen to the tents of the latter, where the knot which had been tied in their garments is unloosed, and the damsel dismissed with a present of fruits and flowers to her own house.

The next day, and sometimes the day after also, is spent in festivity and rejoicing. The bridegroom, attended by his principal friends and 'Sirdars, dines with the bride's father. On this occasion also the etiquetts observed will remind the reader of a passage in Scripture. The briden

[^52]groom is met at the door of the house by his futher-in-law, who receives him with every mark of honour, and with his own hands washes his feet. The feet of the other guests are aleo waabed by the bride's relatives. The whole party then proceed into the interior of the pavi.lion, beneath which they seat themselves in their prescribed order, and the repast, consisting of various kinds of sweetmeats, is served up on platters of the leaves of the mango-tree. These with pure wator and clarified butter constitute the whole of the feast.
As I particularly wished to be present at a Hinda feast, I made a point of attending on this ocosesion, having first of all amoertained thet by so doing I should not in any way hurt the feelings or prejudices of the parties. The siaffat in fact consisted merely of aweetmeats, and these as before stated are eaten by all clasees without prejadice or obeervance of the forms which attend a regular meat, such as parifying the groumd with cow-dung, constructing a chalha, drawing the lines around it, and eating food cooked by your own hands, or by a Brahman. We were seated near the Raja, and had our platters of mango-leares filled with aweetmeats, as had the other guesta. The persons in our immodiate vicinity. whether restrained by our presence, or from etiquette, did not appenr to do much honour to the viands. I obwerved howeves that those seated farther off were either more hungry or leas ceremosions, and I weo much amnsed by the prowess of one of the gueats, "a good porthy man ifaith and a corpulent one of a choerful look, a pleaning cye, and a noble carriage," whose platter appeared, like the cask of the Damide, to empty as fast as it was filled. On the thind day largesse is distributed by the bridegroom's father to the Bkats or bards who assemble in large numbers on such occasions. The mode of distribution is as follows :-For some days previous to the celebration of the marriage, thene votaries of the "Gentile art" flock from all quarters to the place at which the wedding is to be solemnized. To every man, woman, and child, so assembling, a donation is made, generally to the amount of one rupee per head, whilst smaller sums of from eight to four anpas are also given for the wretched tattius or bollocks on which the owners may have come, and frequently to any animals; such as monkeys, parroth, or doge which they may bring with them:-for it would be considered a stigme on the bridegroom's hospitality, should any creatare attend his marriage with the hope of largesse, and be sent away empty-handed. This custom of promiscnous and ill-judging expenditure on the occasion of marriage obtains amongst all classes of Hindhs, from the Raja, to the chumar or outcast. It even masters the well known avarice of the Banya or merchant, who will squander in marriage re-
joicings, sumas which it has cost him many a year of griping and patient avarioe to accumulate, and which perbape could not be extraeted from him by the severest tortares.

The multitude of Bháts, and their attendant bipods and quadrupeds, is collected together in some secure and commodious phace, where there is but one egress. The distribution of money then commences, and as ench individual receives his allotted gift, he is directed to depart by the single entry, which is guarded by sipahis, and closed as each Bhat departs with his reward. By this system, confusion is prevented, mor is it possible for individuals to claim and receive their quota more than once, as they would otherwise undoubtedly do.
Liberal presents are also made to the "Negt-Jogi," or persons who have contribated by their handicraft towards the preparation of the marriage, such as potters, sweetmeat-makers, and other profeseors of the useful arts. Little distinction is made on such occasions between the Bhat, whose vocation is (or ought to be) of an intellectual nature, and the artizan whose labours are purely manual. If any distinction is drawn, it is to the prejudice of the poet, and he obtains a lese reward than the maker of comfits. The reader may perhaps consider this an unfair valuation of the merits of these two classes, or it may remind him of the ingenious "Maitre de danse" in Gil Blas, who indignantly asks how four double pistoles per month can be considered an extravagant remuneration for his labours, when a fourth at least of that sum would be paid for a mere "Maitre de philosophie*."

The religious and family ceremonies of the marriage having been concluded, the bride was escorted with much pomp to the hoase of the bridegroom, at Bharatpur. On arriving at the fort, she proceede to the deohri or palace appointed for her reception; at the threshold of this building she waits for the arrival of the bridegroom, who follows her at a short distance, and as soon as he has joined her, a knot is again tied in their garments, and they proceed together into the interior of the deohri.

At the entrance into the first court, the couple is met by the daugbter of the bridegroom's parohit, who stands as centinel of the sanctorium, and refuses to admit them until her usual free has been granted: on obtaining this she allows them to proceed.

[^53]The household gods, images of whom are pleced within the deowri, having been duly reverenced by the bride, she is ushered into the apartments allotted to her, and is shortly after visited by the female relatives of the bridegroom, who claim the privilege of removing her veil and of gazing at her hitherto secluded charms. This practice is known by the name of minhh-dikhaí, or the face-shewing, and the females thus honoured by a gaze are expected to make a handrome offering to the bride for the favour conferred on them.

- The bride remains for three days and nights at her husband's reaidence, but the marriage is not consummated on this occasion. Various rites and usages are practised during the three days, but as this paper has already far exceeded the limits to which I originally intended to confine it, I shall content myself with briefly adverting to two of the moot singular customs. The one is the untying of the kankan or bracelet of kusa grass, which previous to the marriage is bound on the righthand of the bride, and left of the bridegroom.

The bride and bridegroom being seated opposite to each other, proceed to unravel the knots and mazes of their respective kankens. Should the husband succeed in undoing the bracelet of the wife before the has untied his, the feat is considered typical of his future saperiority in domestic life, and great rejoicings are immediately made by his attendant relations. If, on the other hand, the lady should first 'unravel the bracelet, her friends celebrate her dexterity, in noisy and triumphant songs of applause.
A curious game of chance also takes place between the newly married couple. A large tub or caldron of water is placed before them, and jewels, gold-mohars, and rupees are thrown into it. The bride and bridegroom plunge their hands into the basin, and whoever succeeds in extracting the larger quantity of jewels or money from its depth, at one dip, is supposed to win the game. The old English amusement of Snap Dragon was regulated, I believe, on similar pricciples.

Childish as these practices may appear to us, they are at any rate harmless, nor with reference to the youth of the parties engaging is them, would they appear to merit the censures of the cynic. Who has not engaged in similar triflings, and felt the pleasure which such innocent amusements excite, in the days of youth and joyousness, when the heart is as yet whole, and unscathed by the cares and cankers of time?

On the expiration of her three days residence at the house of her lord and master, the bride returns to her relations for a period of 1,3 , or 5 years, and she is then brought home by the bridegroom to as-
sume the daties of the married state. This second bringing home of the wife is termed gona or gaman, and is usually the consummation of the marriage; but the gaman may be altogether dispensed with by the performance of the phir-pattah, or changing the stools of the bride and bridegroom, when the Hom is celebrated.

Such then are the rites and usages by which the marriage of a Raja is marked among the Jats. The same rites and usages are observed by the meanest of his Jat subjects, who are equally tenacious as he may be of the ways of their forefathers. Some of the castoms above enumerated are of course omitted by parties in inferior circamstances, such as the largesse to Bháts and others, the distribution of sweetmeats to the marriage cavalcade, \&c.; but this arises entirely from the wantof resources, and never from the belief that there is anything absurd or unworthy in the ceremony itself.
The reader who has had the patience to peruse the above remarks, will doubtless have observed, that agreeably to Hindú law and practice, the father of the bride is by no means considered on an equality with the bridegroom, but is obliged to demean himself as an inferior* towards his future son-in-law. To this extraordinary and unnatural custom, and to the feelings of degradation and wounded pride, excited by it, we may attribute the dreadful crime of female infanticide.

I have omitted to mention that the marriage \dagger of widows is permitted and practised among the Jats, and that the rite of Sxttee is conse- quently unknown.

APPENDIX.

A.

The ancient name of Dig was Diragh or Dirghpura, and will be, found mentioned in the Skand Puruin, and 4th chapter of the Bhagavat Mahátama. After the disappearance of Sri' Krishna, BrijMandal, the country of Brij, became deserted. Brije Nab, the son of Pridiun and grand-father of Krishna, presented himself one day before Sandil Rishi, the celebrated sage (who had resided in that holy quarter for upwards of a thousand years), and asked him where Kaniya had fled to. The saint replied, he has not fled, he is still in Brij, though invisible; perform tapasya (religions penance) and he will re-

[^54]appear to you, fear nothing; Brijr Nas then acked, But where am I to reside? He answered, In the following places, which will revive and flourish under your auspices, make thou thy Royal abode ;-Govardhas, Dírghpura or Diy, Mathura, Mahiban, Nandgrám and Barsama*."

The above six towns are concidered the most distingaisbed of all. the holy bane or places of pilgrimage in the circle of Brij.

Close to the fort of Dig, which is only separated by a wet ditch from the bhowans or garden-palaces, are two places greatly diatinguished in the Mathura Mahótama, or traditionary history of Mathure, and the Rrimha Bybut, or transformations of Kanayna. One of them is called Krishma-kumd, or the pool of Krisinn, and the other Sámbar, a corruption of Swyawbara, the free or self-election of a husband.

At this public place the princes of the country used to assemble on great occasions of marriage. The lady having performed the tour of the circle where they stood, signified her choice by throwing a garland of flowers upon the neck of the Prince she preferred.' There are many instances of this practice on record. In the pleasiag history of the loves of Nálat and Dampanti, the poet elegantly describes the Snoyambara or election of Damyanti, whose sagacity enables her to distinguish the real from the false Nílas, and whose affection teaches her to prefer the mortal object of a mutual passion, to the Deities who from envy and malice had asommed the form of her lover.

The latest Swyambara perhaps known, occurred at Kanowj, andwas attended with serious consequences, as the animosity it excited between the father of the princess and her lord laid India open to Muhammedan aggression, and paved the way for European ascendancy; (see Quarterly Oriental Magazine for 1825. The choice of Droupadi.) B.

For the edification of the curions in such matters I subjoin the trans-. Letion of a Hinds paper, shewing the amount and quality of the petiye of a Rani.

[^55][^56] has been given to the public by Professor Bopp.

Anowint of allowemen, money, ge. ieswed from the godowne of the Sivker to Rani, Sambat 1885.

Cash yearly.	${ }_{39} \mathrm{Ra}_{12} \mathrm{P}_{\mathrm{O}}$	(chintz of Jeypur,) 1 ditto ditto, (of Agras).. 1 piece Sallie cloth,	$\begin{array}{lll} 6 & 0 & 0 \\ 4 & 8 & 0 \\ 2 & 0 & 0 \end{array}$		
Ditto for Dewriban or Door-	2400	$\begin{array}{rl}1 & \text { piece Sallie cloth, } \\ -1 & 2 \\ \text { piece Jhoonah ditto, } & 20\end{array}$			
keeper,		z piece Mashru of Agra,			
o Hardeo, maker of sweetmeats,	3712	(silk and cotton mixed, 7 yards Gazi cloth,	8		
To Manse, vender of pan (7 pans per diem),		7 ditto Garrah cloth (coarser cloth),	18		
For twine and pack-thread,		3 hath Deriace cloth,......	03		
For Sewchoudasai or the 14th Phagun, presents to		54. pieces Metah cloth of Shajahanpur for Lahenga or			
the Jogis,	150	4 pet			0
For Hull and Daséra, .-	20	4 ditto printed cloths (green			
For Tij Siwan, the 3rd day		chintz),			-
the month of Sawan,	15	2 ditto dit			
For dyeing cloths,	82				
Atah, 5 mds. 20	5813	2 Dhotis	2		
Dal, 8 mds .10 seer	84	1 piece Chinese chintz, 12			
hee, 5 mds. 2 seers,	508	yards (probably English),	24		0
cen, 8 mas	10	9 ${ }^{\frac{7}{2} \text { yards Metah cloth for }}$			
Rice, 1 md. 5 acm	$\begin{array}{lll}2 & 8 & 6 \\ 7 & 6 & \end{array}$	dopatta,			
Sugar, 37 seers,	$\begin{array}{lll}7 & 6 & 3\end{array}$	$4 \frac{1}{2}$ ditto Mamudi, dit			
Our, 2 mds. 5 seers,	O	2 pieces ditto for D	12		
Oi, 2 mds.	10	13 ${ }^{\text {d }}$ ditto Garrah cloth of Bi-			
Barley, 9 m	600		3		
of gram,	080	62 ditto Metah cloth, in bo-			
inkh, 20 seers, (grass, of which brooms are made),	100	nour of "SŚwan Tij," (3rd day of Sáwan,)....			
cee, meh as haldi dhe		ditto Dhoti for Sanjáp,	2		
ain, ac.	320				
Cloth		Colours for cold weather, ..	8		
Wrappers and quilts, 8 pieces printed cloth,	0	R			

C.

The ode alluded to will be found in the 6th Book of the Gulistin,
 and the translation which has at least the merit of fidelity is as follows:
" Well apoke the Matron ! who beheld her son
" Proatrate the Pard-with elephantine chest-
" Wouldat thou ! but think upon thy childhood, whea
"Helpless, thon us'd to eling upon my breast-
"Thon wouldet not, now a warrior bold-
" Opprean mo-me thy Mother old !"
II.-Report on the Geology of Hyderabad. By H. H. Voysey, Esq. Siwrgeon and Geologist to the Great Trigonometrical Swrocy of India, 1819*…
The country in which Colonel Lambton carried on his Trigonomietrical Survey, daring the months of January, February, and March, 1819, lies between Hyderabad and the Godavery. The most northern station being the hill of Shivalingapak, near the Godavery. The most eastern, Chittial near Maidak; and the most western, Oudgir.

The country between these points was traversed in many directions, and the nature of the rocks, minerals and soils described; and although in many instances it was not possible to ascertain the extent of the ranges by tracing them through the jungle, yet the appearance of an identical or nearly similar rock taking the same direction has been thought a sufficient proof of the continuity of the formation.
*The papers of Doctor Voysey have long been anxiously inquired for by his friends in India. After his death it was known that his numerous manuscripts and journals had come into the possession of the Asiatic Society, and had been placed in the hands of some of the Members of the Physical Committee, in order to bedigested and arranged for publication. This arduous but pleasing task had in a great measure been accomplished by the successive labours of Mr. Wilson, and Captain FrankIn but principally of the former. The relatives of Doctor Voyser in England, anxious only for the fame of one whose memory was so dear to them, had freely and feelingly consented to such use being made of his papers; when a temporary check was experienced from an unexpected quarter. Mr. Havels, a professional artist, had it seems given Dr. Vorsiy a few hints in sketching; and had made some illustrative drawings (though but one such was found among the papers) which he considered of sufficient value to be made the subject of a formal claim. "Dr. Voyser's valuable collection," sags his letter, " his writings, and my drawings have been seized upon by some calling themselves the Asiatic Society; they are about to publish a selection from his writings, without consulting his friends, or making them any compensation $f^{\prime \prime}$ It might have been presumed, that a man who had lived in India wonld have know that scientific works were not very likely to pay the expence of publication, much less to realize proft, however the more favored productions of artists might succeed ! From this and other causes however the digest of his journals has been hitherto prevented from seeing the light, and they were less likely to do so in the present depreseed state of the Society's pecuniary means. We are therefore happy in the permission granted us to publish them in the pages of this journal, either separately $\boldsymbol{m a}^{\text {a }}$ has been done with Bucianan's Statistics,or incorporated chapter by chapter with the monthly numbers of the work. As a commencement, we have selected the reports submitted to the Marquess of Hastings, by Dr. Voysey himself, as Geologist to the Trigonometrical Survey, in 1819 and 1820. These in fact form the best digest of his proceedings for those two years, and they will serve to introduce the reader to a preliminary knowledge of the Geology of the Hyderabad provinces, while their separetion will not interfere with the text of the journal itself.-ED.

Any person who has travelled in India will be aware of the difficulties attending a deviation from the main road, especially in an unfriendly country; this circumstance, with the necessity of attending to those professional duties which were incompatible with any protracted absence from the camp, will, it is hoped, be a sufficient apology for any apparent deficiency in my attempt to take a general survey of the mineralogical character of the country in which my partial observations have been made.

It may also be proper to state in this place, that the scarcity of all kinds of meteorological and other apparatus prevented me from making any other than very general observations; and although provided with one of Gay Lussac's Syphon Barometers, yet the scale had been so imperfectly graduated in Calcutta, as to allow me to place but little reliance on the observations and calculations of heights obtained from it. This latter defect is of minor importance, since the heights of all the trigonometrical stations will be determined by Colonel Laxbton himself in the progress of the survey*.

The geology of the country between the Kistnah and Godevery admits of a very simple division, being distinguished from most other countries of a similar extent, by the existence of only two formations, differing very widely in their characters; viz. granite and Werner's floetz trap, both of which give a striking and separate character to the scenery, cultivation, and vegetable productions. It is proposed, therefore, in this sketch, to bring together in a general view the principal characteristics of each division; to contrast them ; and finally to enumerate the minerals collected, giving their description and analysis as far as it could be performed.

After quitting the limestone on the banks of the Kistuah [to be hereafter mentioned], granite alone is the basis of the country, even to the Godavery.

Certain characteristics belong to it throughout, which sufficiently mark its identity and contemporaneous formation. They are,
1st. The great irregularity of extent and direction of the ranges.
2nd. The narrow but lengthened veins or dykes of trap with which it is intersected, all running nearly in the same direction, and the masses of micaceous and sienitic granite with which it is intermixed.

3rd. The predominance of the red colour, ariging from the red felapar, which is frequently in large crystals, giving the granite a porphyritic appearance.

[^57]4th. The concentric lamellar and distinct concrete stracture; the great facility of decomposition; the rounded appearance of the decomposed masses, logging stones, and tors.

5th. The numerous lakes or tanks spread all over the country, some of which are of very large dimensions.

1st. The granite is rarely seen in ranges until a near approach to $\boldsymbol{H y}$ derabad; when it first appears after crossing the Kistnah, it is seen principally in rounded blocks, scattered without order, and in fint mamen of large dimensions, very little elevated above the surface. These however increase in size and height as we proceed to the north westward, where in the waving plain, in which the two remarkable hills of Nelgondah are situated, numerous rounded isolated hills are seen spread over it in every direction, unconnected even by their bases. The hill of Nelgomdah presents the first approach to the continued range; its summit is about 1000 feet above the plain, declining gradually to the north-west until it reaches that level. At Mulkapúr more regular grauitic ranges in the same direction appear, and are continued to Hyderabad, not without frequent interruptions, and the interposition of large isolated mountains of solid granite. Here, however, it must be observed, the granite assumes a new character, derived from the numerous logging atones and tors of the most grotesque figures and extraordinary position. The origin of these logging stones may be traced to the torn, which are masses of tabular granite, generally not more than two or three in number, the interstices of which, admitting the rain, subject the granite to a more rapid decomposition in those than in other parts of the massen, and ultimately give them the rounded forms and tottering bases* observed.
It may be asked, wherefore other rocks, such as greenstone and basalt, do not assume similar appearances in decomposition? It is probable that a sufficiently satisfactory reason may be assigned in the different directions of their interstices, which in the granite are horizontal, whilst in the above-named rocks they are vertical.
The last place to north-west where these logging stones were ob. served is Bichkinda, in latitude nearly parallel to Oudgir, and not fur distant from the place where the granite becomes every where covered by the trap.
Three formations of quartz rock have been observed, viz. at Secasderabad, Jogipet, and Pitlam, the base of the whole being granite. That

[^58]of Jogipot is the most extensive, being three or four miles in length, above fifty feet high in its highest part, and three or four hundred yarde in breadth. It is crystallized in rhombs. Some of the angles are very perfect.-2nd. The number of trap veins which have been particuharly noticed amount to seven, four of which are in the neighbourhood of Hyderabad, one at Koulas, and two in the neighbourhood of Maidak. The vein which passes near Golcondah has been traced to the eastward mearly six miles, and is said to be continued nineteen miles farther. They all resemble each other in composition, in their direction (nearly east and west), and in other particulars, of which a more detailed description will be offered in a paper devoted particularly to the description of the country around Hyderabad.-3rd. From Mulkapar to the Godavery the granite is most usually red and porphyritic. The red granite is much more subject to decomposition than the white, from the abundance of iron contained in the felspar. The granite of Nelgondah is the whitest, particularly that from the summit of the mountain. The mixture of micaceous and sienitic granite, in veins and in rounded lumps, has been observed at Tuperty, at Nelgondah, at Secanderabad, and in the bed of the Manjera near Suldapuram.-4th. It will be easily seen from the previous description of the ranges, that numerous small valleys and plains must exist with such an arrangement of mountains. These valleys covered with water during the rainy meason are artificially divided by large, and in some instances, by stapendous banks or mounds of stones or earth, leaving outlets for the passage of the water collected in the upper part, to fertilize the lower grounds during the dry season. The ground by these means is enabled to produce two crops of rice in the year, with sometimes an intermediate one of the holcus seccharatus (jovoar); bat this depends on a peculiarity of the soil, to be adverted to in the dencription of the trap country. On the borders of the lakes or tanks thus formed are seen the date and palmyra treen in great profusion, whilst the water itself is covered with aquatic birds and waders. Within about 20 miles radius from the station of Suldapir, on a misty morning, thirty-three of these lakes were counted, most of them of considerable dimensions. On the granite hills, in the interatices of the rocks and on the barren soil, the result of their decompo.sition, are only seen dwarfish plants of the custard-apple, cassia auriculata, butea frondosa, and a fow others. Large trees are only seen. in the valleys, where the soil is intermixed with richer materials, and water is more abundant.

These are the principal characteristics of the granite country as seen at Hyderabod, Maidak, Banchapilly, Koulas, \&c.

The next division of the country consisting of basaltic trap is interecting from many causes : they are, viz.
: lst. Its appearance on the upper half or summit only of some of the granite hills.

2nd. Its transition from a highly crystalline compound of felspar and hormblende (the greenstone of Wrrengr) to coarse and fine basalt, to wacken, and to iron clay, the passage being sometimes so gradual from one to the other, as to give the intermediate mineral an indeterminate character.

3rd. The direction and peculiar form of its ranges, the waving form of the land in some instances, and, in others, its flatness and conical peaks.
4th. The intermixture of carbonate of lime with the wacken, the basalt, and even with some of the granite in the neighbourhood of the trap.

5th. The black cotton soil, arising generally from the decomposition of the basaltic trap, forming the banks of the rivers, and covering their neighbouring plains. It is also found at a considerable distance from that rock, and on heights so elevated as to preclude this cause in attempting to explain its origin.
1st. At Tandmanur, Suldapuram, Madcondah, Koulas, Baktapur, and Adampuir, the granite forms the basis of the hill, and sometimes its lower half, and is covered by the trap, which in some instances has the appearance of having flowed partly down the hill when in a faid atate. In the immediate neighbourhood are hills, whose summits al though much lower, shew no trace of the trap rock having once covered them. In one instance, the hill of Koulas, a vein of trap crosees one of these hills, but its appearance indicates rather an ejection from below than a deposit from above: it affords at the same time a good example of the identity of the greenstone, the basalt, and the wacken.
2nd. The places the most remarkable for the changes which the basalt undergoes are Buktapúr, where it passes into wacken, Koulas, as above-mentioned, Beder, where the iron clay passes into both. The basalt is not always the lowest, as its greater specific gravity would lead one to presuppose, but is frequently above wacken. It is, however, aways found beneath the iron clay. As a general description of the bealt, it may be observed, that it decomposes into round masees, having an exterior crust of a few lines in breadth, of a yellow or lighter cos. lour than the interior. In the ravines, and where exposed to any depth, if. resembles very much the drawings in vol. viii. page 171, Thompon's Axrale, of the Rowley Rag Basalt. Basaltic columns were observeble
in two places only, at Múngánal aad at: Ondgir ; at the latter place. the largest exceeded a metre in diameter, was about three feet in height, eight-sided, and the interstices between the columns were filled with green earth and globular wacken.

3rd. The direction of these ranges is to the north-west, although the interruptions are numerous, and it frequently happens that a range appears to cross at right angles to the main one. Their form is generally much flattened, with two or three conical peaks; sometimes the continuation of the flat range is interrupted by a valley, which presente the appearances of the embrasure of a fortification, which is repeated several times in an extent of ten or twelve miles. The summits of Tandmanur, Medcondah, Burgapilli, Monegal, and Mungdnal are of waving land, rounded summits, separated by ravines of different depths, which in the rainy season afford a passage for the water into the plains, depositing on the banks of the streams and rivers the black cotton soil, which is the result of the decomposition of the trap rocks.

4th. At Bucktapur, at Shivalingapah, at the Godavery, at the Laendy river, near Daiglur, and at Chilliriga, near the Mangera, carbonate of lime is intermixed with the rock, whether sienitic, greenstone, granite, basalt, or wacken.

At Daiglar large rounded masses of a small grained red granite are enveloped in a cement composed of carbonate of lime, red felspar, and quartz in grains : this extends to a few miles above and below the ford. At Chilliriga the basalt and wacken, or substance intermediate, is mixed with a greenish limestone which has large vacuities in it, from its decomposition taking place more slowly than the trap with which it is mixed. In the space of a few feet pure basalt is here seen pasoing into wacken, and the latter into the mixture of limestone, which lest ultimately passes into pure limestone.

5th. The black cotton soil is not only found on the banks of all the rivers and streams generally, to the height of about thirty feet, and where it has been deposited by floods, but also in places two or three mandred feet above those rivers. On the road from Beder to Shelapilly, which lies over a stratum of iron clay, varying from 100 to 150 feet in thickness, four well defined zones of black cotton soil are crossed, runaing north and south and lying between ridges of iron clay. We encamped at Shelapilly on one of these zones, which had nearly a north and soath direction, and from a conical elevation, forty feet in height, cemposed of the same soil, observed the iron clay on each side about half a furlong distant. This soil is rich and peculiarly adapted to the cultivation of dry grains, which denomination is given to various species
of panicum, the holcus saccharatus, maire, sea, \&c. from its power of retaining moisture, which enables it withoat artificial irrigation to produce fine crops during the dry season. The plasticity, as found a foot below the surface in the month of March, is such that it could be kneaded into balls with the hand. In some places where the black cotton soil is intermixed with that from the decomposition of the granite, three crops are produced, two of rice and one of dry grain, the latter on the ground from which the first crop of rice has been cut.

This soil is first met with at Patancheru, where it is intermized with the debris of the granite, and has been no doubt deposited there by the floods of the Manjera, from which it is distant about ten miles. A corresponding change also takes place in the appearance of the country, which assumes a richer aspect : the natural productions of each soil being there intermixed.

The hills from which this soil proceeds have formerly been caltivated even to their summits. In most places small piles of stones, formerly cleared from the land, and occasionally the remsins of a atone boundary, were the only memorials of former cultivation. The poo cynosuroides (Cusa grass) grows in the greatest profuaion; it is rendered so dry in the months of March and April, that a very alight ignition will cause it to burn with inconceivable rapidity and fary. Our camp was once in considerable danger from this circumstanca. The vegetable productions most frequently met with are, the

Butea frondosa,
Cascia Malabarica, Semecarpus anacardium,
Averrhoe carambola, Dalbergia acuminata,

Ficus, three species,
Tectona grandis,
Tamarindus Indica,
Mangifera Indica,
Spondias Mangifara.

Mimosa, six species, and many others which my botunical knowledge did not enable me to name without the aid of their flowers. All these seem to acquire their greatest perfection in the places where the two ebove-mentioned soils are intermized.

It only remains to notice some anomalous appearances in the trap at Medcondah, and in the wacken at Shivalingapaik.

At the former of these places was observed in numerous detached maseen, flint with a very rough external surfece, varying from a fow inches to a foot and a half in diameter, some of them deeply connected, so that their nize may be supposed much greater ; also numerous piecen of a riliceous atone containing shells*, the apecific gravity of which varies

[^59]Section Worth sc South of the Country belween. Madras and Hypterabad
a. Granite b, Clapolate in iluduq eiendolone and flinty slate c, angillaceous Limesiene α, black allumàl Scil.

 Section of the Country from the Sea near Masulipatam to Rahir on the Godavory
boo Le Level of che Sex
a, Gnanite Esandstone c, BasallicIrap

yonnompoo 000 7
-
from 2 to $2 \cdot 5$. The shells do not effervesce in acids, although some of. them still preserve their external polish. Internally some of these stones, particularly the lighter, appear to pass into flint, whilst their external surface effervesces in acids.

Not far distant, lumps of a greyish yellow limestone, crystalline, and earthy, the latter containing shells nearly similar to those in the siliceous stone.
At Shivalingapak the wacken contains shells which preserve more of their carbonate of lime. Those appearances are the more singular, since the land at Medcondah is a continuation of the basaltic trap at an elevation of nearly 2000 feet above the level of the sea, distant from the Manjera 14 miles, and 200 feet above the bed of that river.

III.-On the reputed Descendants of Alesander the Great, in the Valley of the Oxus. By Lieut. Alexander Burnes, Bombay Army.

[Read at the Moeting of the Asiatic Society, 29th May, 185s.] K․].
In speaking of the existence of Grecian colonies in the remote regions of Central Asia, said to be descended from Alixxander of Macedon, it is necessary to premise, that I am not indulging in speculation, but asserting a lineage of varions tribes of people, that is claimed by themselves, and merits therefore our attention. Marco Polo is the first aathor who mentions the existence of such a people, and informs na that the Merr of Badakhshán laid claim to a Grecian origin. The emperor Babrr corroborates the testimony, and the historian of his grand-son Arbar, the renowned Abul Fazl, points to the country of the Siahposh Kafrs, north of Peshiwar, as the seat of these soidisant Macedonians. Mr. Elphinstons has, I think, successfully refuted this supposition, for the Kafirs are a savage and mountainous tribe, without a tradition on the sabject.

The great elevation of their country appears to me satisfactorily to account for all their physical peculiarities, nor can I look upon these people as any other than the aborigines of the plains, who fled to their present elevated abode in the wars that followed the introduction of Muhammedanism. Kafr means simply an infidel, and is applied by Muhammedans to all who disbelieve in their prophet. Mr. Elpiningtons confirms the statement of Marco Polo by telling us, that the chief of Darwaiz, in the valley of the Oxus, claimed a descent from Alexandir, which was admitted by all his neighbours. Such was the extent of information with which I entered the valley of that river, sufficient it
will be said to excite the ntmost cariosity, and it will be seen that I found ample encouragement in the investigation of such traditions while in the very seats of their existence.

If it was believed that the chiefs of Badakhshdn and Danods alone laid claim to these hereditary honors, what was my surprise to find that there were six other personages established in them, at least to the satisfaction of the people. The chiefs that extend eastward of Darwáz, and occupy the provinces of Kulab-shagnán and Wákhan, north of the Oxus, assert the same descent. The Merz or chief of Badakhshán receives in modern times the honors mentioned by the Venetian traveller. He has the title of Sháh and Málik, or king, and his children, that of Shahzaddá or Prince; but this ancient house has been subverted within these twelve years by the Mrer of Kúndizz, and Badakhshin is now held by a Türk family. To the eastward of Badekhshán, and extending to Kashmir, lie the hill states of Chitral, Gilgit, and Iskardo, where the claims to a Grecian descent are likewise conceded to each of the princes. The first of these has the title of Shak Kator. The present ruler is of small stature, and possesses as great a celebrity in these countries for his long beard as the Shah of Persia. The chief of Iskardo occupies a singular fortress on the Indus and N. E. of Kashmir, which he has the hardihood to assert was constructed in the days of Alexander himself! This country borders on little Thibet or Balti. Nor is this the ultimate limit of the tradition; for the soldiers of the Túngani tribe, who are sent from the western provinces of China, and garrison Yárkand and the neighbouring cities, also claim a Grecian origin. They however seek with greater modesty a descent from the soldiers of Albxander's army, and not from the conqueror himself.

Such is a correct list of the reputed descendants of Alixindia the Great, and it is in some degree confirmatory of their claim, that the whole of these princes are Tajiks, or the aborigines of this country before it was overrun by Túrkl or Tatár tribes. But how shall we reconcile these accounts with the histories that have travelled down to our times, whence we learn that the son of Philip did not even leare an heir to inherit his gigantic conquests, much less a numerous list of colonies that have survived a lapse of more than two thousand years in a distant quarter of Asia? Whether their descent is viewed as true os fabulous, the people themselves acknowledge the hereditary dignity of the princes, and they in their turn claim every royal honor and refuse their children in marriage to other tribes. These Tájiks, being now converted to Islám, view Alexandir a a prophet, and to the distinction
which they derive from his warlike achievements, they add the honor of being related to one of the inspired messengers of the Deity. I have had opportunities of conversing with some members of the Badakhshán family, but there was nothing in form or feature which favored their Grecian lineage, nor is there any thing in the languages of any of these tribes (of all of which I have specimens), that indicate a connexion with Greece. The people are fair complexioned, and not unlike the Persians of modern times, while there is the most decided contrast between them and the Túrks and Uzbéks.

We learn from the historians of Alsiandir's expedition that he warred in the kingdom of Bactriana. The city of Bálkh, that lies in the vicinity of these territories, is readily fixed upon as that capital of the Greek monarchs. Setting aside every local identity, the modern inhabitants will inform you that the country between Bàlkh and Cábul has the name of "Bakhtar Zemin," or the Bakhtar country, in which we recognise Bactria. This fact renders it by no means impossible, that a Grecian colony had some time or other existed in the country. It may therefore be supposed, that the dynasty which shcceeded Alsxandig in his empire ascended the valley of the Oxus, the fertility of which would attract them. They would then be conducted by Chitral and Ishardo into Balti or little Thibet, and the neighbourhood of Kashmir, and we may perhaps account for the early civilization of that beautiful valley in such a migration of Grecian colonists. The introduction of the religion of Muhammed into every country seems to have been fatal to historical annals of a prior æra, and I doubt not, that any traces which may have existed of the Macedonian inroad, or of the Seleucidæ, their successors, disappeared in that great revolution. The conntries on the upper course of the Oxus lay beyond the line of Tatar invasion, and I infer from the modern language of Badakhshin, which is Persian, and its connexion with that country, that the tribes on the Oxus followed the destinies of the Persian empire. This would favor the supposition of their having been conquered by Albxandir. If wo cannot bring ourselves to concede to these moderns the illustrious lineage of Alexandrr the Great, we must still receive their traditions as the most concurring proof of his having overrun these countries; and till some well-grounded argument can be brought forward to the contrary, I cannot for my own part deny the title of the chiefs to the honors which they claim. I received the information from natives of these countries, and as they entertained no doabt of its truth and authenticity, I have contented myself with recording that, upon which others will be able to enlarge and speculate.

IV.-On the "Topes" and Grecian Remains in the Panjab. By Lieut. Alexander Burnes, Bombay Army.
 [Read at the Meeting of the equh May.]

The "tope" or mound of Manikyäla in the Panjabb, which is described and drawn in Mr. Elphinstons's History of Cabúl, has long arreated the notice of the curious, both in India and Europe, some of whom take it to be a Grecian remain. We are deeply indebted to M. Vin. tura, one of the Generals in Ranjit Singa's service, who lately laid open this mound at great expense, and pat us in possession of mach additional information regarding it. In my late journey through the Paxjab I went to Manikyala, and was fortunate enough to find several coins at that site, and to visit other buildings of a similar description to the "tope," which had not yet been seen or examined by Earopeans. I was directed to the site of these by my friends Mons. Allund and Court, who are also in Ranji't Sinar's service; through the kindnese of Mone. Allard, I had an opportunity when at Lakore of looking at the reliques found by General Ventura at Manikyala.

There is a brief description of them published in the researches of the Asiatic Society, but I may here observe that they consist of three cylindrical boxes, of gold, of pewter, (or some mixed metal,) and of iron, which were found cased one within another, and placed in a chamber cut out in a large block of stone at the foundation of the pile. The gold box is about three inches long and one inch and a half in diameter; it is filled with a black dirty substance like mud, half liquid and mised ap with small pieces of glass, or amber, which would suggest an opinion, of its once being cased in a glass that had been fractured and shivered. Among this substance two coins or medals and a piece of string ${ }^{-}$ or twine were found. The smaller coin is of gold, and about the size of a six-pence, having a human figure, and the four pronged instrument which marks all the Minikyála coins. The other has two lines of rude characters, probably Hindú, on one side, and no writing or symbol an the reverse. Many other coins and reliques were found daring the opening of the "tope," and the people informed me that some human bones were also disinterred; but it is unnecessary to make any further allusion to them on the present occasion.

On my arrival at Manikyila on the 6 th of March, 1832, I had an opportunity of appreciating the valuable services of M. Vintura, by a personal inspection of the "tope," now laid open to view by his pergevering labours. He had first endeavoured to enter the building from below, but failed on account of the great solidity of-the structare;
further observation had discovered to him that there was a shaft or well (if I can ase the expression) descending into the building from the top of it, and here M. Ventura dug' with success. He first cleared the well which extends about half way down, and is flagged at the bottom with large blocks of stone; he completed the work by heaving up these enormons blocks till he reached the foundation, where he was rewarded by the cylinders which I have described.

I was much struck with the position of the "tope" of Manikyala. It stands on a spacious plain, and may be distinguished at a distance of sixteen miles. I did not expect in a place of such celebrity to find my search for coins and antiques rewarded beyond the most sanguine expectation, since none are mentioned to have been seen by the gentlemen of the Cabill Mission, and I only heard of those that M. Ventura had found in the tope. I procured however two antiques and about 60 or 80 copper coins, the value of which is much heightened by their corresponding with some of those that M. Ventura found in the interior of the "tope." One of the antiques is a ruby or piece of red crystal, cut into the shape of a head, with a frightful countenance and very long ears. While the other is an oval cornelian, bearing the figure of a woman holding a flower. She is gracefully dressed in a mantle, and the execution is superior*.

There have been several surmises thrown out as to the site of Maxikyda, but I do not for a moment hesitate to fix it as Taxilla, since Arrian expresely tells us, that that was the most populous "city between the Indus and Hydaspes." On the latter river too I have been so fortanate as to stumble on the ruins of two cities opposite to each other, in which I believe will be recognized the Nice and Bucephalia of Alexandre.

From the tope of Manikyala my inquiries extended to the neighbouring country, where several other buildings of a like nature are to be found. One of them is nearer the town of Raiwil Pindí, but it is much dilapidated, and my attention was directed to the village of Usmán, at the base of the Himálaya, and about 25 miles eastward of the Indus. On the north of a range of hills, and about a mile beyond the village, stands the "tope of Belar," as it is called by the inhabitants. I have annexed a sketch of this building, from which it may be inferred as of the same era as Manikyála. Neither of the buildings are perfect, and the tope of Belar differs in its greater length of body, though it has

[^60]only a height of 50 feet, or 20 less than Maxikyala. The general outline of the building too is somewhat varied, but the small pilasters are to be recognized, though the mnuldings are numerous. The tope of Belar too has been opened from the top at some former period, and a section of it would present a counterppart of the plan of Mamikydla. The few coins which I found here are similar to those of that tope, but no where did I receive the least trace or tradition regarding those buildings.

Like one in search of the philosopher's stone, I found myself referred from place to place, and at Usmán heard of a "tope" near Peshavor, which I afterwards visited. It is about five miles from the city, but in so decayed a condition that the remains would not suggest any idea of the design without seeing those of the Panjab, though they were one hundred feet high. There is however a "tope" in a perfect state of repair in the great Khyber pass to Cábul, and about 20 miles from Peshadwar, but I could not visit that building from the troubled state of the country. The natives of Peshawar assured me also that there were 8 or 10 such "topes" in their neighborhood towards the Kafir country in Swat and Búneir, but the extent of their information leads no further than that they are "topes" or mounds of a prior age.

Seeing that the structures of Manikyala and Belar are both pierced by a shaft or well, descending into the building, I incline to an opinion that in these "topes" we have the tombs of a race of princes who once reigned in upper India; and that they are either the sepulchres of the Bactrian dynasty or their Indo-Scythic successors, mentioned in the Periplus of the second Arrian.

V.-Note on Lieutenant Burnes' Collection of Ancient Coins. By James Prinsep, Sec. \&c. [Read 29th May, 1883.]

Considering the short space of time allowed to a traveller, in his rapid passage through a foreign country, for the pursuit of objects not immediately connected with his errand; and the disadvantages which his own disguise, and the suspicions of the natives oppose to his search after the very rare relics of antiquity, which may have escaped destruction for twenty centuries in their country :-considering too that the inhabitants are unable to appreciate the value of such objects, and mostly ignorant of the demand for them among the inquisitive natives of the west ; Lientenant Burnes may be deemed very successful in the
store of coins he has brought back from the Panjab and from the valley' of the Oxus .

Of pure Bactrian coins, he will be able to add at least three to the cabinets of Europe; apon one of which the name of Euthydsmus is quite distinct : while of the Indo-Scythic or subsequent dynasties his store is so ample as to afford ten for the Bombay Literary Society, and as many more for our own cabinet, besides those he takes to Earope; and among the latter is one coin of the dynasty which supplanted the Macedonian princes of Bactria, calculated to excite much curiosity among antiquarians.
This abstruse subject is already deriving elucidation from the discovery of coins in many places, which is a forcible proof of the advantage of giving early publicity to such discoveries, and to the comments of antiquarians upon them : already has Dr. Swinsy at Karnal, following up his former researches, fallen upon two silver coins of Apollodotus and Menander, neither of them duplicates of the two which rewarded Colonel Top's labours. I hope soon to have it in my power to engrave these coins as a continuation of the plate I am now about to describe, in illustration of some of Lieutenant Burngs' collection. Captain Wadr has also presented me with a few coins, obtained in his recent tour down the Satlej. To General Vrntura however we still look for our richest harvest, because his coins have a definite connection with an existing monument ; and when that meritorious officer shall see how Lieutenant Burnss has taught us to appreciate his labours at Maxikyála, we hope he will no lopger think us unworthy of being made the medium of their introduction to the knowledge of the world.

Macodonian and Syrian Coins.

Having given in Plate V. a type of the coins of Alziandrr, I need not stop to describe those brought from Persia by our traveller, a tetradrachma and two small coins of that conqueror in excellent preservation ; the larger coin has a curious cypher composed of the letters PMHenclosed in a wreath; in numerals this would represent 148.

Captain Wads has presented me with a rarer silver coin of Albxandsi, having a fine juvenile portrait of the conqueror before he assumed the horn of Ammon; and, on the reverse, Apollo seated on the peculiar oracular seat, holding an arrow pointed downwards, in the right hand (denoting clemency); his left hand resting upon a bow.

The epigtaphe is bazineaz aneeanapot ezomatopoz eteptetor. On the exergue, the letter c ; and on the left, a peculiar three-pronged monogram, resembling the letter A.

This coin is not mentioned by Pinkrrton, and would doubtless be designated by him rrrr or rarissimus. It is engraved as fig. 1 of Plate VIII. (of coins) ; it was procured in Asia Minor by Dr. Martin, the German physician, lately in Ranjít Sinar's service, and by him given to Captain Wade.
To return to Lieutenant Burnes' collection.
Pl. VII. fig. 1, represents one of three beautiful coins of Antiocaus VI. or Theos, of Syria, during whose war with Proleky Philadelphus, Bactria revolted. These are supposed by Pinkzeton to exhibit the most perfect examples, both of manly and of monetal beauty, to be found among ancient medals. They are however common enough. The Epigraphe is, bazinzax antioxor emiøanotz. Device, Jupiter seated, holding a small victory.
Fing. 2. Another Antiochus, probably struck in Parthia, from the figure of the javelin.thrower.

Bactrian Coins.

Figs. 3, 4, 5, 6. These silver coins, tetradrachms, are known at once to be of Bactrian origin, from the sitting figure of Hercules holding his club, on the reverse, much in the same posture as that of Jupiter on the Syro-Macedonian coins. The epigraphe on fig. 3, a valuable coin and in fine preservation, is bazineaz ererahm.. or " of king Euthyonmus," the third king of Bactria. The only coin of this monarch hitherto known in Europe is described in Mionnet's Description de Medailles Antiques; Pingrrton says it is a gold coin, having" two horsemen with Bactrian tiaras, palms, and long spears" on the reverse; it is therefore quite different from the unique specimen before us.
Fig. 4 has the features of a different prince; the reverse is however similar to the last, and the three final letters of baxineax are visible: as are .. HM.. which can only form part either of Eveus HMos or of днм $\begin{aligned} & \text { mppos his son. }\end{aligned}$
Fig. 5, of which there is a duplicate, is of a similar nature ; the features corresponding with No. 3 or Euthydesus. There are two others of atill ruder fabrication, distinguished by a more projecting forehead : ther are illegible on the reverse.
Fig. 6. One of two silver tetradachms. These are more like Arsacidan coins, the stool on which the figure on the reverse sits haring the form of those depicted in Vaillant, although the connection, with the foregoing coins is very strong, the head dress and
formal curls, appertain to the Persian monarchs. The inscription is in the Pehlevi character : some of the letters resemble badly executed Greek.
These coins are all from Khoja-0-baim, the ruins of an ancientcity N. W. of Bokhara, whence numerous gems and antiqnes were also procured.
Pig. 8, was obtained from the same place. A gold coin of one of the Saseanian kings of Persia, supposed to be Sapor (Shápur). The name and titles are very distinct in the Pehlevi character. It is remarkable that the usual supporters of the fire altar, two priests or kings, are omitted; unless indeed the rude ornaments on each side are intended to represent human figures holding swords. A silver Sassanian coin delineated in Hydz's Religio Veterum Persarwm has similar supporters. Lient. Burnss has also a silver Sassanian coin; it is curions from the contour of the fire altar being fashioned into a human profile; it was found at Khiva. I have not found room to insert it.
Fig. 9. One of twenty small Sassanian copper coins, which are very abundant in the same neighbourhood. They have a good head on the obverse, and a very rudely executed fire altar on the reverse*.
Fig. 7. A square copper coin from Shorkot,h, a fortress twenty miles from the junction of the Jelwm and the Chunab (the Hydaspes and Acesines) where Ausxandzz lost his fleet in a storm. It is by some thought to be the fortress of the Malli, in the assault of which he was wounded. All that can be read of the inscription is bailazax.... On the other side the inscription is in Pehlevi. This coin may be ascribed with tolerable certainty to Menandze, both because it resembles in shape the coin of that prince in Col.Ton's plate, and because the three first letters of the word which follows bainenc have much the appearance of NIK, or NIKATOPOI, the epithet applied to Menander according to Schlegrl. Journal Asiatique, Nov. 1828. The standing figure however, on the obverse, and the curious emblem on the reverse, supposed by Col. Tod to be a portable altar, agree rather with his coin of 'Apollodotus.
Pl. VIII. fig. 2. I must here introduce a coin procured from the same place by General Ventura, for which I am indebted to Captain

[^61]Wads; it is a copper or brass coin of Antiochus, mixineax Antioxor, with a Grecian head on the obverse ${ }_{2}$ and the perspective view of the after part of a boat on the reverse : the tiller of the rudder is worked from behind, as is even now the case in the river craft of the Indus.
A ruby seal antique, with a well-executed head of a Grecian female, was found at the same place.
Figg. 11, 12, 13, 15. The series of small copper coins found near Namikyala, and generally throughout upper. India, which have a head on the obverse and a Bactrian horseman on the reverse, may be referred to the reign of Eucratides I. since the gold coin from the neighbourhood of the Caspiàn Sea, described by Baysz, as having the same device on the reverse bears in legible oharacters the epigraphe " of the great king Eocrantions." .Our coins of this type have never shewn us more than the words " King of kings," and in most of them (as fig. 13, bacinst saciarr) the Greek is so corrupted as to give thie iden of a later epoch.
The type of the horse seems to have prevailed long afterwards in that part of the world, as fig. 14 evinces : it is a Hind́ coin, of much later though of unknown date. The nagri letters appear to be part of a larger inscription : their porport is therefore ancertain.
Fig. 10. A copper coin procured by Lieut. Burnses, in the neighbourhood of Manikyala.
Obverre. A king or warrior holding a spear in the left hand; and with the right sacrificing on a manal altar (?). Epigraphe baclaerc BAC...... KANHPKOT,

C

Reverse. A priest or sage standing, and holding a flower in his right hand; a glory encircles his head; on the left, the letters namais -on the right, the usual Bactrian monogram with four prongs.
This coin is of very great value, from the circumstance of its being the only one out of many discovered in the same neighbourhood, upon which the characters are sufficiently legible to afford a clae to the Prince's name. In the onset however we are disappointed to find that none of the recorded names of the Bactrian kings at all resemble that before us*; yet there can be no doubt about any letter but that

[^62]preceding kor, which may be either ©, p, or \mathbf{c}. By assuming this latitude in the reading I discovered a name which would agree as nearly as it could be expressed in Greek, with ranheror or kanhcior; and should my conjecture prove correct, the discovery of this coin will be hailed as of the greatest value by all who are engaged in the newly diveloped study of Bactrian antiquity. The coin was at first placed with the Society by Lieut. Buns, but seeing its value, I thought it bat just, after taking impressions and drawings of it, to place it in the disco: verer's hands, for the personal satisfaction of numismatologists in Europe. I suppose it to be a coin of Kaniseria, a Tartar or Scythic conqueror of Bactria.

According to Mr. Coma de Körös, the name of Kantian occurs in the Tibetan works as a celebrated king in the north of India, who reigned at Kapila, which is supposed to have been in Rokilkhand, or near Hardoár. His reign dates about 400 years after Surya, when the followers of the Buddha religion had become divided into eighteen sects (the Sakya tribes, or Saca) under four principal divisions, of which the names both Sanscrit and Tibetan are on record*.

In Mr. Wilson's Chronological Fable of the History of Kaskmar (As. Res. IV. p. 81,) we find " Hushca, Jushca, and Canishca, three Tartar princes, who succeeded Domodara, in the kingdom of Kashmir, either reigning successively or synchronously. They introduced the Buddha religion under a hierarch named Náaínuuna, and were, according to the Raja Taringini, of Twrushca or Tatar origin. The Sanscrit MS. places their reign 150 years before Sacaysinda (ar Saki Sinai), but the learned translator in a note proves that the text was at first misun.
B. C. 255. Theodotus I.
243. Theodotus II.
220. Edthydemus of Magnesia.
195. Apollodotus stir. Menander nikator.

Heriocles pika ios.
Demetrius.
181. Euckatides I.
146. Eucratides II.

Fixed historically by Strabo, \&c. Alluded to by Plutarch Trogus and Arrian, their coins prevalent in Broach, A. D. 200. $\left\{\begin{array}{c}\text { On the authority of Visconti and } \\ \text { Monet, from a single medal. }\end{array}\right.$ $\{$ Son of Euthydemus, doubtful if (he reigned in Bactria.
$\{$ Artemidorgs calls hips the ". Great \{ King."
\{ Murdered his father and was him\{self shan.
125. Destruction of the empire by the Tartars and the Scythian or Secure. - Coma's Life of Safety, MS.
derstood, and that the pessage intended to exprese " 150 years ffter the emancipation of the Lord Satya Sinma."

The epoch of Saxia, (the fifth Buddia, or Goutara,) is determined by concurrent testimony of the Ceylonese, Siamese, Pegue, Burmese, and Chinese seras, which are all founded on the birth or death of the Buddha legidator, and, thongh all differing more or less, concur in placing him between the limits of 544 and 638 years B. C.: the Raj Gérú of Aram, a Pundit well versed in Buddha literature, fixes the Niruan or emancipation of Saxya-Muni in 520 B. C.* Taking then from this epoch an interval of four hundred years to the reign of Kansara, the latter would fall near the end of the second century B. C. We know from other sources, that the overthrow of the Bactrian dynaty by the Scythian or Sakyan tribes happened in 134 B. C. (125 by Schleasl.) The present coin therefore confirms the fidelity of the Raja Taringini as a historical work, and leaves no doubt of the epoch of Saxya.

Mr. Wıson finds grounds for throwing back the termination of the reign of Abhimanya Canishca's saccessor, from R. C. 118, me given in the Raja Taringini, to B. C. 388, because "Kashmír be-came-a Buddha country under Tartar princes shortly after the death of Sakya ;" but from Mr. Cnoma's subsequent examination of the Tibetan sacred books, in which the three periods of their compilation are espressly stated; " first, under Sakia himself (520-638 B. C.) then under Asmoza, king of Pataliputra, 110 years after the decease of Sarita, and laatly by Kanisia, upwards of 400 years after Saxis" little doubt can remain that the epoch as it atands in the Raja Taringini is correct.

There are other circumstances connected with the Bactrian coins, which tend to confirm the supposition of a Buddhist succession to the Greek princes. In the first place, the reverse ceases to bear the formerly national emblem of the Bactrian horseman with the Macedonian spear, and in its place a sage appears holding a flower, and invariably having a glory round his head, proving him to be a sacred personage \dagger; secondly, although upon the first coins of the dynasty we find the inscription in Greek characters-(a custom which prevailed under the Arsacide aleo, and continued under the first Sassanian princes;) still upoo coise of the same device, but probably of later fabric, we find the same kind of character which appears upon the Delhi and Allahabad pillars: :-the same which is found at Ellora and in many ancient caves and temples

- Orient. Mag. iv. 108.
t. (See Col. Tod's Coins 11, 14; Mr. Wilsox's Platea, fig. 1, 2, 6, 7; and this Journal, Plate ii. figs. 17, 18.)
of central India, and is held in abhorrence by the Brahmans; as belong: ing to the Buddhist religion*.

I need not repeat Mr. Wilsow's opinion, drawn from other grounds, that the tope of Manikyala, in the neighbourhood of which these coins are found, is a Buddhist monument, but it receives much conffrmation from the discovery of this coin of the Sakyan hero Kanishka.

Having thus far endeavoured to reconcile the coin before us, and others of the same olass to the Sakyan dynasty, to which the term Indo-Scythic very aptly applies, we may reasonably follow up the same train by ascribing the next series, which exhibit, on the reverse, a Brahmaní bull, accompanied by a priest in the common Indian dhoti, es the coins of the Brahmanical dynasty which in its turn overcame the Buddhist line. Colonel Tod includes these coins in the same class as the last, and adduces his reasons for referring them to Mithridates, or his successors, of the Arsacidan dynasty, whose dominions extended from the Indus to the Ganges, and to whom Bactria was latterly tributary. Greek legends " of the King of kings," \&c. are visible on some, and what he supposes to be Pehlevi characters on the reverse: but I incline to think these characters of the Delhi type, and the Bactrian Monogram should decide their locality. Mr. Wilson and Sceleanl, both call them Indo-Scythic, and the latter, with Col. Tod, names the figure "Sive with his bull Nandi†." Mr. Scaleael thinks it curions that such marks of the Hinda faith should appear on these Tartar coins, but considering the Indian origin of the Sacæ, does not this rather prove the same of their successors, instead of their Tartar descent? It is more curious that the fire-altar should continue on all of the series, but the fact of its being a fire-altar at all is still matter of great uncertainty.

[^63]Fig. 16. Copper coins of this device are met with throughout Upper Hinduastan:-they constitute the third series of Colonel ToD's plate, and some in his possession have decided Greek characters apon them. On the obverse is the same warrior with apear and altar. On the reverse is what he supposes to be a priest about to sacrifice the bull; but in the coin before us the dhot反 is so precisely the costume of the Brahmans, that it inclines rather to look upon the animal (especially as he has the hamp) as the sacred bull of this country, denoting the prevalence or predominance of the Brahmanical faith in the Indian dependencies of Menandrr or Eucratides' dominion.
Fig. 18. This type of coin is if any thing more common than the last: and the inscriptions are no longer Greek ; but either of the anknown character of the Delhí column or genaine Hindi. The figure astride upon the elephant is always much out of proportion, and the Raja with the altar more rudely executed. The elephant is, like the horse, preservied in subsequent coiss ; of the Hindús; this
Frig. 17 represents one of these procured by Lieut. Burnas in his tour. The same device is still common in Southern India. The form of the Nagrícharacters on this and fig. 14 agrees with those on copper grants of land 7 or 800 years old.
I do not mention Lieut. Burner' Muhammedan coins, as itis better to keep them distinct from the present engraved series, to which I may have soon to add a valuabte sapplement, containing a selection from Dr. Swingy's and General Vinisura's discoveries. My task inoreases apon me daily, bat I shall be amply rewarded if my humble notice of the discoveries of others shall, by connecting them with ancient history, eventually turn these most interesting reliques to the true end of numismatic study.

VI.-Astronomical Observations at Barelly. By H. S. Boulderson, Esq.

The 4th No. of the Journal of Science for Oct. 1832 contains odmet: vations of the transit of Mercury in May last made at Hell, Let. 58° $45^{\prime} 57^{\prime \prime}$ N. Long. $1^{\prime} 21^{\prime \prime}$ W. As the longitude of the place of observation at Hull is probably very correct, this gives the means of graining to some degree of certainty the longitude of the few places is India where the transit was observed. There is a considerable nocer: tainty in the place of Mercury at the transit. At least the times of conjunction in AR. gained from the elements given in the Naut. Alm.

and those in the Berlin Ephemeris differ considerably. With a view only to finding difference of longitude between places where the transit was observed-this is of no great consequence. The difference of teclination of the San and Mercury at 0^{\prime} in $A R$ appears to be about $9^{\prime} 2^{\prime \prime}$.174, and this has been assumed, as also the following quantities:

The Semr. of Mercury obtained from the elements in the N. A. is $5^{\prime \prime} .8$ In the Berlin Ephemeris it is given $5^{\prime \prime} .37$. The quantity $5^{\prime \prime} .75$ has been taken as the result of the measurement of the planet's diameter at Geneva, contained in the 3rd No. of the above Journal.

> May. h. m. s.

Add time from conjunction in AR.
2219.44

Mean time of δ in AR at Hull. 4th, 232330.44
The internal ingress observed at Barelly. 5̈th, 22058
Add time from conjunction in AR........ 22134.22
Mean timè of δ in $A R$ at Barelly............... 5th, 44232.22
The internal ingress observed at Chupra........ 5th, 24218
Add time from δ in AR................. 22139.286
Mean time of δ in AR at Chapra. 5th, 5 5 57.286
The external ingress observed in Calcatta. 5th, 25824.2
Add time from δ in AR........ 22458.38
Mean time of σ at Calcutta.
51822.58

Deducting 1 m .21 sec . the longitude of Hull from the respective differences, the following longitudes from Greenwich resalt:

	h.	m.	s.
Barelly. .	5	17	40.78
Chupra...	5	39	5.85
Calcutta.	5	53	31.14 (Surveyor General's Office).

The observations at the ingress at Geneva are stated to have been rather uncertain. The internal ingress gives a wide discrepancy, the external ingress gives for the mean time of σ in AR May 4th, 23 . $49^{\mathrm{m}} 22^{\circ} \cdot 62-\mathrm{a}$ difference of longitude from Holl $25 \mathrm{~m} 52^{\text {a }} .25 \mathrm{~m}$ $52 \cdot \cdot 18$, or from Greenwich $24^{\mathrm{m}} 31^{\prime} \cdot 18$. The longitude of the observatory at Geneva (Gautier's) is given $24^{\mathrm{m}} 35$ '

The longitude of Barelly from the mean of 8 occaltations of stars in Oct. and Nov. last is $5^{\mathrm{b}} 17^{\mathrm{m}} 40^{2} 56$ E. of Greenwich.

By the mean of the 2 largest starso Sagitarii and $\boldsymbol{\gamma}$ Capricorn it is $5^{\boldsymbol{L}}$ 17 mm 39 : 68.

The following emersions of Jupiter's first Satellite were obeerved at Barelly in 1832.

Difference from

Difiereace from Barelly.

The difference of longitude deduced from Mercury's
transit is
03550.36

The mean times of the observations of occultations of atars made at Barelly are,

			h. m.	s.	
October	2nd, No. 2276	Im.	10	21	23.9
	7th, No. 2814	Im.	9	11	15
	28th, No. 2097	Im.	6	18	44.5
	29th,	0 sag.	Im.	5	29

VII.-Notice of a Native Sulphate of Alumina from the Aluminous Rocks
of Nipäl. By J. Stevensọ, Esq. Superintendent H. C. Saltpetre Factories in Behar.

- This mineral was purchased by myself from a Nipal merchant. It is called by the natives of Tirhút, Sulajít (rock sweat), and is used by the native doctors of this country to cure green wounds, or bruises. It is sold at the rate of two rupees weight for a rupee.

Drscription.

In small light lumps, colour brownish white-externally anhydrous -internally semi-crystalline-fracture slightly fibrous, with a lustre resembling asbestus-porous-containing small cavities, lined with scarcely perceptible needle-like crystals-adheres a little to the tongue. Taste acidulous saline-soluble in twice its weight of distilled water. Specific gravity not ascertained, but probably not quite double the weight of distilled water. Friable.

Examination by Tests.
Turmeric paper, No change.
Litmus do...................... . Changed the blue to pink.
Muriate of Barytes, Copious precipitate of Sulphate of Barytes.
Nitrate of Silver, No change.
Oralate of Ammonia, Do. do.
Prussiate of Potass, Precipitate of Prussian-blue, but not copious.
Solution of Sub-carbonate of Potass, Copious Precipitate of Alumina.
A careful analysis of this mineral produced the following result :
Sulphate of Alumina, 95.0
Peroxide of Iron, . 3.0
Insoluble matter (silex), 1.0
Loss, .. 1.0
100.0
VIII.-Notice of a Native Sulphate of Iron from the Hills of Behar, and used by Native Dyers of Patna. By Ditto.

Description.

In lumps-colour, externally, light yellow-internally, light grey,with a tinge of blue fracture, earthy and rough granular-porous, alightly glistening, anhydrous-easily frangible, soft-not ponderous -adheres alightly to the tongue-taste a little acid, leaving a sensation of sweetness. Very friable-specific gravity not ascertained, but probably about 1,800 .

Examikation by Tests.

Litmus Paper, $\left\{\begin{array}{l}\text { Changed the blue to yellowish red, afterwards } \\ \text { to brown. }\end{array}\right.$

Turmeric do. No change.
Muriate of Barytes, Copious precipitate of Sulphate of Barytea.
Nitrate of Silver, No change.
Oxalic Acid, A slight cloudiness.
Prussiate of Potass, Copious precipitate of Prussian-blue.
Liquid Ammonia, $\left\{\begin{array}{c}\text { Copious precipitate of Magnesia, tinged with } \\ \text { oxide of Iron. }\end{array}\right.$
A careful analysis of this mineral produced the following result :
Sulphate of Iron, . 39.0
Peroxide of Iron, . 36.0
Magnesia, . 23.0
Loss, . 2,0
100.0

Note.-The above two mineral snbstances are the natural productions of Bebar and Nipal. They might be used largely in the arts, especially in the manufacture of Prussian-blue, Calico printing, and Dyeing; I am not aware that they hare been noticed by European Chemists. If they have, the notice has escaped my reading. I am informed that they may be had in large quantities, the Sulphate of Iroa in particular. The specimen which I operated upon was purchased from Patas Bazar, where depots of this mineral are established.
IX.-Notice of Analysis of the Ashes of four Indian Plants. By Ditto.

The plants were subjected to calcination, similar to the method ased to make kelp in Scotland, and the quantity of alkali ascertained by Brande's process. 100 parts contained as follows:

Names of Plants.	Alkali per cent.	Muriate of Potass per cent.	Sulphate of Potase per cent.	Insoluble matter per cent.	Remarks, \&c.
Spent Indigo plant,	7.0	3.0	15.0	75.0	$\left\{\begin{array}{c} \text { In the neigh- } \\ \text { bourhood of } \\ \text { Singhea. } \end{array}\right.$
Opium	7.0	22.0	20.0	51.0	From Tirhat.
Tobacco plant,	3.0	9.8	11.0	76.0	Ditto
Gada Pur- $\}$ nah plant** $\$$	10.0	7.0	11.0	72.0	$\left\{\begin{array}{c} \text { Abundant in } \\ \text { Tirhót. } \end{array}\right.$

- The latter plant, called by the Natives of Tirhut Gada Purna, is much ued by the Dhobls or native washermen. They collect and subject it to the operrtion of burning, using the ashes instead of soap. I am not acquainted with the botanical name of this plant, having never seen it in Hower. It is almost unpeceseary to add, that the alkali from the above plants is sub-carbonate of potam.

Singhea, in Tirhut, 2nd May, 1833.

X.-Proceedings of the Asiatic Society.

Wednesday Evening, 26th June, 1833.
The Hon'ble Sir Edward Ryan, President, in the Chair.
The proceedings of the last meeting were read.
Mr. C. E. Trevelyan and Mr. E. J. Ravenshaw, proposed at the last meeting, were elected Members of the Society.

The Secretary submitted the following Report of the Committee appointed on the 27th March, for determining the best mode of continuing the publication of the Asiatic Researches.

Report of a Special Committee appointed on the 27th March, 1833, to consider the best mode of publishing the future volumes of the Asiatic Researches.

The statement which Baboo Ram Comol Sen, the native Secretary, submitted to the Society, at the Meeting of the 27 th March, 1833, and which led to our appointment as a Special Committee, was calculated to discourage the printing of the Society's Researches altogether, by shewing that they had been unsuccessful in a pecuniary point of view, and had absorbed in the course of many years a large portion of the Society's funds. To this argument we cannot on the fullest consideration give our assent. The reputation of the Society, its character, nay indeed its very existence depends upon the publication of its Researches, and this is the chief ohject of the contributions of its members. Neither can we coincide with the Baboo in recommending, that the Transactions, if printed at all, should be printed in England. The expence will now be nearly the same in both countries; but the convenience of reference to authors, and of supplying matter for the current volume; and of arranging the papers while in the press, are fully sufficient motives for giving a preference to printing in India : and the pride of a national and independent existence should still further determine us to this course; the moment we transfer the printing of our Researches to England, we commit an act of felo de se, and merge at once into the subordinate character of a branch of the London Asiatic Society, as has been the fate of the Literary Societies of the two sister presidencies.

With regard to our present means of maintaining the publication of our $\mathrm{Re}-$ searches, we may state, that the present income of the Society is Sa. Rs. 400 per mensem : out of which at least 100 rupees may be set apart to cover printing expences, and this in the three years nsually devoted to each volume will be ample for plates as well as letter-press. But as every measure of economy is called for, under existing circumstances, we strongly recommend that the octavo form be substitated for the quarto volume.

It will be remembered, that an octavo edition of the first twelve volumes has already heen published in England, and this has probably found a more extensive circulation among the public than the badly printed volumes of the Calcutta edition. The new series therefore will fall in very well with the English edition, and be the cause of an increased sale. It is possible that some English Bookseller may undertake to reprint the intermediate volumes, 13 to 18, in octavo, to complete the series.

We concur in opinion, that the Medical Society should be called upon to contribute to our funds, for the use of that portion of our apartments permanently occupied by their Library, \&c. and we recommend that an application be addressed to them to that effect.
It has been suggested by one of our Members that we should make the Museum a monrce of income, by charging for the admisaion of strangers to inspect it : but the majority of us deprecate the principle of such a charge, as tending to close the doors of knowledge to many who may be least able, though most willing, to seek it in our Library and Museum.
We are inclined however to approve of the suggestion of another Member, that a composition for the quarterly subscriptions should be allowed. The amount of composition at the Royal Society is fixed at 50 guineas, or ten years' subseription.

With reference to the more limited scale of the Asiatic Society, and the higher ratio of its subscriptions, we think that Rupees 500 or 32 goldmohurs, which would be seven years' subscription, including the admission fee, might be adopted as the amount of composition for new Members; with a proportionate scale of rates for those who are already Members, should they desire to compound for their future subscriptions.

June 19, 1833 . (Signed) Jobn Trtien,
R. Benson, J. R. Colvin.

Resolved, 1. That the Committee's recommendation with regard to the octavo Edition be adopted.
2. That the Secretary communicate with the Medical Bociety respecting the proposed contribution to our funds.
3. That the Society approve generally of the saggestion for the optional composition of the quarterly subscriptions, and that Dr. J. Tytier, Baboo Ray Conul Sen, and the Secretary be requested to draw up a table of the scale of payments, founded on the value of life and period of residence in India, as shewn by the Societies' subscription list.

The substance of a report from the Committee, on the boring experiment, was also communicated; but, as it had not received the signatures of all the Members, the discussion of the subject was adjourned till the next meeting.

Library.

The following books were presented :
Transections of the Society of Arts, \&c. vol. xliv. pt. 1. By the Society.
Archeologia, vol. xxiv. By the Antiquarian Society of London.
Read a letter from the Rev. W. Yates, to the President, presenting his metrical translation, in manuscript, of the Nalodaya, or History of King Nala, a Sanskrit Poem; with a copious analysis, and remarks on the various kinds of Sanskrit alliteration.

Resolved, that the work be made over to the Calcutta Committee of the Oriental Translating Fund.

Musewso.

Read correspondence with W.H. Macnaghtens, Esq. Chief Secretary to Government, respecting the transfer of the large statue of Gautama, deposited with the Society in 1825, to the Burmeme Envoys; the Government agree to defray the expence incurred by the Society in setting the statue upon its pedestal.

A spotted Deer, and an Elk, with a pair of his horns, were presented by Jobn Beun; Esq.

A further apecimen of fossil bone, and a mass of the foesil shell conglomerate of Jabalpur, were prewented by Dr. Spirabury.

Antiquities.
Read a further note on one of Lieut. Burnes' coins, by the Secretary. Also a notice on the origin of the Sakya sects, by M. A. Csoma de Kazos.

Synopris of the Winds, Weather, Currents, \&c. between Bombay and Suez, throughout the Year. By Captain J. P. Sanders, \&e. Bombay.

Moath.	Winds and Wéather, 1° ori Bombery, from thence to Mocha.	Winds and Weather between Mocha and Coceir.	$\|$Winds, sec. be- tween Coveir and Suez.	$\|$Currents Bombay Red Sea. between	Currents in the Red Sea.	Remarks.
Janry.	Pleasant land and sea breezes, extending 50 or 60 miles off shore, when N. E. winds to N. N. W. may be experienced; moderate breezes from the N. E. from thence to the Straits of Babelmandel, where a southerly wind is experienced.	From Mocha to Lat. $\mathbf{1 9}^{\circ}$ N.the winds are strong from the southward; from thence to Coseir, frequent fresh northwesters, and moderate southerly winds, for 2 or 3 days. Fine pleasant weather.	Strong winds from $\mathrm{N} . \mathrm{W}$. and N. N. W., interrupted by occesional breezes from the south, lasting two or three days.	Approaching Socotra, the current sets S.W.running more to the westward ion nearing the Straits of Ba belmandel.	Generally setting to the southward, when N. W. winds prevail.	In Mocha roads the fresh southerly winds cause a very high sea, which renders communications with the shore difficult. In Aden, Bark Bay, Jnddah, and Suez, fine weather and smooth water. In crossing from India, to the Red Sea, a long swell may be expected from N. E.
Febry.	Land and sea breezes, generally as in Janary, bntoccasionally mode- mate north westers, blowing home to the Malabar Coast. As far as the E. N. E. and N. E. then south erly winds. Fine pleasant weather.	Strong north.westand light southerly winds.	Same as in January.	Same as in Janaary.	Same as in January.	Same as in January.
March,	Land and sea breezes less regular than in Febrnary, moderate breezes from the N. W . more prevalent. From Bombay to Mocha, wind not so strong as in February; swell still continues.	Wind north-westerly, as strong as in Fe bruary; little or no southerly wind.	Do., with the exception of south winds being less fro queut in the	Same as in January.	Same as in January.	Same as in January.
April,	Variable weather, with moderate winds from N. W. to west, and occasional intervals of land \& sea breezes; from thence to Mocha, weather occasionally unsettled, winda extremely variable, and blowing occasionally from every point. On the Arabian shore N.E. and easterly winds prevail, as far as the straits, then southerly winds.	Sontherly winds seldom extending beyond Gebel Tor, while north-west winds become more frequent, between Juddah and Coseir.	Same as in March.	Current begins to incline to the N. E. near Socotra.	Same as in January.	Same as in January, but no swell.

Symoptis of the Winds, Weather, Currents, \&c. between Bombay and Swez, throughout the Year. By Captain J. P. Sand ers, \&c. Bombay.

Moath.	Winds and Weather, 1° off Bombay, from thence to Mocha.	Winds and Weather between Mocha and Coveir.	$\left\lvert\, \begin{aligned} & \text { Winds, dc. be } \\ & \text { tween } \\ & \text { Coseir } \end{aligned}\right.$ and Suez.	CurrentsBombetween Red Sear.and the	Currents in the Red Sea.	Remarks.
May,	Clondy unsettled weather with breeses from west to N. W.towards the latter, and occasional squalls from the southward; from thence to Mocha, westerly winds prevailing; near the Arabian shore. more southerly. In the vicinity of Socotra, variable winds prevail.	Winds variable, northwesters occurring more frequently, between Juddah and Mocha. Between Juddah and Coseir north-westerly winds most prevalent.	Wind strong and N.N.W. occasional squalls from the S. E. of no long duration.	Between Socotra, and the Arabian Coast, current sets to the northward and eastward.	Same as in Janaary.	In Mocha roads, strong either N. or S. winds causing a con- fosed swell, with intervals ofland and sea breezes. In Coseir the wind blows at times strongly from the N. W. cansing a constant swell, from the exposed state of the anchorage. Crossing from India, little or no swell.
Jane,	Squally from the N. W. and S. W., with heavy rains and cloudy weather, the monsoon generally comfrom thenee to Mocha frest sales from the W.S. W. and S. W. extending to the Meridian of Guardafui ; from thence moderate westerly winds prevail, to the Straits, where	Near Mocha, land and sea breezes in the early part of the month; occasionally north-westers with rain. Between Juddah and Coseir north westers prevail.	Same as in May.	Near Socotra, car- rent setes strong to the E. and ong the Bombay bank, when the mon. soon has set in, a northerly current will be experi- enced.	Same as in January.	Liglit northerly winds and sultry weather in MochaRoads. At Juddab, land and sea breezes, when the north-westers are not blowing. A very high sea would be experienced, in crossing from India, especially near Socotra.
Jaly,	Off Bombay, strong westerly winds, and squally; beyoud, strong gales from the W.S. W. and S. W. extending to the meridias of Guardafui ; from thence westerly winds of moderate strength prevail, as far as Babelmandel, when light north-westerly airs are met with.	North-westerly winds prevailing, occasionally strong. Southerly winds seldom blowing, and of ehort duration.	N. W. winds prevalent, and blowing with great violence.	On the Bombay bank, a sonther. ly set. Between the Arabian Coast and Soco- trat are strongand and variable;shiftsud. denly; ran 50 or 60 miles per day.	Variable and partial, governed bythe Coasts, and generallysetting to the southward, with N. W.	At Mocha, land and Sea breezes prevail, when tho weather is settlod. Crossing from the Red Sea, a high sea would be experienced.
August,	Moderate breeze and cloudy; squalls Iess frequent neear Bombayy. Between Bombay and Mocha, the	Near Mocha, variable winds;towards Coseir	Same as July.	On the Bombay bnink, the current bo same as in	Same an July.	At Mocha, the winds and weather the aame as in July, and nt Cowoir and Suen, morth-

hight N...westerly airs are met with.
Ofr Bombay, strong westerly winds,
and squally; beyoud, strons from the W.S. W. and S. W. extending to the meridian of Guardafui ; from thence westerly winds of moderate strength prevail, as north-westerly airs are met with.

Moderate breeze and cloudy; squalls less frequent near Bombay
Between Bombay and Mocha, the
winds; towards Coseir northerly winds gene-

	same as in July, with the exoeption of the wind being more moderate.	rally met with.		July. Botween the Arabian Coast and Socotra the current sets to N. and N. E.		weaters atill pravailing: at Juddah, pleasant weather,00casional N.-westers. Croesing from India a high sea may be expected, especially at
Sept,	Winds variable from the westward, sometimes light airs from N. E., near Bombay. From Bombay to Mocha, for the most part westerly, with occasional squalls from the W.S. W. and N. W.	Variable winds, with occasional breezes from the north-west, lasting many days.	$\left\{\begin{array}{l} \text { Weathermore } \\ \text { variable. } \\ \text { than in July. } \end{array}\right.$	Variable.	Same as July.	the mouth of the Galph. At Mocha, ligbt southerly winds prevail: sultry weather ; mooth water. Crossing from India, in the early part, a westerly swell; little or no sea at the latter
October,	N. E. winds extend about 40 or 50 miles from the Coast of India, when E. N.E. winds occur ; thence to Mocha, moderate winds from N. E., extending as far as the Arabian Coast. when it changes to E. S. E. and S. E. At the entrance of the straits, south winds and unsettled weather.	Southerly winds now set in near Mocha, and at times near Coseir ; at the latter place, north-westers still prevail, at times strong, and lasting several days.	Morlerate from the northward. Weather unsettled.	Variable.	Same as July	part of the monsoon. Croesing from India, no sea will be encountered. At Mocha, light winds and sultry weather.
Nov.	North-westerly winds prevalent off the Coast of India, from thence to Mocha E.N. E. and N. E. winds. At the entrance of the straits a southerly or south easterly wind, with ansettled heavy weather.	Southerly winds prevail near Mocha, and light S. winds at $\mathbf{C o}$ seir: with north-westers sometimes strong at Coseir. North-westers prevalent at Coseir, sometimes strong.	Same as in October.	Approaching the Red Sea, the current now sets S . W. and west.	Same as July.	Sontherly winds now set in at Mocha, and more frequent at Juddah, Coseir, and Suez. In crossing from Indin, no sea will be experienced.
Dec.. ...	Land and sea breezes extend about 50 miles, when N. E. to N. N. W. winds may be experienced, the N. E. monsoon now being set in; from thence to Mocha, the same as in January.	From Mocha to Lat. $18{ }^{\circ}$. N. southerly winds more frequent in the northern parts of the sea of Suez, lasting from 2 to 5 days, some times blowing fresh above $18{ }^{\circ}$.	Variable and unsettled.	Same as in November; the westerly current near the Red Sea encreasing in strength.	Same as July.	Fresh southerly winds, with a heavy swell in Mocha Roads. Pleasant, cold weather at Coseir and Suez. Crossing from India, little sea will be incountered.

JOURNAL

07

THE ASIATICSOCIETY.

No. 19.-July, 1833.

> I.-THE BIRTH OF UMK-A LEGEND OF HIMKLAYA,
> BY CÁlidása,
> (being the first Canto of his great poem the Cumára-sambiava).

The Sanecrit text tranalated into correeponding English measure, with notes and illustrations

ARGUMENT.

Nature and site of Himílaya, (1.) His pre-eminence among mountains, how shown, (2.) Not disparaged by frost, (3.) Description of his sublime appearance and various wonders, (4-16.) His designation as King of Mourtains by Brahma, (17.) His marriage with the nymph Ména, (18.) Birth and description of their first-born son, the mountain MarNíca, $(19,20$.$) \quad New birth, from the same pair, of Sati, once daughter$ of Daxa and wife of Siva, (21, 22, 23.) Appearance and growth of the beautiful daughter thus born anew. $(24,25$.$) Her designation as Párvatí$ and as Uná, (26.) Prized above all things by her father Himálaya, (27,28.) Her childhood and education, $(29,30$.) Her more mature youth, - (31, 32.) Description of her person, (33-50.) Her destiny as future wife, the second time, of Siva, made known to her father, (51, 52, 53.) Siva, after long mourning for Sati, comes to Himílaya to perform austerities, $(54,55$.) His troop of attendant Gods described, (56,) and his Bull, (57.) Siva then commencing his austerities; $(58$,$) is worshipped by Himá-$ mata, (59,) and at his command by his daughter Párvatí ; whose influence on Siva, together with Siva's influence on her, are described, (60, 61.) .

The lines marked * thus in the first five stanzas are those which esaetly represent in structure the padas or quarters of stanzas in the original-consisting of an Iambus or Spondee, a Bacchius, an Anaprest and Bacchius ; thus,

$$
\simeq
$$

This hendecasyllable measure, called by the Hindus इन्द्रबक्य or Indra's thenderbolt, (probably, because in one of the Brahmanas of the Sáma Véda, Indra is said to have aimed his thunder at the demon Vritra by means of Sanscrit metres!) extends through the whole of this canto, with the exception of the last stansa, the 61st : and is next to the Anustup or ordinary loose Iambic, the most frequently used, beside being one of the most harmonious, measures of Sanscrit poetry. In its application to the less measured structure of English syllables, its rhythmical effect is perhaps better represented by the following musical notation, than by any terms of prosody : (the semiquavers denoting the rapid or short syllables, and the quarer and all beyond, without distinction, denoting the long :)

a notation which may also serve to shew the reason why the rigoromsly exect imitation of this, as of other measures belonging to classical ancient languages, is not accordant with the genius of our Eaglish metrical composition. The Teutonic ear, content with the regularly recurring accent in every third syllable, and inseneibly attaching the iden of equality of time to this recurrence, as in the musical bers above written, does not acknowledge any law that should thus perpetwally and invariably distinguish the middle bar, by a dactylic subdivision, from the amphimacer of the bars preceding and following it : but allows, and even requires, for veriety's sake, the mutual interchange of these different modes of sabdivision, in the several repeated periods of the same rhythm. Such is the case with more or lese veriation in all the lines not marked with a star in the first four stanzes : and the plentiful intermixture of such lines is therefore more a matter of taste, to avoid what would be in English an intolerable uniformity, than a sacrifice to the mere ease of versification.

It is far different with the ancient languages of Greece and Rome; which in the regulation of metre by quantity exclusively of accent exactly resemble the Sanscrit. In all these, the conception of time being adjusted rigorously to that standard of quantity, which counts two short syllables (or Mdtrds in Sanscrit) equivalent to one long, the substitution in any lyric measure of dactyl for amphimacer, or anappest for bacchius, is known to be impossible. Adopting therefore their standard, the moat perfect conception may be attained by a classical scholar of our present Indian measure, by joining an Alcaic commencement to a Sapphic termination. Thme if in the first of the Alcaic odes of Horace, we transpose or alighly interpolate the ends of its two first lines, the middle of its third, and the beginning of its fourth, thus-we make the complete Indra-adira stanza.

Vides ut alta nive candidwan stet
Soracte, nec sustineant onus jame
Silve labore exanimes, geluque
En, flumina ut constiterint acuto.
Or if we take the 22nd ode, which is in the Sapphic measure, a yet alighter akoration will suffice to give each line the Alcaic commencement neeeneary to make the same Indian metre; thua,
1.

* In regions far North, clad in deiform might, The Mountain King rises, Himilaya hight:
* Whose giant form, stretching along in one sweep
* From th' Eastern main forth to the Westernmost deep, Might seem, as it join'd them, the measuring rod
* Laid o'er the broad earth by its architect God.

> Vita integer qui, scelerisque purus,
> Non ille Mauri jaculis neque arcu, Nec felle tinetis gravida sagittis, Mi Fusce, securus eget pharetra.

Though this particuiar species of double dochmiac measure does not itself occur in Horace or in Pindar, it may be found sometimes in the choral strains of the Greek tragic poeto-but in insulated lines only. Thus in the Persse of Eschylus, the 5th strophe and antistrophe of the last choral song of lamentation contain the following regular Indra-vajra lines.

(each being followed by two lines in the kindred Indian measure culled बंश्रखिं)
The following commencement of a similar strain in the Antigone of Sophocles, (attered by the unfortunate heroine berself,) is in the same measure :

Stroph. Opâre $\mu^{\prime} \omega$ خâs warptâs mo入îtat [v. 817.]

(in which we may also observe, no less than in the Alcaic, another peculiarity of our Indian measure, the commonness of the first syllable).

Se is the commencement of a similar strain in $\mathbf{~ v} .431$ and 439 of the Medea of Earipides, (p. 39, ed. Porson)-and the concluding line of another in wv.763,771 of the Supplices of Æschylus, (p. 35,36, ed. Scholfield)-and others which it were needless to transcribe.

8t. 1. the measuring rod
Laid o'er the broad earth by its architect God.
The words " by its architcet God" are an addition to the expressions of the original, but not to the sense, even according to Hindu ideas : the earth's " measuring rod" presupposing a builder, viz. the creator Brahma. When we consider the Eimaliaya, in the words of the Baron de St. Croix, as a part of one "great chain of mountains which rising on the sides of Lycia, Pamphylia, and Cilicia, stretch across Asia from West to East, and after receiving the different names of Taurus, Paropamisus, Imaus, and Emodus, terminate at the sea that washes China," and thus join, as our poet declares, both oceans, -the comparison of the vast progreasive rangeto such a rod, will scarcely be thought an unhappy one. But bating this, which is peculiar to our Indian author,-the image of an artificer, and even of an instrument of measurement, is not thought unworthy to represent the Supreme Being, and his absolute control of the most atupendova objects of the visible creation, in the pure theology of our inspired 8eriptures. See Isaiah xi. 12, 15, \&cc. but I would partieularky rofor to two remarkable instances in the book of Job (xxviii. 25, and xxxviii. 3,4) : in the former of which the Hebreo-Arabic word
2.

Him once the gay hills, so they tell, all agreed

* To make the prime Calf of their glorious high breed ;

And Méro himself, skill'd in milking of yore, Stood milker for all of the genial Earth's store :
measurement of the great waters, exactly answers in meaning to our Sanscrit $\boldsymbol{\pi} \mathrm{a}^{\circ}$ -as its derivative (مرّل) صמד) in the latter, which I now quote, might both from. its form and its parallelism with the cord in the 4th line, be almost conceived to be synonymous with our माबड्s: (the word not occurring elsewhere in Scripture.)

הגר אם זשדח במד Tell, if thou art acquainted with knowledge.
מ־-טםם טמרּד כי תדע Who disposed the dimensions (or dimensors?) of it if thou knowest ?
ש
St. 2. Him once the gay hills, \&ce.-The truly Indian legend of this verse is contained with somewhat more particularity in the 6th chapter of the Hari-Vansa, thelast book of Vyása's sacred epic, the Mahábhárata.

And also in the 18th chapter of the 4th book or Skandha of a more recent mythological authority, the Bhagavat Purana.

बउखत्याग तरबः प्थथममसयं पघः।

But the legend which has given to both these chapters of the Hari-Vansa and the Bhagavat respectively the title of Prithei-doha, or "the milking of the earth," is not confined to the subject of these lines, i.e. to the Mountains and their chosen Calf Himalaya. The injunction of Pritat to his obedient wife (or as some authorities have it, his daughter) Pritivi, i. e. the Earth, extends to the suckling of all orders of the creation, from the ultra deified saints or Rishis down to the trees of the forest : each of which, according to the high authority first quoted, were denirons of the favour, and had its own Calf, its milker, and its appropriate milk or netriment, drawn by him from the udder of Mother Earth in an appropriate pail. The fable is sufficiently curious and illustrative of Indian mythology in geseral, to be stated at greater length.

The Rishis chose for their prime calf, Soma, regent of the moon: and the sage Vrihaspati, son of Angiras, acting as milker for the rest, drew the pure milk of austere and spisitwal science from the earth's breast into a pail composed of the metrical Vedas.-The celestial Gods chose Indra for their calf: and their milker Surya, or the Sun, milked the earth of strength in a pail of gold.-The Pitris or Dii Manos having choeen Yama (the Indian Plato), for their calf, their milker, Patal Time, drew from the earth's bowels the sacred food efered to deceased ancestors, inte a pail of silver.-The Nagas or serpentine deities of the

Who, heeding their wish, at great Pritho's behest

* Gave freely, cow-like, of her swelling dark breast :
* And sparkling bright gems, with all healing herbs' power, Gush'd out for this dear mountain-babe to devour.
realms below, having chosen Taxaka as their calf, and Dhritarastra as their milker, milked the earth of its poisons in a gourd pail.-The Asuras or malignant deities, choosing Virbchana, son of Prahlada, as their calf, and Madhu for their milker, milked the earth of illusion in a pail of iron.-The Yaxa demons, choosing Cuvera (the Indian Plutus or Mammon) for their calf, (the milker not named,) milked the earth of dissimulation in an earthen pail.-The several descriptions of fiends and vampires, the Raxasas, Pisáchas, Bhutas, \&c. all choosing Sumali for their calf, and Rajatanabha, (the silver-naveled goblin,) for their milker, drew blood from the teats of the earth, into a dead man's scull used for a pail.-The Gandharvas and Apsaras, the songsters and dancers of Paradise, choosing Chitraratha for their calf, and Vasaruchi for their milker, drew perfumes from the earth's bosom into a lotus pail.-The mountains baving chosen, as we have seen, Himálaya as their calf, and Méru for theis milker, milked the earth of jewels and rich herbs in a pail of stone.-Lastly, the trees, having chosen the Plaxa or holy fig-tree for their calf, and the Sal tree for their milker, drew buds from the earth's bosom in a leafy pail.-So far the Mahábhárata: with which the Bhagavat disagrees in several minor particulars: both of these grave authorities, however, agreeing with each other, as I am happy to observe, in fully confirming the statement of our poet in this verse respecting bis mountain King.

The Scholiast Nilakantha on the Mahabbharata makes the principal herb of which the Earth was milked for Himalaya, to be the छोतिष्मतो or anminous plant, whether fabulously so called or otherwise, of which we shall have occasion to speak more particularly on the 10th stanza. But the commentators on Calidasa, both Mallinatha and Bharata-mallica ; assign that place to the fabled Sanjlvani whose juice can revive the dead : the latter adding also the herb Vi-selya-karini, to which the same revivifying property is ascribed in the Lanka-kandu or 6th book of the Rámáyana of Valmiki. The idea of medicinal herbs is therefore made the most prominent in my translation : though it should be added that both the above-mentioned Scholiasts apply the epithet भासकि here, viz. "sparkling" or " luminous," to the " herbs," as well as to the " gems."

The all-sustaining virtues of Mother Earth could not possibly be conveyed to a Hindu under a more dignified image than that of a cow and her dependent calves. We see the same image curiously applied to the highest mysteries of the Vedantic philoeophy, in the following distich of the Panchadast or Quindecad of Vidyaranya Svámí,

माधान्नाया: कासषेकोर्बंसी जीषेचराबुभा।

i. e. "Of the cow of desire, called Míyí (the Great Illusive Mother of Nature, of whom Sati and Parvati are but incarnations), there are two calves,-the separate Soun, and God. Both drink abundantly as they list : (the former drinks) duality (or diversity), which is its essence ; (the latter,) simple untty."

Compare the cow Nandinil in the Raghu Vansa of our anthor, 11. 63-66, \&ec. \&ea

While gems thus annumber'd of bountiful Earth Encompass this favourite child from his birth, * Ev'n hoary dull frost, on his lofty brow seen, Takes nought from his bliss or his glory, I ween : * One fault may well merge in a flood of such praise, * Unmark'd, as one spot in the gentle Moon's rays.

4.

For borne on his craigs, lo what rivals the grace

* Of fairy light steps that ethereal nymphs trace,
* The glitt'ring bright rock, all in broken streaks-seen As belts of the shifting cloud gather between;
* And evermore wearing, from morn to still night, The rich blended hues of the ev'ning twilight.

St. 3. Ev'n hoary dull frost, \&ec.-This idea of frost, as a mere blemish in the ethervise surpassing glory of the mountain, is characteristic of Hindu sentiment. Thus in a curious dialogue called Vishva-gundedarsana, written by an ingenions poet of the Deccan, named Venkatichári, describing the travels of two Gandharva or celestial songaters over the world, one of whom praises, the other censures, every thing,-the praise of Badarika, the holy retreat of the sage Vyasa on Himalaym, by the one, is reckoned to be sufficiently censured by the other urging the froct, which he declares sufficient to prevent, if not destroy the merit of every pions exercise performed there.

बड्प बार्या लिख्यासमं सिमं

षुमीसष्षा गम्भवषाष डु:षष्षाः।
जबाषवाराष्विता बवबत: छुत्रस्तनुखात्रति कर्म fिर्मबं।
 of this expression is disputed by some Pandits, on the gronnd of the spot belonging not to the rays but to the body of the moon. Of this the reader may judge according to his taste.

St. 4. The glit'ring bright rock.-The word घात्रुमका or mineral, which I have translated rock, is explained by Bharata-mallica to mean here simply afरi or red chalk-by Mallinatha, a little more generally (घातष:fिन्दूरजिए बाइो घक्ता सक्योति घातुमान्), but still restricting the mineral or rocky strate hers described to those of a red colour. Whence arises this determination of the Pandit commentators to give this special import to a word of general signification, when the most various colouring which the word admits would both accord better with the actual appearance of the monntain, and add more grace to the anthort description,-it is not easy to point out. I should be disposed to ascribe it to the comparison of evening twilight in this stanza, and the scholiasts' passion for syatematizing the loci communes of poetry, evinced in making the evening hue exclusively red :-did I not observe the same limited interpretation elsewhere, as in v. 104 of the Moghe Duta of our poet-where their intarpretation of

5.

* His tow'ring peaks, glowing with nearer sun's heat, Are climb'd by the holiest devotees' feet; Who worshipping first the huge shades, downward thrown From clouds thickly circling the high mountain-zone, Thence higher advancing, are chill'd in its rain Of drenching white mist, ere the summit they gain.

6.

His snows soon effacing the marks, gory red, Where lions, fierce slayers of elephants, tread;-

घानुरामा: or colowrs of the mountain rock, to be merely red, (notwithstanding the plaral) is suspected by Mr. Wilson to be owing to the possible predominance of ammonite or copper ore in some of the strata of the Himalaya. I cannot however persuade myself that either in the present passage, or in that of the Cloud Messenger, Calidása should have entertained the limited sense ascribed to him by his come-mentators,-since he has himself in another part of that poem (St. 60, 61, $\boldsymbol{\sim} .403$ -410 of Wilson's translation) described expresely in powerful images, though stiu below the truth of nature, the mingled white, blue, grey, and black, of the rocky strata of the same stupendous mountain to which his Yaxa hero was there exiled. The reader may, if he will, compare our ancient poet's description in these several places with what Mr. Fraser records in his Journal of a Tour to the Himálaya mountains (pp. 255, 317, 344, \&cc. \&c. of the 4to. edition of 1820), respecting the intermixture of every diversity of hue, reflected from the variously stratified peake. On every account, therefore, I prefer the most general meaning of the diatwmatad here.

Ibid. And evermore wearing, \&e.-The meaning of these two last lines is conveyed by Cálidása in as many words, Akdla-sandhyam iva, literally " like an even-ing-twilight out of its time :" but the immediately understood import of the short Sanscrit compound could scarcely be evolved intelligibly in a leas compase of English words, than in the metrical paraphrase I have given.

St.5, 6. My Malayalim MS. transposes these two stanzas : but the order of all the Devanágari and Bengali MSS. and commentators, seems here decidedly preferable.

St.5. The holiest devotees.-To the reports brought back by these holy pilgrims, (fि̄ा: or perfect men, as they are here called, when they attinin their object,) a large, portion of the strange matters popularly credited and described by our bard as belonging to this mauntain, may be certainly ascribed : amongst them, the elevation. above the region of frost and snow, of summits glowing with the more ardent heat of the approximated sun. See the note on St. 16.

St. 6. The momntaineers, \&c.-Properly the Kira'tas : for the name, though often used to denote merely a mountain woodsman and hunter, was originally the pame of a tribe or nation on the N. W. of the Indian mountains, viz. the Kirrhada. (K ḉpajas) of Ptolemy, or as it has been sometimes read Kirrhodecis. In the Institutes of Manu (x. 43, 44,) these are enumerated along with some tribes of an undoabtedly Hindu origin, and others as undoubtedly foreign, (the Cambojas, the

The mountaineers, skill'd in the dangerons chase, Can still, though unseen, the destroyer's path trace ; The frontal pearls, dropt from his claws on the way, Point out where the monster has borne his buge prey.

Yavanas or Greeks, the Sacre or great Indo-Scythian nation, the Persians, Parthians, Chinese, the Daradæe, and inhabitants of Khasa-giri, or Cashgir, the Indian Caucasus,) who are said to have fallen to the lowest class from their original distinction of Xatriyas or Rajpatas, by neglecting the proper religions rites of their caste, and seeing no Brahmans.

$$
\begin{aligned}
& \text { श्वबेस्यु कियाझे।पाटिमाः क्षरियजातयः। }
\end{aligned}
$$

The historical drama Mudra-Raxasa enumerates the Kirátas together with the Sacs, the Macedonian Greeks, the Cambojas, the Persians, and Bactrians, as having inundated from the N. W. frontier, under the conduct of Chinakya, Chandra-gupta's able and wily minister, the ancient capital of the Nanda kings;

 Act II. p. 41, ed. Wils. The note of the learned translator (p. 64, of the 3 rd volume of his Hindu Theatre) here well dewerves to be consulted. I would only add, with reference to two statements in it, that as the name pr Yever or يوس (Iaoves), which is known to have been the common appellation of the Greeks throughout western Asia, leaves no doubt of the Yavanas here being the followers of Alexander the Great,-so there is as little reason for ascribing a vague or uncertain site to the Kirátas or Cirrhads. The most accurate of ancient geographers, by whom alone the name in this correct form was given to the western world, has in the 12th chapter of his 6 th book, fixed with singular precision the position of these mountaineers with respect to the other Sogdian tribes, viz. on the eastern side of the Oxus, not far from its source in the Paropamisian mountains, near where their range meets that of the Indian Caucasus; and not fur from where Alexander fixed the site of the last of the cities called by his name, before he invaded India. Thus the Kirátas are north of the Bactrian tribes, and due west of the Saca, in the parallel of about $37^{\circ} \mathrm{N}$. agreeably to what might be inferred from the Indian history preserved in the Mudra-Rasasa. [The existence of a coantry called Cirrhadia, east of the Delta of the Ganges, the modern kingdom of Arracan, might lead to some confusion: but in the position of the tribe of Cirrhade by Ptolemy, there is no ambiguity : and his error in making the latitude of this and the circumjacent places too far north by about 4° is no impeachment of the accuracy of his relative description, obtained from the routes of the mercantile travellers of his day.] I will only add, that these same Kirátas seem laid down under the name of Cirabe Indialong the Imaus range towards the north, in that curious mone-
 Scythis usque ad finem Asie.]

7.

On him grow the birches, all rough with flak'd bark, Which wanton wild elephants eagerly mark, Their huge sweating fronts rabbing o'er it amain, Till all its peel'd folds bear the ruddy deep stain : That bark which hereafter, in paper's smooth leaves, From min'ral red ink the trac'd letter receives; Impassion'd warm lines, haply, destin'd to bear, By Love's god indited, to deified fair.

[^64]The same fabulous charactor is by no means so apparent in the fragrant minctro oue red ichor mentioned in St. 7, as secreted in the clephant's forehead, and ex-: uding during the ruttiag season. This persuasion, which not only pervades the fiterature of the Hindas, but has been communicated by them to inquirers of other nations, is however generally condemned by naturalists as a vulgar error; the most diligeat observers having failed to discover anything beyond common perspiration. (See Rncycl. Metrop. Art. Eleppintr : where is also stated a singular corrent belief, connected with this, of some natives of Western India.) Of the antiquity of this belief we have a singuiar restige in Strabo's description of India, (lib. xv. vol. 6, p. 91, ed. Siebenkees) where he states that the male elephant at that ameos grows farious, and "emits a sort of fat through a pore or vent which he hasmear the temples :" the opening of the same pore indicating the corresponding sea-

 bably delivered by the Brabmans of Chandragupta's court at Pataliputra to Seleucas's ambassador Megasthenes, who is Strabo's great authority on Indian affairs : for Aristotle, who wrote shortly before that communication with India, and has embotied all the imformation of his time, (refuting whatever he thought fabulons,) in his mamerous books on Animals, has recorded no such particular as this of the elephant.

1bid. The सूर्ष्ं Bharja or Mountain Birch, (Betala Bhojapatra of Wallich,) is surrounded, like the birch tree of Europe, with a bark consisting of several layers, capable of being peeled off in ample flakes, and liable to become rough from the constant unequal peeling of its folds, though the texture of each layer or cuticle in itself in remarkably smooth : hence it is described in St. 57 of this canto as समर्ये बतो or plemant to the touch, and thus a fit clothing for Siva's attendant gods. Though

8.

He, filling the hollows of all his brave trees
Of rattling bamboo with a whistling wild breeze, That sounds from the covert of every deep den, And echoes through all, over forest and glen,-1 Might seem to be piping and leading along Heaven's quire of musicians, commencing their song. 9.

His beauteous tall pines, when the elephants heal
By friction on them, the sharp twitching they feel
this use of clothing the immortals is as little apparent in the present day as that of corresponding with them, the bark is still extensively employed, as it was in Calidása's time, for the fabrication of a very common kind of paper among the Hindus, as well as for the less poetical purpose of supplying what our countrymen in India call the snakes of their hookas. A fuller description of this tree may be seen in Dr. Wallich's very valuable work, Plante Asiatica Rariores: to whom I am also indebted for a sight of a frustum of its trunk brought by him from Nipal, and illustrating the above statement.

The use of this birch paper in bearing erotic messages to the fair Vidyedhards of Indra's heaven, which Cálidása thus oddly contrasts with the rough embrace of the wanton elephants, (the two states of the bark being singularly mired together in the Sanscrit sentence) is curiously illustrated by the converse application, exhibited by our poet himself in his beautiful drama of Vikrama and Uroast, or the "Hero and the Nymph :" where the celestial nymph Urvasi uses a leaf of the birch tree to convey her passion to a mortal prince. The leaf plucked in the forest, and hastily inscribed with a few elegant Pracrit lines, is dropped by the divine fair one in sight of the king's confident, who bears it to his master. (Act. II, p. 33 of the Sanscrit edition, p. 86 of Wilson's translation.)

St. 8. He filling the hollows, \&e.-The office ascribed to the syivan and mountain deity Pan in the Homeric hymn to that god, and in Ovid's Metamorphoeces, i. . 707, of giving the first notions of music to mankind by blowing through reeds with the winds of heaven, and even instructing the immortals in the same art, (and as the Orphic hymn pursues the idea, thus setting an example of the harmony of the heavens, -
i. e. as some say, by the gamut of his syrinx answering to the seven planets,) is bere ascribed to the gigantic Himalaya, with all the advantage that the far larger and more noisy reeds of the Indian forest give to the representation. Our poet has spoken elsewhere of the natural music of the bamboos, but in a more tranquil strain, and with no mention of the mountain leader of the band, or of his echoing caverns, in SL. 58 of the Cloud Messenger, and in the Raghw-vanse, 2nd Canto, St. 12.

St. 9. His beauteous tall pines, \&c.-The धर Sarala or Pinas longifolia, sometimes called the Cheer, which is the species of pine here mentioned, is of the mast

Athwart their big foreheads,-a liquor distil

Of milky white hoe o'er each fir-covered hill :
Whose well diffas'd fragrance makes every dark height
And table-land, pregnant with od'rous delight.
10.

All night on his herbs as innocuons fires blaze, The caves' inmost chambers are pierc'd by their rays : Not trimm'd with oil they, 一yet to spirits that rove In forests, enamour'd, the true lamps of love.
frequent occurrence in Sanscrit poetry. It grows in abundance, as I am assured by my learned friend Dr. Wallich, in Nipal, and all the mountainous regions on the northern frontier, and contains much resinous matter, of a very fine and aromatic kind; which might not unreasonably be supposed to flow abundantly from any wound or incision made in the tree: but as to the scratching elephants habitually performing that agreeable office, and earths and rocks refiecting the fragrance thas imparted to them ; this he thinks may well be set down to the imagination of the poet, or of those whom he is here content to follow. (Of the friction of the elephants, compare the notes on St. 6 and St. 15.)

St. 10. All night on his herbs, \&cc. What is here meant by Calidasa is not, (as might be at first sight supposed) a spontaneous ignition of berbs by friction often issuing in the conflagration of forests, - a common subject of description in Indian poetry, though little accordant with the circumstances annexed to the fires in this stanza. It refers to lambent fires, like those described in Lucan's mysterions Druidical forest near Marseilles, (Pharsalia iii. 420).
-non ardentis fulgere incendia silva-
or those of Argolis in Seneca's Thyestes, Act. IV. (where though the terms are just opposite, the meaning is precisely the same)

Tota solet

Micare flammid silva, et excelse trabes Ardent sive igni-
or like those by which, in the special prodigy manifested in the commission of the Hebrew legislator at Horeb, (Exod. ii.) the plant "flames, but is not consumed." The authority given by the two commentators whon I have consulted on this poem, for enumerating this among phenomena of constant occurrence, is simply the Agama or Tantra, the Indian Cabbala, venerated scarcely less than the Nigama or Vedas themselves, by the votaries of Siva and of his female energies or Sactis. The passage thus cited from the Agama (without further particularity of reference) is given by Mallinatha as follows: राषiबेष धीयु नेखो नियाब रविरंत्षा बाति i.e." The sun when he has deposited his rays for the night with the decidnous herbs, goes to his setting." And thence a friendly acquaintance, endeared by occasional absences, is established between the herbs and the rays to which they are nightly attached, of which poetical fable our author makes a very elegant use in the 30th stanza of this book.

11.

His steep defiles climbing, with petrified snows
Heap'd up, shooting aches through the strain'd heels and toes, The dames of Heaven's horse-headod quire, in array, To high upper regions pursue their slow way:

Were it an ancient anthor of the western worid who thns enmmerated the careilluminating herbs among the wonders of Himalaya,-we should have litide beaitation in referring his story to the phenomenon of the fire-fy, presenting to the eye of an unobeervant stranger the appearance of sparks inherent in the trees or shrubs on which those insects play. But this origin can scarcely be ascribed with any probability to the existence of such a belief among the Hindus, to whom every thing regarding the बत्बार or fire-fly is most familiar : and its mention in this menner can only be accounted for by the disposition which characterizes them beyond an other people, not only to admit the customary occurrence of prodigies, (as more ealightened nations have been prone to do,) but to cease to consider them as such, and to class them among the most familiar objects of their daily experience.
I should add, however, that this particular belief, founded wholly on the Tantras, is one not commonly adduced in Hindu poetry : except in these instances of Calidisa's present work, and one in the Sisupala-badhe of the poet Magha, I am not aware of its occurrence, nor do I think it has attrncted the notice of any European sebolar. The jybtismati or huminous plant, which as was observed in St. 2, is mentioned by some as pre-eminent among the herbs divinely given to Himalaya, is one of the most commor of Indian plantr, the heart-pea (so called froen the shape of its fruit), or halicucabum cardioppermom: and notwithstanding ice name in Sanscrit, together with 18 others of which several are equally aplendid in import, found in the Amara Cbsha and other vocabalaries, it has no property luminous or blaxing quality ascribed to it by any of those respectable authoritien. And if we inquire ooneerning the most "sparkling" of Himelaya's medicinal herbs according to the acholiast on St. 2, I mean the magic Fisalya-kerani, which wras sought to restore life to the slain brother of Rama himself, we find in the Lancakanda, 680 , the monkey warrior Susena, in his minute directions given to his chief Hanuman, (that he might recover it from the millions of Gaadharras, Raxseas, and others who jealously watched it,)-describing indeed its yellow leaves, grieen fruit, its red and golden flowers, \&c.,-but not a word of any Mासम् or illuminatang property.

Ihid. To spirite that reve, ge.-The Engtish word spirit will rather be ubderstoed of a superhuman being, than of the spirit of a man : and indeed I am rather ansious for an interpretation which European taste requires, in order to give dignity to a circumstance like this, when introduced in connexion with the mysterious agd superataral fires that light up the caverns of Himalayn. The truth, however, must be told in the note, whether such mangement in the text be excusable or not : vix. that the बचेचरा: or "forest-rovers" here mentioned were doubtless, in the mind of Calidhsa as well ap of kis Indian commentators, mave mere ; i. e. किरानादब: the Cirrhade and other troglodytes of theqe manntaina.

St. 11. Heaven's horse-headed quire.-Amongst the bisarrerien of Hindu mytholo 5J, is that of giving the heads of horses to the heavenly manicians, who are theace

With loins sorely wearied, and labouring breasts, The zealous firm bund yet desiste not, nor rests.

12.

He, King of Hills, keeps from the Sun's killing gaze, Close hid in his caverns' impervious deep mase, The Genius of Darkness:-who owl-like, below, There broods unperturbed and safe from his foe. When th' humble man truly such refuge can find, The high-headed patrons must be passing kind.
called, from the surprise naturilly excited by their appearance (in the same manner as the Manna that fell in the wilderness received its interrogetory name) fिक्षरा: or किम्पु बा: as if we should say in English What-moen / The place of these Kinneras in the creation is laid down by Manu 1. v. 39. See also Moor, Ward, \&cc.

St. 12. Whether Calidása in the last two lines of this curious stanza intended a compliment to patrons, and particularly to the great monarch Vicramaditya, whose splendid protection of genius and merit, (perbaps indigent or oppressed by envy) be himself so largely shared, at an era preceding by a very few years that of the Roman Augustus,-or whether it is to be taken as an oblique satire on the त्चे:ििरक: or "high-headed" patrons of humble men generally, it is not possible in the dearth of all properly historical and biographical materials, to deter. mine with say probability. But however this may be, the word मसबi mamatanes in bere uadoubtedly to be taken in a simply good sense for partial or friendly regerd. Thoogh properly meaning regard to a thing as my own, agreeably to its derivation from the genitive mama (quasi Latine metratim diceres, Grece EMOTHTA) -and therefore secording to Hinda theological principles requiring, equally with the जुंबार: chankbra derived from the nominative of the same pronoun (viz. To EIS, or "le MOI" of Marmontel, \&ce.) to be extirpated from the breast of the perfectly wies maa, whe is to see all things in God, and to be as free from partial attachment of any kind as from gross selfishness,-yet in all but Vedantic writings, the former word is as generally used in an amiable sense, as the latter is in the reverse. Even the Ddoi-mahdomyam of the Marcandeya Purana, intended mainly to shew how the Vaisya Samadhi at length attained eternal beatitude by expelling both these seelings from hin bosom,-represents the mamatvam or mamata, of which he required to be cared, as one of the kfudliest of human sentiments,-viz. a fond attachment to, and regret for the loes of, a wife and children, who had ungratefully used and deserted him. But perhaps a more distinct idea of the application of this word and of its origin may be obtained from the following very homely distieh, which I find in the metaphysical play Prabodha-Chamdrbdaya, or Rise of the Moon of Intelleet-(a drama intended to teach the rigid stoical doctrine abore alluded to,) Act 5 , Scene 2.

$$
\begin{aligned}
& \text { मावारमझिते बाह्त् समता म्रुपुद } \\
& \text { ग ताह्ड समता घ्यन्य बतिक्ड डव नूषिके }
\end{aligned}
$$

i. a. " Such kind and partial regret (mamaf 人 $_{\text {) as }}$ is felt for a domentic fowl derouned by the cat, we foel not for a mere aparrow so killed, atill less for a mouse."
13.

For him the large Yaks in his cold phans that bide Whisk here and there, playful, their tails' bushy pride. And evermore flapping thoee fans of long hair
Which borrow'd moon-beams have made splendid and fair, -
Proclaim at each stroke, (what our flapping men sing)
His title of honour "The dread Mountain-King!"
14.

On him, when their conscious self-stripping ev'n shamies The frolicsome spirits of Heaven's piping dames, To please them, the clouds have a thick curtain made, Which o'er the cave's mouth drops its shelt'ring broad shade.

St. 13. Of the Yak or Bos grunsiens, a description may be found in Hamilton's Hindustan, vol. ii. p. 569, in the midst of the description of Thibet, -or in any book of Natural History written subsequently to Turner's Embassy to that country. The conceit contained in these lines of Cálidása, is one which I fear will scarcely approve itself to the taste of European readers : and can only be understood by explaining 1. that of the hairy tail of this animal, called चमг Chamar, the Hindus make the flappers commonly used for brushing away flies and musquitoes, which are thence called in Sanscrit च।मरं or चामरो but in the common Hindvi language चitत i. e. صونريپ or chowrie : and 2. that the waving of such a chowrie set in a golden handle over the head of a Prince or over the image of a God, is accompanied with the proclamation of his uame and titles, and reckoned among the comatant emblems or insignia of royalty. [A most striking example of the importance actached to this may be seen in Col. Tod's Annals and Antiquities of Rajactiona, p. 265, where an apparition of the sanguinary goddess of Chittore, (a form of our Parvati) demands twelve regal victims as the price of her continued protection of the city from the Tatar invaders of the close of the 13th century. "On ench day enthrone a prince : let the kirnia, the chehtra, and the chamera prociaim his sorereigaty, and for three days let his decrees be supreme : on the fourth let him neeet his foe and his fate. Then only may I remain." The terrible history that followed the promulgation of this supernatural announcement must be fresh in the miad of every reader of that deeply interesting work.] Hence the fancy of the poet: shat the grunting ox, frisking in his nitural state on the high table-land of Thibet and Nipal, anticipates his fine tail's future destiny, and flapa it to proclaim the honours of his wild liege lord " Himalaya, King of mountains."

St. 14. The poet here returns to the female Kinnaras or heavenly masicians, whom he left in St. 11, pursuing their laborious way to the upper regions, and glad to disengage themselves of any clothing that would impede their progresa. He brings them to the mountain-caverns, ever the favourite residence of benthea doities, of female deities eapecially ; -in the words of old Hesiod, (Theogon. v. 129.) $\theta \in \hat{\nu} \nu$ xapievtas divaú入ous

The covering dropped from the clouds to hide them from view, is vindicated from every unnatural exaggeration by the following passage in p. 348 of Fraser's

15.

His wind,-whether bearing along the chill apras Far scatter'd from where, on its snowy white way. Down dizzy heights plunging, great Gangas' young river Full darts its precipitous torrent for ever, -
Or shaking the fragrance of tall cedar trees, Or spreading the peacocks' tails out to the breeze,Is hail'd in its cold, sweet, or languid career,

- By tir'd mountain-hunters that chase the swift deer.

Tour to Himalaya. "We had projected the ascent of a snowy peak directly behind Seran; but on the day intended, the clouds fell down to the foot of the hills, enveloping all in the most complete and impenetrable darkness. It was not like a common mist : it was really a sinking of the clouds from the rarefuction of the atmosphere till they quite shrouded us."

St. 15. Shaking the fragrance of tall cbdar trees.-SoI render the word ₹ेक्डा déva-dáru, which is the Pinus Deodaru of Dr. Roxburgh, and which, as Dr. Wallich informs me, is very nearly allied to the cedar of Lebmnon so celebrated in: Western Asia. It abounds in the high regions of Nipal and westward, but never at a less elevation than 10,000 feet above the sea : its wood is hard and durable, retaining a lasting fragrance: the turpentine extracted from it, far exceeding other kinds in scent. A full account of the tree, (though not a good drawing) is given by Mr. Lambert in his splendid work on Pines.

Calidasa in his other great mythological poem the Raghw-vanos, Canto ii. St. 36 . and seq., tells a wonderful history of one of these Devadáru cedars that was adopted by oar goddess Parrati, and nourished as her own daughter: and who, when lacerated by the forehead-rabbing elephants (in the manner described here, St. : 7 and 8,) had a guard pleced over her by Siva at the instance of his beloved Parratif, in the person of his servant Kumbhbdhara, turned for that special purpose into a fieree lion. [The whole however tarns out at the end, to be bat a magie scene got up by Nandin! the sage cow of Vasistha, in order to try King Dilipa's fidelity and derotion to her. See note on St. 23.]

Ibid. Io hail'd, \&c.-In repeating here the triple character of the light breezen of Himalaya, 1 follow the ideas of the Indian commentators. The "tir'd mousn-taim-kenaters" are the same Kirátas whom we bad before in St. 6. The sabutation of the refreshing breeze after a weary chase, as implied in the word चTষे बनें, may remind us of the inrocation under the same circumstances of the huster Cephalus, (so fatal to his jealous wife Procris. Metamorph. vii. 837).

Egredior, silvasque peto : victorque per herbas
AURA, VENI, dixi, nostroque medere labori.
And I should remark, that it is the same kind of worshinful welcome and nothing further, that in intended by the kindred word fिमेख्य in St. 5-i. e. the holy de. votees first "hailing" (not religiously adoring) and willingty seeking for shelter the hage shadea of the mountain clouds; which, higher up, turn to chilling rain and mist.

16.

On his' crowning lake, as the lotus-flowers grow, The seven blessed Risris plack some ere they blow, Tradorn the fifth hearn : while the Sov'reign of day, As circling beneath, he with upward strong ray Peers o'er the calm waters, the rest ripes apace, And opes to fall bloom their enchanting soft grace.

At. 16. On his crovoning lake.-The word Jरve or bake occurring only as a member of the compound epithet of the lotus flowers, might be translated with equal grammatical correctness, lakes in the plural. If a single lake only be intended, which the epithet बy or crowning and other circamstances, seem to make by far the mook probable interpretation, it can scarcely he any other thpn that called in moden Hindvi language Mansarour, from the Sanscrit माबसुों। i. e. the great lake Manasa, situated in the centre of Himalaya, 31° N. 81° E. in an oblong beasin of 15 miles by 11, inclosed by the principal range to the south, part of the Kailase range peculiarly sacred to Siva on the east, and other high mountains and table-lad on the north and west : a lake frequented as a place of pre-eminent sanctity by His. du pilgrims,-but before Mr. Moorcroft's visit scarcely known to Europenss. If bowever, with Mallinatha, we suppose several high-mountain lakes to be here meant, we may join with the Manasa the lake of Ravana weatward of it, whence isones the great Satadru or Sutlej river, and others: particularly such as Hindu imagination or the report of probably mendacious pilgrims has fixed on the inaccessible summit of
 Hanuman.) See Asiatic Researches, vol. xiii. pp. 189, 190. What the poet bevore says here, or seems to say, concerning the lake Mknasa, -ho has desembere sid of the Ganges, which had been commonly, but erroneously sappoeed to spring frem it For thus says Rama to Sitá in the Raghw-vanoa, Canto xiii. Sl. 51, when deccribing the anyatic forest of the sage Atri.

『्राभिषेकाय तथेषषकानां
 प्रवर्गंथामाष किजानुपूषा

" Thither, for the due ablution of sages whose wealth is austerity, has Arustef (the wife of Atri) turned the course of Ganges flowing throagh the three world, the diadem of the three-eyed Siva, her whose golden lotus-fowers are phated hy the Mands of the seven Rishis."

But the intention of Calidasa in this stanza, as his commentators truly suy, it to close his description of Himálaya by a splendid instance of चनिलये bole, such a one as, in the words of the rhetorical poet Dand whom they quoth is ोोषसीसातिर्वfिती i. e. trasecending the amits of the worlds.
——rivida vis animi pervicit et extra
Perracit longe flammantia manaia numbi.
For not only does he state the highest summits, to rise above the planeting eptiece, (to use the terms of the Hindu and the Ptolemaic astronomy,) so that the Sun can -
17.

In him, then, the Father of Heav'n and of Farth Beholding a nature which freely gave birth
only look upwards at their crowning lake,-but above the yet higher sphere of the fixed stars,-even to the highest visible celeatial sphere occupied by the seven Rishis, (Marichi, Atri, Angiras, Pulastya, Pulaha, Kratu and Vasistha,)-whoee stations in the pre-eminently favoured seven stars of the Great Bear, are thence imagined by the Hindtas, in despite of long astronomical observation, to retain ever the same position with respect to the poles of the earth, unaffected by the precession of the equinoxes, that changes the declination as well as the longitude and right ascension of all inferior stars. Thus the loka or world to which these yet unblown flowers are transferred by the hands of the blessed Rishis is removed by two or three steps above that of Indra, Surya, and the other coleatial goda, and is only below the seventh loka, the abode of Brahma : which makes it the fifth when the earth is not included. See Wilson's Dictionary, Art. सोष.

We need not wonder therefore that in the general destruction of the three lower worlds, the earth, the region of Munis, and the solar heaven, by a flood at the close of the Manvantara,-in which the pions King Vaivasvata alone wae preserved in an ark, accompanied by the sever Rishis,-the highest peak of Himalaya should yet appear above these waters : and that the Rishis should be commanded by the Divine Preserver (in the ahape of a fish), to fasten the ship's cable to this peak, (the Hindt Ararat,) "thence called," says Vytia, "Naubaudhaman or the ship-binding even to this day." For so we read in the Aranya-parva or 3rd Book of the Mahabharrata, in the episode Matsyophkhydmam.

$$
\begin{aligned}
& \text { चाजिण् लिखषलः प्रें काषं क्षोत काषिरं।। घ०।। }
\end{aligned}
$$

Thengh M. Bopp, in his ingenious prefsee to the German tramalation of this epleode (pablished in 12mo. under the title of Die Srindeut, at Berlin, in 1829,) Hoburs to distinguish this simpler account of the flood from that translated by Sir W. Jowes, in As. Ree. vol. i. No. ix. from the more recent Bhagavat-Purina, the vord से lated geschopfe or leute, "creatures or men"-instead of wellen or "worlds"), proves this delugeat lemst to be no less universal than that ascribed by the Bhagavat to the close of the Manvantara : nor does this mention of the peak of Himalaya above the waters (which is not in the Bhagavat) at all oblige us to suppose a more limited flood to be intended by the older writer.
 by the scholisats fित्रुणिin i. e. "opens to full bloom." This meaning doen mat occur in vacabularies : and I therefore mention it here. (Compare St. 32).

To each sev'ral limb of the sacred oblation, And adequate strength to the world's sumtentation,Decreed of himself, when to all his great mind
Their portion of dues sacrificial assign'd,
That lordly Himálapa ever by right
Should claim sov'reign power o'er each mountainous height.
18.

He therefore, high Ms'zu's sole worthy compeer,
To keep his proud lineage untainted and clear,-
Did thence to himself, with divine nuptial rite
The noble nymph Ma'ná most wisely unite ;
Whom, sprang from the Pitrie' pure spirit alone,
Ev'n Munis might honour and take for their own.

St. 17. A nature that freely gave birth

To each sev'ral limb of the sacred oblation.-These words are but the necemery expansion of a single Sanscrit compound, बघात्रतोणित्र which begins the staana The limbs (\#हाषि) alluded to, are the flowers and fruits-the sacred grasech, kusa, difroa, \&c. together with the wood and all other materials required for sacrifice, which are so abundantly produced by the mountain.

St. 18. He therefore, high Mtrw's sole worthy compeer.-The adjustmeat of supremacy between Himalaya the highest of mountains in the world, and the pecaling glory of India on the one hand-and Mount Méri on the other; which apart from fable, should seem to have been the central spot of the Brahmanism that from the morth invaded and subjugated the peninsula, (and which if the testimony of Strabo, Arrian, Diodorus Siculus, Pliny, Eustathius, and others may be admitted respecting the Indian tradition of ancient times,-must be placed near N yssa in the mountaiss of Hyrcania or Margiana, not fart from the S. E. extremity of the Caspian in northers Khorásán), seems to be rather a difficult point with Hindt mythological writers. The celebrated nıystical episode of the Mababbhárata, the Bhígavad-Gíta, gives the came supremacy among mountains to each separately: for where Crishna in the 13th chapter represents himself as identified with the chief of all orders of cres tion, as the Bhrigu of Rishis, the Sun of Adityas, the Stman-Vtde of ascred books, \&c. \&c. we find him v. 23, saying, मेब: नि पिल mountains," and in v .25 स्वाषराबiा fिसाबच: "the Himaleya of hills,"-giring, apparently for the purpose of thus honouring Himálaya, a second meation of mountains which is not allowed to any other order of beings. And we have seen in our St. 2, how elsewhere in the Mahábhárata and the Puránas, a compromine is made between the most sacred central mountain and his snowy compeer, by making the former the milker by whom,-the latter the calf for whom,-the choicest treasures of the parent Earth are extracted.

With respect to our present bistory, we find in the 36th, 37th, and 38th sargas of
 and हामारेग्रfin: i. e. the birth of Ganga, the great deeds of Um\&, and the birth
19.

To this divine pair, as in fond embrace due
To conjagal union, the joyous time flew ;-
The mountain-king's bride, yet in lovely youth's bloom,
A new precious burthen conceiv'd in her womb.
20.

And soon she brought forth the hill-queen's darling pride, Maináca, who since to old Ocean allied
of Cumara [I. p. 343-359 of Carey and Marshman, or I. 143-147 of Schlegel], -that this point is in a manner settled by making Meru the father-in-law of Himalaya, i. e. the father of that very noble nymph Ména, and through her the progenitor of Ganga and Uma, the illustrious daughters of Himálaya, as well as of the god of war Cumára or Cárticéya, the offspring by one of them of Siva. It may seem strange that Cálidasa, when about to pursue at length, and in a style of more ambitions ornament, a story that Valmiki has summed up thus briefly, sbould have departed so widely as it appears in his facts from an anthority held so secred. Not only does he here deny by implication Méná's origin from Méru, (who is here so distinctly mentioned with reference to Himalaga), by describing her as sprung from the manas or mental substance of the Dii Manes or paternal gods, (whose properties and order in the creation may be seen at length in Manfu, Ch. iii. $\mathbf{\text { . }}$. 192-201) : but he also in the succeeding stanzas, suppresses every mention of Ganga or Ganges as the elder sister of his heroine Uma: mentioning onty in that rank of seniority, the comparatively unimportant Mainaci.

Calidasa however has ample authority in the Puranas for his statement. Thus the Scholiast Mallinatha, (who explains माणरीं बव्यां here by सf "born from the mere volition" of the Dii Manes or Pitris)-cites in confirmation of $\mathrm{St} .18,19,20$,-the following distich from the Brahmánda-Purana-where we have the same mutual relation of the Pitris, Ménf, Himalaya, and Mainaca laid down, (without mention of Uma),

$$
\begin{aligned}
& \text { तेषां तु मालती बन्पा सेना गाम मखानिरः। }
\end{aligned}
$$

and also the following from the Vishńd-Purana, making Méná daughter of the Pr tris-and assigning to her a highly spiritual and contemplative character (agreeable to what we read here in St. 22) as well as to her sister Hárini.

8t. 19. This verse is omitted in my Malayalim manuscript, bat its existence in every other that I have consulted, as well as the internal evidence of its style and language, bespeak ite genuineness.

St. 20. Maintica surnamed Sunábha, once a mowntainows island, is now, since this act of "Vritra's foe" or Indra [see Mahábhárata IV. $\$ 4$ entitled Vritra-badha] a annken rock in the gulf (or rather strait) of Menar, that separates Lanca or Ceylon from the Indian continent. He is introduced by Válmiki as himself telling the atory of this catastrophe: which as it belongs to a part of the Rimifana (the 5th book or sumdere-kdinde, 8th mection or sarga) which has not yet

In bands of strict friendship, alone scap'd the blow Aim'd fall at each motantain by Vedtea's stern fee. Their wings were all olipt by the Thund'rer's ferce ins, But his, the foll bolt left unscath'd and entire.
been published at Serampore or Bonn, may be given entire, with a tranelation in correspondiug Anustup measure.
The Monkey chief Hanumán, son of Pavana or Marruta (the Indian Æolus), while springing over the strait to Lanca, is accosted from below by Mainaca, begging him to alight, and partake of rest and refreshment from his hospitality. After some dialogue upon this,-Hanumin at length expresees astonishment at Mainfici's condition in these words, and receives the following reply :

अमुक्रणात्रनेष्या लगालकरस्षुणे।
विं बसकर्जंडे षीमन् विभूटो प्रूति कारण।।

प्रतुषाष एदूमकं बाबंघं बाषवकोषिएं।।
पष्वक्त: पुरा में। बभूड्ड़ः की प्रतासितः।

धूणनि ∇ सबं बसुक्षेषां पतनफ्रत्या।

च नानुप्ततः कुतो बब्यनुरम्य दे बराट्।

चिज्य क्यलोगे च प्रंितो बालर्शभ।
गुप्तब्चः छसर्थब तब पिथाभिरणित: ॥
Handma'n.-In Ocean's boundleas waste, o'eespromd
With huge sea-monsters crowding nigh, Why hid'st thou thus thy wave-merg'd head ? Tell me, sage Mountain, tell me why.
Manna'on,-Erst, mighty chief, on wings forth flew, Free through all space, the Mountain bands, Swift as the bird that bears Vishnu, Or heaven's loud blast that scours the lands.
But as they soar'd aloft, strange fears Did Rishis, gods and men surprise, Dreading their fall ; and heaven's King reara His bolt,-fierce lord of thousand eyes.
Then fell from thousand hills' sides low The wings by vivid lightnings cleft But me, while yet the bolt-arm'd foe Drew nigh, -unnerv'd, of hope bereft,-
21.

Next Siva's late censert, pure Gaxí once nan'd, Who, towande her lov'd Lord with devotion inflam'd,

Thy pitying sire beheld : then straight

In his atrong windy grasp he bore
Down to this briny depth, where fate
Threatens these shelter'd wings no more.
Here what is represented by Calidasa as the friendly act of Ocean, hiding the mountain under its waters,-is made by Valmiki the act of the God of Wind, horrying the winged rock to the protecting depth,-and is therefore the subjeet of grateful acknowledgment to the Wind's son.

This catastrophe, (which may be perhaps paralleled in Northern mythology by Thon aiming his rengefal bammer at the Ginnts of the Mountains in mid-air, as told in the Bdda of Snorro, Fab. 11,) is not anfrequently alluded to in the legenda of the Hindas. Thus in the Kast-kanda of the Skanda-Purana there is a soliloquy of the great mountain Vindhya, full of schemes of enry and ill-will against Méru, but suddenly recollecting and deploring his impotence to execute them when deprived of wings; and bitterly regretting thé wanton petulance of some one of his race of old that had provoked the Thunderer to this act of severe vengeance.

 प्रीज: चतो बच षिरपष्ज बेहितं।।

St. 21. The voluntary burning of Sati, (whose name is here twice repeated साती सती, once as an epithet "pure" or "virtuous," and again as the proper name,) is among the best known and most constantly repeated tales of Hindú mythology; and it is in memory of this that every self-devoted and self-immolating wife obtains the same sacred name of Sati, i. e. in another spelling of that very common but often mis-applied term, is a Suttee. The case of the prototype differs materially, as we may here observe, from the posthumous devotion of her inuumerable imitators : the affront which she thus heroically resented was offered to her undying lord, Siva, by Daxe, son of Brahmá, in omitting his distinguished son-in-law from an invitation to a grand sacrificial feast, at which all the other deities were to be present. The daughter went, though unasked : but finding only a confirmed continnance of the slight offered to her beloved husband, she threw hersalf into the flame and thus spoiled the sacrifice : apon which Siva, who had been comparatively indiferent to the preceding affront, avenged her death in the terrible form of Vira-Bhadra,-beheading his father-in-law (who was afterwards resuscitated with the head of a goat substituted for his own), and dispersing his guests : and the several places to which the limbs of Sati were dispersed, in his dance of mingled triumph and lamentation, obtained an equal sanctity, and were honoured with the same phallic symbol, as were those which received the several mangled remains of the Egyptian Osiris by the piety of his wife Isis. (Of these places called पीटस्वाणि, which are 51 in number, and held in peculiar veneration by the votaries of the Saktis, one distinguished one is at Cali-ghat in the neighbourhood of this capital, which received the goddess'a fingers).

Had giv'n her whole body a prey to the fire, In wrath at affironts from old Daxa her sive, -
A new mother found for her birth to fresh life
In this beanteons ME'NÁ, the mountain-king's wife.

The freedom with which the self-disembodied Sati chooses parents for a new birth to fresh life, (inferior indeed in station to the former one, inasmach as Pitris, gods, and Manis, yield in dignits to the ten Brahmbdieds, of whom Daxa was ose, i. e. the next after Brahmé, and his sacred Triad,) - is all in scoordance with the doctrine of the Indian metempoychosis, which compares this chagge to the ahifting of garments. So the Bhagavad-Gita, II. 22.

बाहांि जी षेगित घथा विराय
 बवानि म्रजानि करे डरराषि।
 तथा ज्रीराषि सिराष कीर्षम्य बम्बाषि षंबाति कवाषि रेती U

To which may be compared a statement of similar liberty in Plato's Phsedres (vol. x. p. 326. ed. Bipont.)

Though Sati daughter of Daxa, is the first birth of the goddess Stod, (or wife of Siva) a name which therefore equally designates Satí and Párvatí or Umi, 一we are not to consider this as the first emanation of the all-powerful energy so personifed. As Maha-Maya, or Prakriti, or Ambica, the Great Mother, the principle of all nature, and variable or transitory existence,-she is Dévi or the Goddoes by way of eminence, and holds a place in Hindt theology coeval with, and in some sort superior to, the Triad itself, Brahma, Vishnu, Siva, 一the triple form which the before quiescent and inactive deity (the neuter brahma or numen) assumed respectively for the Production, Support, and Destruction of the world. This characteristic feature of Gentile theology is detailed by Marcandéya, in that singular episode called the Derf Mahátmyam, or exploits of this wondrous goddess-where, in the first chapter, she is described by the Rishi Médhas as lulling Vishnu the preserver into a deep sleep, by which the world's creator, Brahmá, is threatened with destruction : who accordingly invokes the goddess as fिन्षेग़ी, or lady of the universe, and superior to himself, Vishnu and Siva,-beseeching her, that she would leave his preserver to awake and destroy the invading demons. In the next chapter we have the same goddess springing into more visible existence from the united splendours and energies of all the celestial deities, when expelled from heaven by the demon Mahisha,-on which occasion Himalaya among the rest presented her with jeweh and with her attendant lion : thus armed as the terrible Darga, she destroys Mahisha, and receives the homage of all the immortals. Her incarnation in the beautiful form of Gauri, Siva, or Párrat! the nymph of Himálaya (from which sbe emerges in another form, to encounter the demons Sumbha and Nisumbha), is anid in the 4th and 5th chapters, to be subsequent to this, as well as several other more terrible incarnations, which she specifies herself, (after her exploits as C6ili and concentrator of the energies of all the gods, in the llth chapter. But it is remarkable that in neither place where the birth of Parrati is mentioned in that book, (IV. 33-35, and V. 40-43) is any allusion made to her preceding birth from Daxa as Sati : and the same omission is equally obearrable in the chapters respecting Umé in the lst Book of the Ramayana.
22.

Of her, then immers' d in devotion's thoughte deep,
Begot by the monarch of ev'ry high ateep,-
Did Siva's lost love once again upon earth
Derive from new parents a fortunate birth. Ev'n thus, in the womb of Morality pure, 'Midst earth's turbid toil still unshaken and sure, By strong Perseverance's virtue, I wot, The infant Prosperity's ever begot.
23.

For blest was that birth-day,-its sky beaming fair ;
No cloud of earth's dust ever soil'd its pare air :
Loud conchs' swelling blast, follow'd close by sweet flowers Rain'd down from glad skies, usher'd in its gay hours :
And moving or fix'd, ev'ry bodily thing
Partook the loud joy of the great mountain-king.

8t. 22. The comparison of sensible to intellectual objects, though very rarely (and as some opponents of the Ossianic poems contend, never) occurring in the poetry of the rude and heroic ages of the world, is not uncommon in that of a more cultivated and reflecting state of society ; and in a people so metaphysical in the cast of their minds as the Hindus might be expected more frequently than in others. A very carious instance of this inverted species of simile occurs in our author's Reghu-vansa, Canto xiii. St. 60-where the subject matter of comparison is the placking of the lotus flowers from the parent lake of the Saryd river by the hande of the female Yaxa deities (resembling what was described in St. 16 of this book) -and where this sensible object is illustrated by one which can only be understood by those who have entered into the intricacies of the Bankhya metaphysical philosophy. The latter half of this stanza is another remarkable instance of the same kind of comparison, as it is also of Indian allegory. Niti (fem.) or morality, might more exactly, as to etymology, and almost equally well as to meaning, be rendered comduct. Ursina (masc.), which in the original as well as in the translation, is linked with the word guna, quality or virtue,-means strenuous and persevering esertion. SaMPat (fem.) is wealth, affunence or prosperity.
St. 23. The falling of a shower of flowers from heaven is a token of the pleasure and approbation of the celestial gods. Thus, in the Raghu-vansa of our author, II. 60, when the pious king Dilipa offered to devote his own life instead of that of the cow Nandiní to Siva's lion before mentioned that guarded the sacred cedar of Perreat,-, and his offer was accepted by the hungry wild beast,-his deliverance from expected death, and the breaking of the spell by the immortals that applauded hin fidelity, was preceded by that sign.
जलझतः सिंनिपासनुष्ये
बबाज्यु ब्स्तापरि प्रफघहि:
पपात विद्याषरष्बमुत्ता।I

24.

And gloriously well, with a daughter so bright As seem'd a new orb of pure orient light, Did she, the fair mother, herself doubly shine : So glows with fresh splendours Vido'ra's fam'd mine; When, cleft by electric new clouds' starting somed, Its thunder-atreek jewels dart out from their ground.
"At this instant, over the protector of his subjects" (roı μ iva $\lambda \alpha \omega \bar{\nu}$ in Sanscrit) " an with face averted, he expected the dreadful spring of the lion-a shower of flowers fell, sent forth from the hands of the celestial Vidyddharas." [This approbation ended in the sacred cow permitting herself to be milked by the king in a leafy pail of that which he most desired, -the gift of effypring to perpetante the race of Raght, from which the great Rama was to spring. Compare St. 2, suprì.]

Ibid. The mountain-king is not mentioned in the original of this stanza. But the Sthaviras or fixed beings peculiarly denoting mountaine, their sympathy with their king's joy sermed a proper addition to the mention of their own.

St. 24. Did she, the fatr mother. Some copies, and those not ancommon in Bengal and Hindustan, instead of चfवती or mother, have vरिक्री the certh : thrs instead of the lovely Ménas, making the universal mother Earth to shine by 0 beautiful an occupant. A meaning which beside being insipid in itself, atterly destroys the spirit of the comparison that follows. The commentarics of Mallinátha and Bharata-Mallica prove that they both read Savitri.

Ibid. Vido'an, the Sanscrit for " remote," is also the proper name of a mountria said to produce the lapis lasuli, which is thence called fिद्राब and बदू号 The curious native treatise on various subjects of natural history, called Capsor yubti,-opens its account of the partisa or test of this precious stone, by the following extraordinary lines, which fully illuatrate the meaning of Cellidisea bere

तस बाइषमुत्बताराकर: ष सषातुच:।
 कतेब डाजकषतिषिचडाणुर्प

प्राएट्प्रापरर्वार्षित्वार्सा:।

 बैदूंर्लल या विविषाबभासाष्ट्

[^65]25.

As first, a thin streak of soft silvery light, The gleaming new moon in the West meets our sight, -
eminent in its properties, the ornament of the three worlds : but ever since, on the muttering of the clouts of the rainy months (July and August), imitating the sound of that prince of demons, are those beantiful vaidirya gems amitted, of raried lustre, and rapid effulgence as of a multitade of fiery sparks."
Mallinátha cites the second sloka of the above description, as from an anonymons budhe or sage, to point out the mount Vidura here meant by Cálidása : but the other Scholiast, Bharata-Mallica, erroneously explains Vidara here as prabhutpattiothdnam, i. e. a place where coral is produced, -a sense unknown to Sanscrit rocabularies. Except for the sabstitation of coral for lapis lazuli, he coincides with the above quotation-citing for the extraordinary phenomenon here mentioned the same Cabalistic authority from which we have the blazing herbs of St .10 and
 muttering of the clouds in the rainy months (July and August), darts of coral gems make their appearance on the earth. So says the A'gama (or Tantra)."
The situation of Vido'ra, if we may trust the Scholiast on the following parallel paesage from the 12th canto of the Naishadha of Sri Harsha, is identified with that of mount R6kave or Adam's Peak in Ceylon. Among the many unsuccessful suitors of the beautifal Damayanth in that canto, is a Malabar prince of great riches and liberality, whom the goddeas Sarasvati thus recommends to the fair virgin's accept-ance:-

> चतेब राथार्थिपु दुर्मंगे बते।
> भबत् बता
" Mfount Vudira, aboudant in geims that spring forth at the sound of thunderclondes, yet becoming ussecoeptable to the beggars (that before flocked to it) through this more munifiont king,-shall, however remote ap its name indicates, become so near (if you accept this Sonthern monarch) that it sinall be to you as a pleasure mount." As the Scholia referred to illustrate the words of Calidása before us, as rell as those of Srí Harsha, they may be added for the satisfaction of the Sanscrit student.

 चसि बदान्योऽबसिति भाबः।
St. 25. As daily nevo digits, \&ec.-The कणा or Indian digit, is not as with European actronomers, \boldsymbol{f}_{2} of the diameter of the Moon's disc, but fo only.

So she, the sweet infant, appear'd : but fall soon,一 As daily new digits annex'd to the moon Give birth to new phases,-so she, day by day, Grew still to fresh forms of more lovely array. 26.

Her, dear to her kindred, the relatives all, As mountain king's daughter, did Párvati' call :
But after, when bent upon mortification
Most strict and religious, the fond deprecation
Burst forth from her mother, " Oh no !"-thence it came
That Un'A, "Oh no!" was the lovely girl's name,
There is therefore the accession of one of these for every Trifh or lunar day of the suxla-paxa, or wasing moon.
St. 26. Pa'rvati'.-This feminine noun पार्घinf is the regular patronymic derivative from पर्ष्तत paroatas or " mountain." The ascription of these two nameen, Parvati' and Uma', to the goddess in her second birth, is related at length in the Siva Purana, 2nd part (or wttara-khanda), 13th chapter.
1bid. When bent upon mortification, \&e.-The same is told of Ume (as dietinguished from her elder sister Gangá), by Valmiki, Rámáyana, I. cap. 37, St. 19. -(Vol. i. p. 148, ed. Scblegel.)
 cognate me, wor $\alpha \mathrm{ol}$ in Persic, $\mu \eta$ in Greek) the dehortative "no," commonly prefix-
 and Teutonic particle) is the simple negative " $\mathrm{no}^{\text {" }}$ or " not," preficed to the indicative. The former particle $\mathcal{V} \boldsymbol{U}$, which is chiefly for want of an equivaleas 'short word in English, rendered " Oh"一is one that is scarcely or ever scen in the ordinary classical language, though of very frequent occurrence in the older dialect of the Vedas. There it may be found often annexed an if it were a termimation to the several cases of the demonstrative pronoun तत, or to prepositions in composition, when in that ancient Sanscrit (as in Groek and in German, chough the tmocis is not admissible in common Sanscrit), they are separated from their verbs"; and not unfrequently annexed separately to verbs or to nouns preceding or following :-in all these cases apparently bearing a meaning iatewcive of the word to which it is annexed,-viz. (that which so often belongs to the common (ब) "precisely" or "merely." Thus we find it in the fallowing rerses from the $F^{\prime} s d-v d s y a$ Upanisad, which is the closing 40th chapter of the great Sanbita of the Yajor Ve'da, the Vaja-Sanéya-Sanhita of Dadichi Muni, which I quote also as apposite to the subject of this stanza, to shew how the batance is cartfully struck between the active and contemplative duties, in this noost renerable and ancient anthority of Hindú religion (vv. 12, 13, 14, but in some copies 9, 10, 11).

[^66]27.

Though blest with a son, not on him did the sight
Of th' earth-bearing hill-monarch dwell with delight :
For thus in the genial spring season, when flowers
All varions invite from its numberless bowers, The swarm of fond bees will there only, where grows
The sweet mango-blossom, with pleasure repose.

Blind darkness do they incur, who cherish ignorance (i. e. action without contemplation).
But greater darkness, as it were, than this do they incur, who delight in knowledge merely [J].
For one thing, they say, is guined by (contemplative) knowledge, another by ignorance (or action).
Thus bave we heard from wise men, who have so instructed us:
He who knows how to pursue both, knowledge and ignorance (thus defined) together,
Riving by ignoremce pased over death, by knowledge obtains immortality.
st. 27. The attachment of bees to the blossom of the mango, in Sanscrit $\bar{\square}$
 'the songs of Jayedéra, as translated by Sir W. Jones, Works, vol. IV. p. 242, (8vo. edition). But a more elegaat example of this cannot be found than what is fusushed by Calidasa himself in the 5th Act of his justly celebrated drama, the Sakuntalk, where the following song from behind the scenes reminds Kiag Dammanta of his inconstancy to his first attachmens.

Pracrit text.	Or in Sanscrit.
	Abhinava-madhu-lobha-bharukas
	Tava parichumbita-chatta-mexiarim
बसनरष्टसेणनिख्षुरे	Kamala-rasátimatra-mirortto,
बज्र大 विसरिנेषि घं बत्ं	Madhukara I vismariehyasi navis ketham ?

i.e. wond for word. $\left\{\begin{array}{l}\text { In-novi-mellis-cupidinem-conversus, } \\ \text { Tui osculum-olim-expertum-Mangifers-surculum } \\ \text { Loti-sapore-nimium-occupatus } \\ \text { O mellifer! oblivisceris sane quomodo ? }\end{array}\right.$
28.

As lamps by their radiant crest of sharp flame,As heaven's path by Ganges, of far-flowing fame,As scholars by th' eloquent charm of pure speech,Their last and best forms of accomplishment reach;
So he by this daughter, the crown of his race, Was cleans'd from all stain and adorn'd with all grace.

[^67][T0 be comchuded in the Steptember number.]

उमोत्वन्ति:

बस्नुणरसां रिजि रे बतात्रा

पूर्बापरें। तोर्बनिष्यैवियाप्र

घं षंसे

भास्सणि रूलाँव मरैपषषीच
प्रदूपरिटां डुदुर्षोरशीं ॥शः

रिभं ब गेंभार्यविछोपि जातं।
रको हि दोगाषा ग्र्धकिपाते
निसम्बतीर्दा: विररेखिलाए:। ।
बतापरोविधसमष्यावां।

बढारक ₹दविभकरागाम्

†बालेब्ध बंचरता षकाला

बतैविता हीिजिराबयके

यहिएहहीति र्यहिपाना।
विदलि आामें वबरग्रनुजेर
मुलाप्ै : केररिष किराताः ॥ ३।।
मयाबरा षातुरणंब कौ

जुकि नियाबरक्यदरीकाम

थ: पूरथन्बीषकरग्रसायाप् दरीुुष्बेत्बेक चसीरेख। उद्रास्सतामि र्रति किश्दराणां
 बचेचक्यूंड बरिजिनिंत्र
विषहिताबों षरत्धुपां।
बच छुतथीरतबा प्रह्षत:

बनेचरारां र्बवताषलबां
ररीम्टोत्बडनिषतमाष:।
भबकि बवेाषषयो रबम्बाम्
बतिबपूराः छहनप्रदोपाः ॥२•॥
बंद्वेल्यत्युतुष्पिार्बिभायाव्

बत हुर्यंनेशिपयेषरार्या
भिन्दक्षि मम्दां मतिसग्धमुष्बः ॥२२॥
दिवाकराद्यति यो तुणाइ
बीवं दिवामीवसिबाश्वारं।
चुर्रीजि वूरं घर्ं प्रपच्रे

हनसेत सन्द्रमरीचियारे।

घयांम्रकाषेप्षवजबिताजां

दरीम्टरहारि विर्णम्बिविक्बाष्

[^68]भामीरवीचिण्णं टी बेष्टा कुजः कम्पित बहाएः।

जर्रणिंशाषषिताबसेषाम्द् बथो विवसाग्परिक्षर्मानः। यद्यानि बस्सापसरो र्षाएि
 बश्राप्बेविजमसरेक्ष घस्न चारं षरितीषरणाषमं च। प्रवापनि: बहिणसबचलामं है बाविषत्य स्यम - मानर्षीं मेरस्: पितृष्या कन्यां ऊुसस स्थितबे स्थितिशः।
संबां सुगीनासपि माबनीषन् बालानु स्पां विधियेपयेसे॥ २न॥

- बाएक्रसेखाब तबाः प्रहोे संत्पयोग्ये छुरतशणन्र्न।
बलेरसं थौषलनुक्रस्या गभाडभवन्चूधरराअपज्याः ॥ २e॥
चस्ता हा कागपदूपयोग्मं
सैगाषसकोणिषिकर्षस्यं।

बयाषमानेग वित्ड़: प्रयुता
दvस्य बम्बा भवपूर्ष्यपलो।
चती सती चोर्गवस्टर्शा

 चमाधिसत्बासुह्राहि सब्बा। बम्यब् प्रथोगाइपरित्चातां
 प्रष्यरिक् पासविविक्रबात प्रसनानक्तरुष्पहीि।

च्चाय सम्जव्मटियं बभूष ॥ २९ ॥ कथा डुषिण छुन्तरां षबितो। एकरत्र्रभाष ख्या चकाेे। विद्दूरभूमिर्षषमेबस्द्धाब् जक्षिघया रकलझाबनेष II Rः II दिने दिले सा परिवर्षाला़ा
 जुषेष्ष जावस्सबाप् किरे पान्
 गां पार्षतीत्य्याभिबनेब काबा बत्रुप्रिषां बत्रजलो जुणा। जर्सिति माषा रपषो ॥ निचिष्ष

 तथिच्रपत्षे ग बयास सहीं। बनफड्वस्त स सोरि पूते
 प्रभासरत्या शिसेखे दीवष्, पिसांखेंब थिरिषस्स कार्तो। चंख्रारल्लेष किरा मयीणी त्या ष पूनष विभूपितख ॥ २ॅ॥
- This sloka is omitted in a Malayalim MS.
+ Several MSS. have here धरिजी for बfिती.
\ddagger Some MSS. have तादाज् for प्दाब्.
\& Some MSS. have ₹
| Some MSS. have तप母े.
+ Some MS8. adding Viearge in these two pleces, make the whole phens

II.-Description of the Pan-chakf or Nattoe Water-mith. (r)

On the mountain streams and rivers in the Northern Doáb, the Natives use a water-mill for grinding corn, which for its simplicity is well deserving attention, as it might be applied in all conntries, where a fall of water can be commanded, and where a want of efficient workmen renders the complicated and expensive species of mill machinery, generally used, a matter of difficulty to manage or keep in repair. In the hands of the Natives and with the rude means that they have by them, it may be perhaps considered the only sort of mill that coald be turned to any account, both from the absence of any complication in its parts, and from the simplicity of its construction, rendering it in any man's power for a trifling outlay, either to fix his mill at any point that may suit him, or to remove it at pleasure; the only weighty parts about it being the mill-stones, which however by running a stick through them, and yoking a bullock or pair of bullocks to them, may in the neighbourhood of roads or common tracks be also. removed with as little difficulty or expense as the rest of the machinery.

A horizontal water-wheel with fluats placed obliquely so as to receive a stream of water from a shoot or funnel, the said float-boards being fixed in a vertical axle passing through the lower mill-atone, and held to the apper one by a short iron bar at right angles, causing it to revolve with the water-wheel ;-the axle itself having a pivot working on a piece of the hardest stone that can be procured from the shingle near at hand :-this with a thatched roof over it, and the expense and trouble of digging a cat so as to take advantage of a fall of water, -are the only articles required in this very simple mill. The plan is so obviously good, not only for the means gained, but also from the simplicity rendering the whole almost independent of repair, and so intelligible in its parts as to come within the comprehension of the simplest understanding, that it has been adopted generally in all the canals in the Delhi district, as well as in those of the Doaib; and with such success, that the introduction of such mills, wherever sufficient fall is provided, is as much an object, on account of the profit arising to the canal returns, as from the accommodation and convenience offered to the community, in providing the means for grinding corn.

On reference to the accompanying plate, it will be seen that there is only one motion, and that supposing the materials are good, the permanency of the machinery depends entirely on the lower pivot. It will also be evident that there is not a part of the whole machinery that could not be repaired and put in perfect order by the commonest village
workman, a matter of importance in the absence of mechanical skill and practized workmen. Whereas in the plainest undershot wheel applied to a mill for grinding corn, there are no less than three wheels of different descriptions; the change of vertical to horizontal motion;-and three pivots to keep in order, with a friction, even under the most skilful management, tending constantly to disarrange the parts, and render the accompaniments of a forge and blacksmith's shop absolutely necessary to keep the mill in order.

On the canals it has been found worth while to construct permanent buildings for these corn mills*, and although keeping most strictly to the original simplicity of the machinery, they are set up with greater care, and means are given for regulating the motion, \&c. which renders the whole as perfect as it can well be.

It would appear that a fall of water (that is to say, the difference of level between the surface of the head supply and the float-boards of the water wheel), equal to three feet, is the minimum in which this species of machinery can be ased with any good effect; and it has been found that with a-fall of three feet, the dimensions of the shoot or fannel require an addition in width, to obtain that by weight of water, which the smallness of the fall will not give by velocity alone, and in the dimensions of shoot given to those of a higher class.

The following are the particulars of mills on the Doáb canal, divided into three classes from the depth of the fall; the width of shoot on the sill or waste-board, being 12 inches, and the discharge per second averaging 6.5 cubic feet : the diameter of mill-stones 27 inches, and thickness 12 inches ;-the corn being ground into atte or coarse flour.

Class. Fall of water. Atta grownd per hower.					
ft.					
in.	md.	seer.			
No. 1	7	6	1	26	
2	5	6	1	5	
3	3	6	0	17	

The common mills used in the Jumna and mountain-streams, are said to grind from 5 to 7 maunds of atta per day, or in 24 hours; the machinery being of the rudest description, the supply of water very small. and a great part of that escaping through the shoot before it touches the water wheel.

The return to Government on the mills is obtained generally by fnrming them out to contractors for fixed periods, who pay 80 much per day as long as a supply of water equal to that entered in the contract is provided, regulated by the depth of water on the sill or

[^69]waste-board; this return of course varies not only from the powers of the mill, but also from their position relatively to populous towns and cantonments. .In the neighbourhood of Delhi the return is great, and demand for atta equally so ; whereas at other points distant from towns, mills of equal power would not produce half the retarn. The Doáb canal, although possessing every advantage in fall and power of machinery, labors under a disadvantage in this respect, the town of Sahairanpur being the only one throughout its whole extent where there is any great demand for machinery of this description. Shamli, although a large town, does not contain a great number of that class of people who purchase atta, each family grinding their own corn for home consumption; and although there are ample means for establishing mills at the south end of the canal opposite Delhi, (the canal falling into the J rumna with a descent of aboant 50 feet in a line of 12 miles!) it has been considered unadvisable to put them in extended practice, on the supposition that the mills already built on the Delhi canal in the city would suffer from the competition;-in short, that the mills in Delhi are sufficient to grind the corn required by ite population.
The people from whom the millers look for proft are chiefly those of the sipahí class, travellers, those without families, idters, \&c. those who are regularly settled with their families, trusting as I before said to the hand-mill in their own house, and not purchasing from the mills excepting on marriages and other grand occasions, when the consumption of atta is more than their own mill could provide for. In military cantonments the whole of the atta and flour used is obtained from the mills; the vicinity therefore of a station of this description becomes a lucrative affair to the miller, in exemplification of which I may mention, that during the existence of the Provincial Battalion at Saháranpur, the canal mills at that place were kept constantly in their service, with little or no aid from the inhabitants of the town.

The profit derived by the renter of a mill depends in a great measare on his management, and on the rate per maund which he chargen for grinding; but with an experienced and ateady man, the following may be considered as a very close approximation to their daily profit. The rate per maund for griading atta by the Peesunyaris or corn-grinders in the city, is generally three annas, for which sum they deliver the articles at the purchaser's houae; at the water-mills two annas per maund is the usual charge, not however including the carriage of the grain to the mill. \&c. the charge of twa annas being simply for grinding.

The expenses to the miller for keeping 2 mills at work are thus,
Per month, 1 head miller's wages,Rs, 500
1 assistant ditto ditto, 400
1 weighman,.................... 400
Oil at $\frac{1}{4}$ seer per day, about $1 \quad 0 \quad 0$
2 seers of atta given per day to 2
millers, in addition to their regu-
lar pay, about 270
Total expense per month, Rs. $16 \quad 7 \quad 0$
or per day, taking a month of 30 days,.... $0 \quad 8 \quad 9 \frac{1}{5}$
The receipts per day are as follows:
Supposing 55 mds . of grain ground at 2 ans. per md. 6140

| Drduct. | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Expenses as above, \ldots. | 0 | 8 | $9 \frac{1}{3}$ | |
| Government rent, | \ldots | 5 | 0 | 0 |

Balance of profit to miller per day, Rs. $\quad \begin{array}{lll}1 & 5 \frac{1}{3}\end{array}$
The above daily expenses would not be increased by an additional mill;-the profits to the contractor in that case could therefore be mach increased; whereas a solitary mill would very nearly require the same establishment, and would therefore be less profitable; mills of a higher power also might be easily worked with the above scale of establishment.

At mills distant from towns, the payment for grinding corn is made in kind, varying from 2 to 4 seers per maund, which, at the usual rate of from 40 to 50 seers per rupee, is but a moderate return in comparison with that at the town mills. These village mills grind gram, barley, and Indian corn, as well as wheat.
The stones used on the canals are chiefly those from the quarries near Agra, Rúpbas, and Fatihpur Sikri, a coarse-grained sandstone which requires the chisel every second day,-there are three sizes used;

First size, diameter 36 inches, depth 12
Second ditto, - 30 inches, do.
Third ditto, - 27 inches, do.
The two latter are in most general use. Stones of the usual quality last for about 2 or 3 years, that is to say, at the end of that period a new apper.stone is provided, and the old one placed below. In the native mills on the Jumna, stones about 22 inches diameter, and from 10 to

12 inches thick, are quarried in the vicinity of Rajpur north of Dehrah; they appear to me of an inferior description, though of various qualities;-the native millers, however, prefer some of them to the Agra stone, and it is not impossible that some of the best variety from Raj;pur may be superior to the worst from Agra, but generally speaking the preference is decidedly in favor of the latter.

The best method of delivering the water from the shoot on to the floatboards, appears to be that represented in the accompanying sketch, and which has been generally practised on the canals in pursuance of the usual coarse adopted by the natives. A trial made at Hansi, in which a horizontal (or nearly horizontal) shont applied to the lower part of a cistern delivered the stream on float-boards whose planes were parallel to the axis of the arbor or upright, did not answer so well as was expected, owing in a great measure, it was supposed, to the introduction of a new system, which unless palpably advantageous, is certain to meet with objections from the people to whom the mills are entrusted; but although the limits of this paper will not allow me to enter into a discussion on the point in question, I am much inclined to consider that the latter me: thod is not only objectionable, but that the power obtained in applying it to this simple water-wheel is much less than the other; a matter to be settled by practical experiments, and not by theoretical speculations. Belidor, in speaking of a mill of this description, says, "En Provence et dans une bonne partie du Dauphiné, les moulins y sont d'une grande simplicite, n'ayant qu'une roue horizontale, de 6 ou 7 pieds de diametre, dont les aubes sont faites en cuilleres** pour recevoir le choc de l'eau, qui coule ordinairement dans un auge; L'arbre, qui repond à la meule supérieure, est la seule piece qui sert á lui commu: niquer le mouvement, et je ne crois pas qu'il soit possible de faire un moulin à moindre frais; il est vrai qu'il faut pouvvir menager une chate comme celle que l'on voit ici, et qui sont tres frequentes dans ce pays la.
" La rone tourne sur un pivot dans une crapaudine pratiqué au milieu de l'entretoise du chassis, servant à approcher les deux meules, par le moyer de la vis se qui est a l'extremité de la piece, et de l'ecroa, que l'on fait tourner pour hausser ou baissir le chassis.
"Les roues que l'on voit exécutées danse la gont de cell ci ont leur cuillères simplement assemblees a l'arbre par un tenon et une cheville,

[^70]fortifiess par le dessous par des membrures qui les entretiennent toutes ensembles." He goes on to explain a method of opening and shatting the water-course or shoot, which is of no consequence here. It will be seen however, that this mill is exactly on the same plan as that used in this part of India, and it is a pity that the account did not proceed and explain the powers of the mill, that we might draw a comparison. It would also be interesting to know whether the increased size (the Provence mill being about double the size in diameter of water-wheel, \&c.) would not detract from the simplicity of the little native mill; for the great advantage of the latter appears to be the absence of complicated wood and iron-work, especially joints and iron bindings, \&c. all of which increase with length of lever, or length of radii of the water-wheel : indeed the above account shews a complication of membrures, \&c. which in the native mill are not thought of.

Northern Doab, April 30, 1833.

Reference to Plate XII.

Fig. 1. Elevation of the water-wheel, with the stones in section to represent the iron spindle.
At x, a hole of about 4 inches diameter and 4 inches deep is made in the transom, into which a quartz boulder is firmly fixed; the said stone or boulder having an indentation made in it to receive the pivot.
This pivot, as represented in fig. 4, consists of another stone of the asme quality of about 4 or 5 inches long and 1 inch square, which is firmly fixed into the tail of the arbor, (see \mathbf{y}.) The above stones are picked up in the beds of the moantuia rivers, and are used as they are found without any stone cutting.

Fig. 2. Plan of water-wheel, 30 float boards of sissa wood.
Fig. 3. Upper joint of arbor.
Fig. 4. Lower joint of ditto, shewing the iron straps fixed between each float board, to keep them firmly in position, the strap represented in fig. 5.

Fig. 5. Strap as above.
Fige. 6 and 7. Float board and end of ditto ; the float board 12 inches long, with a spoon sank 4 inches.

Fig. 8. Iron ring that slips over the top of arbor, and holds the two joints together.

Figs. 9 and 10. The spindle and plate npon which the upper mill-stone tarns.
Fig. 11. Sketch of mill stones with basket stand, \&ec.
a. Hopper or basket.
b. Shoe.
c. Feeder, or small piece of wood hanging to one lip of the shoe, and resting on the mill-stone, each revolution of which gives the shoe a jog, causing the corn to ran constantly from the hopper through the shoe.
d. String attached to the opposite lip of the shoe, to which the feeder is, and by tightening or loosening which, the discharge of corn is regulated.
e. Stand.

Fi. 12. Shoe on a large scale : this is generally cut out of a block of dak (Buted frondosa), or any wood easily worked.

\qquad

- ,

III.-Description of the Salt Works at Panchpadder, in Märwár. By Lieutenant A. Burnes, Bombay Army. H. R.

At Panchpadder, in Márwar, about six miles north of the river Sünk, there are extensive salt works under the Jodhpur Government, yielding to it annually considerable revenue, in a cent. per cent. tax. The tract which furnishes the salt is a spacious saline plain, about 12 miles long and six broad, commencing three or four miles westward of the town of Panchpadder, and hemmed in all other sides by the sand hills of the desert.

In this space there are aboat seven hundred salterns, each of which is 200 feet long, by 60 broad, with a depth of 12 feet. Within this space the water, which is saline, rises from the soil to a height of four or five feet ; and a jungle shrub, called Marari, is carefully disposed in layers under and over it. To these the saline particles adhere and crystallize, and in the course of two years the whole depth of liquid becomes a mass of salt, the'process of crystallization commencing from the bottom.

The shrub which is so essential to this process is of a grey or ashen colour, and grows in abundance on the sand hills of the Thar or desert. It must poseess certain properties to adapt it for the purpose. In appearance it is like the Babúl with thorns, bat no other shrub is so suited to the manufacture of salt as Marurf. Lawn, or laan, a low stunted bush, like evergreen, which is always to be found in salt and level plains, is sometimes used in its stead, but the salt is then of an inferior description. The natives say, that Marurif is a salt plant : it does not appear so to the taste. The fact of laxon serving however indifferently as a substitute for it, shews that it must be of a maline quality ; for that shrub when burnt yields abundance of alkali, and never grows, but in soils impregnated with salt. The salt manufactured at Pokran, Phalod, and Sambar, places in Márwair, is by a different process from what is here described, and I conclude that the use of the Múrari bush is peculiar to Panchpadder. The salt manufactured here is said to be of a superior quality, and is exported to Malva, Meywar, \&c.

The whole operation of the manufacture is tedious and expensive; the price of the labour is high, from the unhealthy and disagreeable nature of the work. A saltern costs in digging from one to two thouand rupees, and only affords a retorn every third year, and each successive supply from it is of an inferior description. Of the seven handred salterns, sixty or seventy might produce annually much more, but this supply satisfies the demand. Each yields on an average about $\mathbf{8 0 0 0}$ bullocks, or $\mathbf{8 0 0 0}$ man of $\mathbf{4 0} \mathrm{str}$, of the material. The salterns become unfit for use after thirty or forty repetitions of the process 3
they are sometimes recovered by being allowed to lie waste for a fem years, and then spreading salt over the bottom of the pits ; but the crystals in such cases are always small, and the salt is esteemed good or bad according to their size. When a saltern is to be again used, after the salt has been drawn from it, it is thoroughly cleared out. When the water which springs up anew from the soil begins to gurgle and shew on its surface an appearance as if rain were falling, it is time to throw in the Mararr, which is carefully distributed in all places. Twenty cart loads are sufficient for a saltern.

The cold season is most favourable for the process, but crystallization goes on in the hot weather also, nor does the rain in any way injure it, indeed, it is said to favour it, though no rain water is admitted, but what falls from the clouds on the surface. The inferiority of a saltern is discovered by the quantity of water left on the surface after the period for taking out the salt has elapsed : when such is the case, it is drawn off, and the salt removed.

In forming the salterns it is a custom to sink them some depth into the consistent soil, for the first six feet is little else than sand, bat the white effloresence over it, and all the earth which is removed, shews that it is equally mixed with saline particles.

- These salt works are entirely worked by a tribe of people resident at Panchpadder, of the Kherewall caste ; and the Jodhpur Government does not interfere, but to take its tax. At present, 1830, the Kherevallare engaged in sinking about 30 new salterns; the salt of Panchpadder having of late years deteriorated from want of better management.

The scarcity of fresh water in the vicinity of these works prevents a greater quantity of salt being exported, for cattle cannot approach them after the tank or rain water fails, about March; and the inhabitants of the surrounding villages are driven to rely on the Saní, from which this necessary of life is brought in carts.
There is a temple of a goddess near these salt works, and to the influence of this lady, the people entirely attribute the formation of the salt and the original discovery of it. This has given Samea Devi', (for that is her name.) much celebrity, as may be imagined, where, besides the Kherewails, upwards of a thousand labourers are kept in constant employ.

The Chirans, a religious sect who enjoy many immunities, are the principal purchasers of the salt of Panchpadder. The article is sold by ballock loads, and not by weight; and it is amusing enough to see the poor animals walking under a double load, that their masters may double the Government, and escape a portion of the taxation; for on passing the Government toll at the town, they divide the salt into emaller loads.

> IV.-Proceedings of the Asiatic Society.
> Wednesday Evening, the 31st July, 1833 .

The Hon'ble Sir Edward Ryan, President, in the Chair.
The Proceedings of the last Meeting were read.
Captain C. M. Wade, Political Agent at Lúdiána, proposed at the last Meeting, was elected a Member of the Society.
Dr. J. T. Pearson was elected Curator of the Society's Museum of Natural History.
The Secretary submitted the Report of the Committee appointed on the 27th March, regarding the continuance of the Boring Experiment [see below] which was read, and it was resolved, that the Society adopt the Report of the Committee, and direct it be forwarded to Government, in reply to the communication from Major Benson, Mil. Sec., \&c.
The Secretary reported the completion of the second part of the 18th volume of the Asiatic Researches, or Transactions of the Physioal Class, and submitted a bill from the Military Orphan Press, for Rupees 1962, being the expence incurred in its publication.
Recolved, that the bill be discharged from the fund invested in Government secarities, and that the usual distribution of copies be made.
Mr. A. Csosa de Koros' Manuscript Abstract of the Contents of the Kaboyer, and his comparative Index of Tibetan and Senskrit Proper Namen and Titles, as arranged by the pandits and Tibetan lotsivas (translators), when compiling the sacred books of the Seakys faith, in the Tibetan language, haring been brought again to the notice of the Society, it was resolved to refer them to the Committee of papers, to determine on the expediency of. making them over to the Local Committee of Oriental Translation Fund, with a recommendation for their early transmission to England for publication through that channel.

Library.

The following books were presented:
Journal Asiatique; Nos. 57, 59, 60, 61-By the As. Soc. of Pario.
The chird series of J. Prinsep's Lithographic Illustrations of Benares-By the Author.
A Meteorological Register for the first six months of 1833, kept at Kyook Phyoo-By Colomel W. H. Wood.
Calcutta Meteorological Register for June-By the Surveyor General.
The following, received from the Booksellers:
Lardoer's Cabinet Cyclopedia, Spain and Portugal, vol. 5.
Lerdner's Treatise ọn Heat.

Museum.

A note was read from M. S. Bramley, Esq. presenting for the Society's Museum the following articles procured by him in Nipal.

A Chinese map of the Celestial Empire.
A map of his imperial Majesty's Durbar.
${ }^{-}$Nipalese masical instruments, curiously fashioned like snakes and dragons.
3 Hornis called in Hindi " Bhorang."

> 1 Bass Horn of copper, called Singha; (Beng. Bhemh.)
> 3 Hautboys or Sandis.

Some Saligram Stones.
Some brass and copper images. Durga (Singh-babni) ; Lora-na'ria, with four hands : and Godtama, or Sakya-singh.
: Two east leaden Shrines of Budhist images.
Two bells used in worship, Ghantt.
Model of a Budhist Temple, the Chaitya, or Deva-phtana.
Doctor Bramley's series of Nipalese Coins was also exhibited, and a papar in illustration of them by the same gentleman was read.

A letter was read from Raja Kali Kishen Behadúr, presenting a model of a simple instrument on the principle of the steel yard used by the natives for weighing, called a "toolah," with a description of its use.

A box was exhibited by the Secretary, cantaining twelve Roman coppar Coins, in fine preservation, procured from a friend by the late Mr. Jamse Macientogn at Buxar, and stated to have been found buried in Upper India. The collection comprises coins of Domitianus, Gordianus, Gallienus, Salonina his wife, Posthumus, Victorinus, Claudius Gothicus, Tacitus, Probes, Maximianus, Constantinus, and Theodosius: the latest belonging to the fourth century of the Christian era.
: Sealing-wax and paper impressions were also exhibited of some of the most rave of Dr. Swner's collection of coins.

Physical.

Specimens of Coal, lately discovered in the Arrecan district at Ongadray Synegkhyong, were presented in the name of Lieutenant W. Formx, SabAssistant Commissary General at Kyook Phyoo.
The specimens were necessarity small, having heen trasomitted by dak. The coal of Oogadong appears of a fine quality, burning with mach flame, and forming a tolerable coke; it contains veins and nodules of iron pyrites, of which specimeas were sent, as also of the shale in the vicinity of the coal beds.
The specific gravity of this coal was 1.259. An analysis of 20 grains gave-
Volatile matter, 38.0
Carbon, 54.5
White ash, 7.5
100.0

The Synegkhyong coal has a fine glossy lustre, resembling jet ; it is hard and brittle : contains veins of a white earth (decomposed pyrites?)-spec. grav. 1306. 8 grains gave on analysis,

Volatile matter, 29.0
Carbon, 67.0
White ash, .. 4.0
,
100.0

Lieutenant Fonex states that these specimens are merely from the surfine, and that he did not possess the means of ascertaining the depth of the strate, but the appearances of the crop were highly favorable. "The stratum in which the coal of Oogadong was discovered was composed of-

1 Bituminots ehale.
9 Coal, with clay and pyrites.
3 Claystone.
Wers this claystone bored through, another and richer vein would probam bly be found. The mineral appeared abundant in such places as were exca vated; the coal vein varying in thickness from six inches to a foot: the dip very great, or at an angle of 70°."

Lieut. F. imagines that tin and copper may be contained in the ores; but no signs of either metal were found in the specimens transmitted. Another depoeit of coal is mentioned at Kalabadong; thus making four localities (with that from Kingtellie, vide page 264), already discovered in that district.

The Secretary notified the safe arrival of the specimens of Rániganj vegetable impressions from Dr. H. Falconer, Superintendent H. C. Bot. Gard. Seharanpur.

Accurate drawings have been made of these interesting. reliques, in illustration of a catalogue of them in preparation by Doctor Falconer.

The Society adjourned its next Meeting to the last Wednesday in the month of October.
V.-Report of the Committee appointed on the 27th March, 1833, to consider on the expediency of recommending to the Government the contimuasce of the Boring Experiment.
The questions submitted to our consideration are presented under the four following heads:

1st. The probability of ultimately finding a spring of freah water.
9ad. The expediency of making any further attempt.
sid. The mode of avoiding such accidents as have hitherto impeded the descent of the boring instrument ; and

4th. The eatimated expence.
We will endeavour to pursue the subject in the same order in our present report, referring for further detail to the annezed minutes of those of our zembers whose practical acquaintance with engineering operations has amabled them in a great measure to guide our judgment.

1. The principal experiments on record, connected with the operation of bering for water in Caloutta, are those conducted under Colonel Garstin, Chief Engineer, from 1805 to 1820, and those recently made under the superintendence of Dr. Strone, Mr. J. Kyd, and Mr. D. Rose, in 1889 to 188s. The following is a list of their localities and of the depths respectively attained* :

* Vide Granarnace, L. 114, or 167 ; iii. 124, 422, \&sc. also Ag. Res. 1814.

2 I

1805, Aug. ditto,	S. W. of Artillery Barrack,	119	auger broke.
Sept. ditto,	S. E. of Regimental Parade,	55	ditto.
Oct. ditto,	S. E. of European Barrack,	59	ditto.
Nov. ditto,	S. W. of Artillery Parade,	80	ditto.
Dec. ditto,	ditto	127	ditto.
1806, Feb. ditto,	ditto	94	ditto.
Mar. ditto,	ditto	124	earth fell in.
Apl. ditto,	same operation resumed,	127	auger broke.
1814, May, ditto,	S. E. of Artillery Parade,	140	suspended by raiss
Nor. ditto,	the same renewed,	136	anger broke.
1819, May, ditto,	on Artillery Parade,	130	ditto.
1820, Apl. ditto,	ditto	$122 \frac{1}{4}$	ditto.
May, ditto,	Near triangular barrack,	128	earth fell in.
1815, Mr. Jones found a spring in red sand at	70	feet.	

1826-8, Dr. Strong, bored in the Circular Canal to 70 water rose.
he aleo made several borings in the S. W. lake to 40 thro' similar strate. Dr. Strong near the Circular Road, 70 hard kankar. ditto at Rasapugla, 70 sand fell in. 1830, Strong, Ross, and Kyd, near the Fort church, 176 shaft injured. 1832, ditto, near St. George's Gate, 164 1833, ditto, ditto, 170 1832, Dr. Strong, under the Loch Gates, Chitpore, 70 water sprang up.
The geological question of the probability of finding a spring is by no means solved by the results of these numerous experiments. The knowledge which they afford us of the nature of the Calcutta alluvium may be summed up in very few words:-(See Plate XIII.)

After penetrating through the artificial soil of the surface, a light blue or grey-coloured sandy clay occurs, becoming gradually darker, as we descend, from impregnation with decayed vegetable matter, until it passes into a strutum of black peat, about two feet in thickness, at a depth in Fort William, of 50 feet below the surface. In excavating the Circular Canal, the same stratum of peat occurred at from 25 to 30 feet ; and in the Entallee Canal, it lay just below the bed, or nine feet below the average level of the salt-water lake.

This peat stratum has all the appearance of having been formed by the debris of Sundarban vegetation, once on the surface of the Delta, but gra dually lowered by the compression of the sandy strata below. Assuming that the salt-water lake is five feet above the average height of the ocean, the peat stratum is about as much more below the present level of the sea

In the grey or black clay above, and immediately below, the peat, logs and branches of a red* and of a yellow woodt are found imbedded, in a more or leas decayed state. In only one instance have bones have been met with, (at 88 feet), and they appear from the report of the workmen to belong to

* The common Standri of the Sundarbans.
t The root of some climbing tree, resembling the Briedelia. N. Walwice

Section of the Strata of Alluvium at Calcutta

deer, though they were unfortanately lost before examination. A stratum of sand occurs generally above the peat clay at from 15 to 30 feet deep, from which the wells in the town are chiefly supplied with brackish water.

Under the blue clays at from 50 to 70 feet deep, the nodular limestone concretions, known by the name of kocnkar, occur, sometimes in small grains (called bajri in Upper India) with the appearance of small land shells; sometimes in thin strata of great hardness, and sometimes in the usual nodular shape.

At 70 feet occurs a second seam of loose reddish sand, which yields water plentifully. It was reached also in the perforation under the Lock Gates at Chitpore, and there (as Mr. Jonrs had previously asserted from his own experiment acroes the river), the supply was proved to be derived direct from the river.

From 75 to 125 feet, beds of yellow clay predominate, frequently stiff and pure, like potter's clay, but generally mixed with sand and mica. Horisontal seams of kankar also run through it, resembling exactly those of Midnapur or of the Gangetic bason.

Below 128 feet a more sandy yellow clay prevails, which gradually changes to a grey loose sand, extending to the lowest depth yet penetrated; and becoming coarser in quality until at 170-176 feet, it may rather be termed a quartzy gravel, containing angular fragments of quartz and felspar larger than peas, such as are met with near the foot of a granitic range of hills.

This stratum has hitherto arrested the progress of the auger; the greatest depth attained by Dr. Strong near St. Peter's Church being 176 feet.

The evidence of this gravel might tend to prove that the auger had here penetrated through the bed ofalluvium of the Gangetic delta ; while the sandy texture of the undermost layers might be compared to the probable condition of the deposits under the pow advanced head of the bay, not yet reached by the more easily suspended particles of clay, nor consolidated by vegetable matter, like the tenacious black mud of the Sundarban creeks.

Nevertheleas, we must be cautious in forming any such conclusions upon alight premiees, remembering that Colonel Garstin more than once, concluded from similar appearances that he had reached the rock at 130 feet. Beneath the quartzy sand may possibly occur another deep stratum of tenacious clay, and upon piercing every such stratum, and touching a seam of sand under it, the chance offers of succeeding in the object of our search.

It is true that the horizontality of the delta alluvium, and its close neighbourhood to the ocean, afford arguments against the probability of finding an artesian spring upon the hypothesis of Hericart de Thury*, that is, of basons and curved or sloping strata,-which is generally adopted as affording the best explanation of the phenomena of such springs: but in face of the successful borings in Holland, and in many other flat and alluvial countries, nay even in insular situations, it would be hazardous even in a

[^71]geologiat to predict want of success in Bengal, unlees he was well samared that the rocke under the alluvium were of the granitic or unatratified clase.
The depth yet attained is very trifing, and we all coneur in thinking thant the experiment ahould not be relinquished, until the ground has been piercoed at least to the depth of 500 feet. Borings in Europe seem seldom to have been undertaken upon purely scientific principles or expectations ; mometimes they have started in direct opposition to them, and yet obstinate perseverance has frequently been crowned with succeess: so may it be in India. While drawing up our report, we hear of the eminent good fortune which has attended Lieut. Fullunne's attempts in Gueerat, at Ahmedábad ${ }^{*}$, where wa ter rushed up with great force through the tubes to the astonishment of tho inexperienced in such matters. The soil of the plains in Gueerdit is so sandy and unretentive of moisture, that most of the wells have a depth exceeding 100 feet. But we have not sufficient knowledge of the coumtry to draw any deductions applicable to our own position in Bengal.
2. In reply then to the second query, we are of opinion that it is by all means expedient to continue the boring, and were the Society in a condition to afford the funds necessary, we should be sorry to see the honor of its superintendence transferred to other hands.
3. The accidents which have hitherto impeded the progress of the auger below 175 feet, are entirely attributable to the falling in of the lower sendy stratum, an increasing difficulty against which no sufficient remedy has beem provided. All perseverance in boring, as long as this impediment exints, or is not counteracted, has been, and will be, an abeolute throwing away of money and time.
The remedy always adopted in such cases of bad soil at home consids in lining the perforated hole with copper or cast iron tubes well united with spigot and faucet joints.

It is therefore indispensable that these articles be provided before the boring can proceed or be renowed. The tubes may either be supplied from England, or now that the casting of iren is practised in India, they may be made here: the expence however in the latter case is estimated by one of our members at full double the English cost, and there is a chance of failure in the texture of the metal from the want of raw material to fuse with the fragments of old cast iron of which the fount usually consiats in India. It meems therefore preferable to commission the tubes at once from Englandt, giving the manufacturers every information regarding the nature of the soil and the depth, that they may adapt the most convenient lengths to the tubes of the different grades and sizes. At the same time, any new tools or apparatus for facilitating the operation may be commissioned out.

[^72]There is no reasen; however, why trials should not be mode meanwhile at the Government foundery, to model and cast some of the tubes, as, if succeas ful, there would be ample employment for them in various parts of India. Much of the delay experienced in the latter borings has been attributed to the shortness of the jointed rods, and the necessity of unscrewing them so often. It has occupied, on an average, five hours to lift 170 feet of rod, and the daily progress at that depth has consequently been seldom more than a foot : although a gradual improvement has taken place with the growing experience of the workmen. Thus to bore the first shaft of 175 feet, cons sumed two years: the second of 164 feet was completed in one year, and the third, of 170 feet, in less than six months. Colonel Garetin's operations seem to have been much more rapid, but the time, it must be remembered, augments in a geometrical ratio with the depth. That officer had, further, a more efficient establishment at his command.

A new set of stronger and longer boring rods might facilitate operations, but these and all such other details may safely be left to the discretion of and experienced Superintendent, such as Serjeant Reid, whose ingenuity will supply expedients as accidents may occur to necessitate them.

Should the Government undertake the experiment, it may perhaps be deemed of sufficient importance by the Honorable the Court of Directors, to send out engineers especially versant in the art of boring the earth. At any rate we venture to suggest the advantage of having all men, intended for their Sapper and Miner service, instructed in the practical part of the operation as a part of their professional education at Chatham.

With all these precautions, we do not anticipate the recurrence of any further insurmountable impediments to the auger, until it may reach the actual rock.
4. With regard to the expence of a new experiment, we have been in formed that six hundred feet of tube may be provided for less than $£ 150$. The Society has expended on three protracted operations, including the cost of wrought iron tubes, \&cc. about Rupees 3,000. We cannot therefore estimate that one steady experiment, tubes included, will cost so much as these three unsuccesaful attempts. And in the hands of a Government, which has the power of deputing its own officers and men to conduct the work on duty, nothing beyond the small contingencies for repairs of rods, wear and tear of ropes, \&co. can properly be set down to the charge of the experiment.

Should nothing further be elicited after penetrating 500 feet, or even " to the rock," than the knowledge, that a spring of fresh water is not thus procurable, it will in our opinion be knowledge cheaply bought ; and although geological research is not to be put on a par with the direct and political object of providing wholesome water to the garrison of Fort William, still an acquaintance with the depth, variety, and nature of the alluvial deposits, which separate us from the rocky crust of the globe, and of the coincidence of the subjacent strata with some of the rocks which have been developed to our view above ground, by geological or physical causes, cannot but prove
interesting to the Government, to the scientific world, and to mankind in general.

Asiatic Society's Apartments,
20th July, 1833.
Asiatic Society's Apartments,
20th July, 1833.

W. H. Mnl, D. D. V. P.

W. N. Forbre, Capt. Engineers.
J. M. Serpinas.
J. Langetapp.
J. N. Casanova, M. D.
N. WAlidif, M. D.

VI.-Miscellaneous.
 Remarks on Hutton's Mathematice.

To the Editor of the Asiatic Joumal.
Sie,
I observe occasional strictures on mathematical and physical works in the miscellaneous department of the Journal : I am therefore induced to send you the following observations on some passages in Dr. Hutron's Course, which if not inconsistent with your plan you may perhaps find a place for.
The first subject of remark is the Doctor's method of treating the hyperbola in his conic sections*. Here he appears to have made it too much his object to point out the strong analogy which subsists between it and the ellipse, which is indeed both striking and interesting; but in keeping to this one point he has sometime gone too much on the general idea, and has not attended sufficiently to the specific properties of the curve in question, giving his demonstrations in the same words for both these sections of the cone, in one or two instances, where the correspondence was scarcely close enough to admit of this method of procedure.

To come to particulars. In Prop. I. the squares of the ordinates are proved to be to each other as the rectangles of the abscisses, but only be it observed in regard to the primary curre. In Prop. II. Dr. H. comes to shew that the square of the transerne is to the square of the conjugate as the rectangle of the abscisses to the square of their ordinate; but his first step consists in assuming the semi-conjugate to be an ordinate to the curve. Now this I contend is premature, for of the conjugate byperbola nothing has yet been said, but that it exists, and this in the definitions only.

The difficulty might perbaps have been evaded by adding after Prop. I. something similar to the following : Scholivm." The above proposition, as the reader will observe, is identical with Prop. I. of the ellipse, but the analogy between the curves is yet closer than these corresponding properties of the abscisses and ordinates would at first sight suggest ; for if, as in the ellipse, the square of the axis A B is made to the square of another line passing through the bisecting point $\%$ right angles to $A B$, and bisected by A B, as the rectangle under the abscises of an ordinate to the square of that ordinate, it will be a conjugate axis to $A B$ corresponding to the conjugate axis of the ellipse, through which conjugate carres passing complete a conformity between these two sections of the cone, which is very close and remarkable."

From Prop. II. all goes on with apparent smoothness till Theor. X, where in proving that the parallelograms inscribed between four conjugate hyperboles

[^73]are equal to each other, and to the rectangle of the two axes, it is assumed that in Prop. VII. it had been shewn, that if a tangent and ordinate be drawn from any point in the curve meeting the transverse axis, the semi-transverse will be a mean proportional between the distances of the said intersection from the centre, whether the curve be the one cutting the said transverse or its conjugate, whereas it has only been shewn in the former case. There is to be sure no great dificulty attending the demonstration of the latter case, when the former is given; but still it is an obstacle every reader will not take the trouble to master, nor perhaps every teacher be at the pains to make his pupil overcome.

I will only add one other remark at present, and that on a subject closely connected with what precedes. In the demonstration of the problem of the trisection of an arc, vol. III. p. 217 a step has been omitted. It follows from Cor. Theor. 2 that in the equilateral hyperbola the rectangle of the abscisses is equal to the square of the ordinate, and after a short deduction by Theor. 18 "to $K \cdot K I=A K{ }^{\text {s }}$." the last reference has not been given.

Tirkoot, 19th Jwne.
L. D.

2.-The Royal Society.

The annual address of the Dure of Sussex to the Royal Society" evinces a real desire on the part of the Royal President to identify himself in its interests, and to awaken a new and reforming spirit in this veteran establishment, which has of late years exhibited rather more indulgence in the election of its members, and the selection of its papers for pablication, than was consistent with the dignity of la haute science. The council it seems have taken the hint of Mr. Babbages to submit every paper to a Committee previous even to its being read. We have before remarked \dagger, that the custom of the Academies of Science and Medicine at Paris, of requiring such written reports, has produced a collection of essays on all subjects in general more valuable than the original communications upon which they are founded, because the persons who are selected as Committee men are " veterans in their respective sciences, who have earned by their labours an European reputation." The class of scuans however to which these duties are entrusted in Paris is nearly wanting in England, where the Members are not supported by Government pensions, and there are few private professorships in which the otivem of dignified retirement can be devoted to such objects; while for the rich amateur or the laborious practitioner the task would be alike unwelcome and unsuitable. The President however is satisfied that qualified men will be found ready to sacrifice both time and labour, out of their sympathy for the scientific honour of their country. We hope to find these expectations realized in respect to the Royal Society; and we would suggest that the plan of reports on papers should be introduced in our own society : the reports will be more useful here to shew upon what studies our members are engaged, because so long an interval generally ensues before their original papers are doomed to see the light.
The obituary catalogue of the past year is heavily charged. Sir Everard Homr, the author of 107 papers on comparative anatomy in the Transactions; Sir James Hall, the eaperimental supporter of submarine volcanic agency; Groomsinder, the

[^74]astronomer ; Laslie, the chemist (not a F. R. S.) ${ }^{\text {i }}$ of farciga members, the great Cuvize ; Chaptal; the Baron de Zach, and B. Oapaṇ, astromomers; Apt. Scarpa, the anatomist, have all bequeathed their illustrious names to sciance. Sir Jamas Macmintosa and Colonel Mare Wiles, we mas in some mequare lay claim to ; the former was for eight years Recorder of Bombay, the letter is kpowe for his Researches on the History of Mysore: let our readers reflect upon the advantages which the Prisideser supposes them to possess from their Imdian training.
"Colonel Wiless must be considered an one of those distinguiabed mer who have been formed by the system of our Indian Empire. The posession of great cemmands, upon which the happiness and misery of coasiderable antions are depend ent, and the intense feeling of responsibility, which is connected with the almenistration of trusts 80 important, is well calculated, under all cincumatanaes, to call forth into action the highest powers of the human mind; and particulanty so, then they have been previously exercised and fortified, as in our Indian service, by the severe study of oriental languages, and by the successive occupation of different offices, with a great diversity of duties : it is to such canses that we are so attribute the frequent union which we observe in this service of the greatest ciril and military talents with the most profound acquisitions in oriental learning ; it is to this system that we are indebted for the production of a Duncan and a Moxmo, an Elphingtone and a Raffles, a Colebrooxe and a Malcoly, and a crowd of great men who have done so much honour to our Indian Government."

At the conclusion of his address, the President allades to the precarious position of Captain Ross and his companions. It is more than three years since he started on his forlorn expediton, to retrieve the glory which he considered had beea shorn from him by the greater success of others in the exploration of the Polar Sea; and no tidings have been yet received of him. A vessel is now preparing, under the auspices of the Geographical Society, to pursue the supposed track of the party, and if possible relieve the anxiety of their friends and relations with some certain intelligence of their fate.

3.-Discooery of a Bed of Fossil (Marine !) Shells on the Table Land of Central India.

A circumstance which mast prove highly interesting to all lovers of geology, hea latoly been brought to light by the discovery of a bed of fossil shells (marine?) in a good state of preservation. Accident, as usual, in discoreries of this kind, led to their detection. A well had been sunk some 14 years ago by a native, half a mile distant from Saugor, beside the road leading to Jubbulpore, and with the stones turned out of it, he erected a small hut for his workmen, little dreaming at the time he was piling hap such geological treasures. A man the other day, seeing something unusual in a lump of the limestone of which the hat was built, dragsed it out, and took it to his master, Mr. Fraser, who immediately recogaized it as being a shell. So interesting a fact could not be lost sight of, and means were imsiediatoly taken to follow up the discovery. On searching the walle of the dwelling, ceveral other stones equally rich in shells were detected, and the owner of the

[^75]ground being questioned; stated, they came out of the well about half way down; but ocular proof was not to be obtained, from the sides of the well being stoned up with large blocks of sandstone. To allow a point of so much interest to remain in doubt would have been highly culpable, and Dr. Spry immediately set about sinking a shaft parallel to the well, that the locale might be effectually set at rest.

After sinking through basalt, both soft and hard, he came, I understand, apon a bed of soft fatty red soil, containing nodules of lime, and presently reached the anxiously sought limestone bed, from which he had the satisfaction of disentombing some rich specimens of shells. The bed is formed exactly 17 feet below the present surface. The shells are univalved of different sizes-some nearly as long as the hand, and all of them are what is termed reversed shells". I understand, howerer, he is proposing to send an account of them to the Asiatic Society, and I sball not therefore ventare to do more than announce the discovery to you. Mafussul Ukhber.

4.-Indian Zoology

Betracts from the Proceedings of the Zoological Society, April 10, 1832.

Mr. Gray enumerated the following species of the genus Paradoswrus, all of them as far as their habitat has been ascertained, natives of India and the Indian Islandu

1. Paradoxurus Typus. F. Cuv., Mamm. Lith.

Genette de Prance. Buff., Hist. Nat. Suppl. iii. t. 47.
Viverra nigra. Desm., Mamm. p. 208.
This species appears to be the Musk and Musky Weasel of Pennant's Quadrupeds, both taken from Sir Elijai Imper's drawings, but not the Piloselle Weasel of the same anthor, which has hairy soles. There is a variety now living in the Gardens of the Society, which may be called fuliginosus, it being nearly black in consequence of the length and number of the black hairs, which only show the fulvous under-fur between their roots. It has a very distinct pale spot above, and another bemeath, the eye.

The three following species are only known by the drawings of Dr. Hamilton and Gen. Hardwicire, the former of which were liberally lent to Mr. Gray by Dr. Wileins and Dr. Honsfield, in order to enable him to determine by actual comparison the species described from them by M. de Blainville. The first two appear to agree with Par. Typus in having pearly naked ears, and may possibly be the only varieties of that apecies; the third approaches more nearly to Par. Mwangas.
2. Paradoxdids Pennantil. Par. pallide cinerascenti-brmenems, fascitis obscuris saturatioribws lateralibws, awriculis nudiusculis; orbitis albidis; artubus camdaque dimidio apicali nigrescentibus.
This animal is stated by Gen. Hardwicke, from whose drawings the character is taken, to be found in the upper provinces of Bengal, and to be very deatructive to poultry and game. Its head and body measure 21, its tail 23,-making a total length of 44 inches. The ears and sides of the nose are pale flesh-coloured.

* The eame carions fact is observable in the silicified fossil abells lately presented by Br. Spiebery to the Asiatic Society.-BD.

Ichneumon Bondar. Bim, MSA.
3. Paradaesurws Bondar.

Viverra Bondar. Blaive., in Demw. Mamme. p. 210.
This apecies inhabits Bengal, where it is called the Mousk-Cat. Ite head and body measure 25, its tail 24,-making a total length of 49 inches. Dr. Hauiluros's reduced figure, from which this animal was deseribed by M do Bianurfine, agress with Gen. Handwicks's drawing in almost every particular, except that in the former the nose is rather sharper, and the tail not quite so busby as in the haves.
4. Paradosurws prehensilis.

Ichneumon prehensilis. Ham., MSS.
Viverra prehensilis. Blanv. in Desm. Mamm. p. 208.
This species is only known from Dr. Hamilton's drawing ; it appears distiset from any of the others, more especially in the bands of the sides of the back being formed of oblong nearly confluent spots, and in the length of the tail, which hes a long white tip. The central dorsal streak is not very distinctly marked, and the dark line in the drawing may perhaps be intended for the shadow.
5. Paradoxurus Musanga.

Viverts Musanga. Horef., Zool. Res. t. 5.
Viverra fasciata. Desm., Mamm. p. 209 ?
The very young animal is pale ash-coloured, with three distinct biack dorsal bands, and the sides spotted. Its fur is very close and soft, mixed with acattered very rigid rather longer black bairs.
6. Paradoxdeus dubids. Par. pallide fecencenti-cinerewf, pilis dorsi lomgioribus apice brunscis, subtics flaveccenti-albidus ; dorso fasetis centrabibes tribus, lateribunque maculis brunncis inconapicuis ; oapite, awriculis pilocis, pedihnowe castaneis; caudd proter innam basin mogro-brasined : macula utrinque adnowim, alterius supra genas, fasciaque interawricularis transoerse pilis albo-apiculatio:
This species is described from a young specimen sent to the British Moseon by Dr. Horsfield : it may be only a variety of Par. Musanga, but cannot be the general state of the young of that species, which is described above. It is probably the Javanese variety of the Musang described and figured by Dr. Homfield.
7. Paredozurus kermaphroditus.

Viverra hermaphrodita. Pallas, in Sehreb. Säugth. p. 426.
The description of the glandular fold between the anme and penin proves this specios, which is only known by Palha's description, to be a Paradoswrus. It appears to resemble the preceding, but differs in having the entire throat black, and in its black doraal bands.
8. Paradoztedos Pallagir. Par. nigrescenti-griseus, nigro albogue intermirtus, infod palbdier ; dorso fascid latiusculd maculisque parvis utrinque biveriallbus nigris; artubus, lateribus tafernd, caudaque nigrescentibus : facie nignd meould utrinque ad nasum, alterd sub oculos, fascidque transoersd per fromen pone genas ad gulam wsque ducta, albis ; auriculis nudimoculis; guld autich, - migrecenti-cinored, posticè cinereo-albidd; caudd corpore longiore.

Pur. elbifrons, List in Report of Council Zool. Soc. 1831, havd F. wo., Wtu, Mur. ix.

- This species is described from a living specimen in the Gardena of the Soolety. brought from India, and presented by Mr. Buchanan.

9. Paradoxusus Crossir. Par. suprà nigrescens, pilis plumbeis nigro-apicuLatis, infrà flavescens, pilis albo-apiculatis; auriculis apice nudiusculis ; facie auriculis externè ad babin, pedibus, couxdeque dodrante apicali nigro-brunneis; maculd rotwodd palidd ad naswm wtrinque, alterdque minore sub oculos; fronte facovecente.
The length of the head and body is 21 inches, of the nose to the front of the $\operatorname{car} 3 \frac{1}{2}$, of the tail 16, of the fore-foot to the elbow-joint $4 \frac{1}{2}$, and the distance from the back of the fore-foot to the front of the hind-, 8 inches. The species is described from a specimen lately living in the Surrey Zoological Gardens, and since presented by Mr. Cross to the British Maseum, where both the skin and skeleton are preserved.
10. Paradoxurus lewcopus. Ogilby, in Zool. Journ. iv. p. 304.
11. Paradoxurds Hamlitonii. Par. auriculis pilosis; dorso grisemcinereceentopilis nigro-apiculatis intermictis, seriebws sex vel aeptem mecularwom retwideram nigrarwm ; facie dorso concolore, strigd angustd nigrd inter, altendque utrioque suprò, oculos ; fascid nuchali medid nigrd, laterali atringue breviore pallidbruwned ; pedibus dorso concoloribus; caudd corpore sesquilongiore, rufescenti, brwaned, asikulis angwotis subeequalibus nigris versus apicem remotioribus.
This species is described from a living specimen in the Surrey Zoological Gardens, which has been in Mr. Cross's possession about two years.
12. Paradoswrus larvatus.

Gulo larvatus. Ham. Smith, in Grif. An. Kingd., ii. p. 281.
Viverra larvata. Gray, Spic. Zool. p. 9.
Paguma larvata. Gray, Proc. Comm. Zool. Soc. i. p. 96.
13. Paradoxdides trivimatus. Par. migrescenti-griveme, infrà griseme; ω pite saturatiore; doreo facciis tribus longitudinalibus mediis nigrescentibus; pedibus cauddque corpore longiore nigris ; fascie tmmaculatd.
Viverra trivirgata. Reinw., Mus, Leyd.
This species is described from a specimen, in the Leyden Museum, sent from the Moluccas. The teeth agree with those of the genus in every particular, except that the cheek-teeth are rather shorter.

14. Paradozurus $?$ binotatus.

Viverra binotata. Reinw., Gray, Spic. Zool. p. 9.
Mr. Gray referred this animal to the genus Paredoxwrus with some doubt, he not having seen the teeth. Its walk, however, is traly plantigrade. The habitat of Ashantee, given to it in the Leyden Museum, may be questioned: it was obtained from an old Dutch collection, in which it is possible that the localities were not strictly preserved.

To this enumeration Mr. Gray added the indication of an animal known only by - rough sketch brought by Mr. Finlayson from Siam, and deposited in the Library of the East India Company. This he proposed to call Paradoxurus Findayoonii, and described as being pale-brown; with a band across the middle of the muzzle, axd another across the orbits (including the eyes, and expanding on the back of the cheek), the ears, and three continuous narrow lines along the middle of the back, blackish brown ; the feet blackish; and the tail cylindrical. He also considered it probable that the Cibette de Malacca of Sonnerat, Voy. t. 91, the Viverra Malsceencic of Gmelin belonged to this genus, with which it agreed in several particalare of its mode of colouring, although it differed in having a bleck
streak along the middle line of its belly, a character confinel to few among the Mammealia.
With respect to the Paradoswrus awrews of M. F. Cuvier, the stated that be wnat inclined to believe that it really belonged to the genus on account of its maked moles, but was eertainly not, as had been imagined, the young of Par. Typme.
Mr. Gray added, that figures of the Parr. Penhantii, Bomdar, prehemollis, Pat lani, and Hamiltonii, are ongraved for the forthcoming No. of the 'Illustrations of Indian Zoology.'

VII.-Analysis or Booss.

Booult of Astronomical Observations made at the Hon'ble the East India Company's Observatory at Madras. By Thomas Granville Taylor, Esq. Astromomer to the How'ble Company. Vol. I. for 1831.

The Madras Observatory has long since eatablisbed its character, as well for laborious diligence in the proper duties of its professional calling, as for other collateral researches which naturally fall into the hands of a scientific astromemer. Under Mr. Goldingham's superintendence four ponderous foolscap tomes of astronomical observations were given to the public, and one volume of "Papers" containing miscellaneous matter of great interest.

From the imperfection of the instruments then attached to the establishment, (a 20 -inch transit instrument, a 12 -inch altitude instrument, and a zenith sector,) the astronomical results were not of a class to satisfy expectations in the present advanced state of that science. In other investigations Mr. Goldingham's aame will be long quoted as of paramount authority. His pendulum experiments a Madras, and on the equator, are of the highest value: his determination of the velocity of sound under different pressures, temperatures, and directions of the wind, from a very long series of experiments, is most conclusive and satisfactory': and his meteorological series for 21 years, although unfortunate in the hoars selected for the Barometer, contains abundant means of fixing the curves of temperature and pressure for the latitude of Madras.

But the present volume (printed also in a better form and type), is the commencement of a new and purely astronomical series. We may date the regeneration of the Madras establishment from the year 1830, when a 5 -feet traasit instrument, a 4 -feet mural circle, and a 5 -feet telescope equatorially monnted, which had sometime previously arrived from England, all made expresaly for the observatory, were set up for use upon a solid and insulated basement of masonry, 45 feet long and 12 feet broad, tapering to 6 at top, and 7 feet high.

With every particular of the adjustinent of the new instruments, Mr. Tarloz makes us fully acquainted: the setting up and the error of the meridian mark : the errors of level, of collimation, of azimuth, and of the clock, for every day of the Year; and the formula applied in each case for the necessary corrections. Mr. Tarlor is so far of the French school that he prefers computing the corrections doe to each observation rather than attempting to avoid them by continual adjustment of the screws of his instruments, and in this practical maxim we concur with him. from experience ; the more immovable the standing parts of an instrument remain, the more consistent and even will the observations be found.

The resalts of our aetronomer's labour are not only mont oreditable to hinsellf; but they prove how much may be effected by steady, well-instructed nacive amistants; for during the six months of Mr. Taylor's deputation to Calcutta, to avoist in memaring the Barrackpír Base, for the great Trigonometrical Survey, the four pundits attached to the observatory hed entire possession of the transit, the mural; and the Satellite teioncope, and very few cases occur in which there is room to note " waccoundable," against an entry in the register : at first only some malicious intruder was constantly giving annoyance by breaking the cross wires of the transit, as if to try the patience of the new master.

In all computations of results, the observatory itself is made to furnish the data; this also is a proper rule, for the climate, temperature, or clearness of the air have influences on refraction, and irradiation, which should not be trusted to eatimated values. Thus, our author finds the mean diameter of the sun $16^{\prime} 0^{\prime \prime} \cdot 15$, differing (how much ?) from European determinations. The effects of irradiation are closely connected with the sensibility of the eye. Differences of six or eight seconds will occur with different observers, and, Mr. Taylor says, it is no difficult matter is. Dr. Maserinne's catalogues to discover when a new assistant came, from this circumstance.

Followiag the tables of the sun's diameter, we have a very full table of R. A. and N. P. D. of the sun, with the errors of the Tables computed for each observation, and from these the deduced obliquity of the ecliptic for lat January 1831 is found From observations near the summer solstice $=23^{\circ} 27^{\prime} 40^{\circ} \cdot 41$.
From do. winter solstice $=23^{\circ} 27^{\prime} 38^{\prime \prime} 98$. or after correcting Goldingham's latitude of the observatory, by - $0^{\prime \prime \prime} \cdot 71$,

The mean obliquity $=23^{\prime} 27^{\prime} 39^{\prime \prime} \cdot 7$: in the Naut. Alm. it is $23^{\circ} 27^{\prime} 42^{\prime \prime} \cdot 1$.
But we have not space to enter into detail, and must confine ourselves to the heads of Mr. Taylos's results.

A table of the deduced error of the equinoctial points follows : and then we have the A. R. and N. P. D. of the several planets, including the Georgium Sidus.

Towards the determination of the longitude, we have 84 comparisons of observed R.A. and N. P. D. of the moon, with her interpolated place from the Nautical Almanac ; one lunar eclipse; and 21 eclipses of Jupiter's Satellites.

Mr. Taylor here also notices the different effects of irradiation upon different obwervers, which cause the semi-diameter of the moon to appear variable in its value, and necessitate an equal series of observations on both limbs to find the true pasages of the moon's centre*.

No attempt is made to deduce the longitude from the lunar transits, because euficient dependence cannot be placed on the lunar tables. The observations are however all compared with the interpolated place of the moon, from the Nautical Almanac, and the errors of the tables set forth : they vary from +15 to - 17 eceonds in time.

The mean of the lst and 2nd Satellite observations gives the longitude from Greenwich, 5 hours, 21 minutes, 5.4 seconds, differing about a mile from Mr. Goldingzatris determination. Ont of 51 observations of stars culminating with the moon, $:$

* In a series of lunar transits observed at Benares, with an 18-inch inetrument, there was always a difference between the observed-and calculated times of the moon's diameter pasaing the meridian, of nearly a second in time-Oricut. Mag. vii. p. 52, App.
(not culmmaiating her, as the Printer's devil has made it,) at Medras, five are provided with corresponding sights at the Greenwich observatory, and six with the same at the Cambridge observatory. From these the Madras longitade comes out 5 hours, 21 minutes, 3.7 seconds.

For the latitude we have 160 observations N. P. D. of selected atars with the mural circle by direct vision, and 171 by refoction from a trough of mercwry, the extreme difference amounts to $6^{\prime \prime}$, and the latitude deduced from the whole is $13^{\circ} 4^{\prime} 99^{\prime \prime} 21 \mathrm{~N}$.
The comet of January, 1831, was followed as accurately as the extreme faintoese of the object would admit, from the 7th January to the 20th Febraary : its pocition was as follows :

The last fifty pages (one third of the volume) are occupied by a valuable and important table of the places of the fixed stars, with reduction of the Madras catelogue to the lst January, 1831, and the differences of each star in A.R. and N.P. D. from the Greenwich and the Astronomical Society's Catalogues.
" Of 423 comparisons of right ascension, betwoen the Madres and Greenwich estalogues, there are 376 cases in which the difference does not amount to two-tenchs of a second in time ; of the remaining 46, there are 34 within three-tentha of a second ; these have been carefully re-examined and found to be affected with a much less probable error than this amount; of the 12 cases which eaceed seconds 0.3 , three are confirmed by the Astron. Society's catalogue, and four only require further etamination." This evidence speaks highly of the value of the Madras reaults, and they are not diminished by the larger proportion of discrepancies with the extended catalogue of the Astronomical Society, in which many stars have been brought forward from the less perfect tables of 1755 and 1800. "Out of 863 comparitons which this catalogue affords, there are 615 which do not exceed half a eccond; of the remainder many are confirmed by the Greenwich catalogne, or by abbeequent observations at Madras in 1832."

In north polar distance the same accuracy prevails: out of 489 comparisome with Greenwich, 197 differ less than $1^{\prime \prime} .5$; 122 less than $2^{\prime \prime} .5$; and 115 less than $4^{n \cdot 0}$: and out of 1114 comparisons with the Astronomical Society's eataloges, 693 come within $4^{\prime \prime}$; 315 between $4^{\prime \prime}$ and $8^{\prime \prime}$; and 105 exceod $8^{\prime \prime}$.

In a few years, therefore, we may confidently expect the "Madras Catalogue of fixed Stars" to be appealed to as authority equivalent to that of either Greenwich or Berlin. In the name of every lover of the sublime acience in this country, we would strongly recommend Mr. Taylor to publish annually, in adrance (and we offer him our columns for the purpose), a short and autheatic oplementre of the principal celestial occurrences, to be attended to by astronomers in India such as occultations of stars by the moon ; Japiter's Satellites; oppositions of the planets; transits and eclipsea, \&c. These should all be calculated for the meridian of Madras, to which as the nearest point of corresponding and nearty simultaneous observation, our observation should be referred. Meantime every Indian astromomer should provide himself with the volume before us, as containing besides the catalogues of atars, a variety of useful and practical formula for the correction and reduction of observations.
VIII.-Metsorological Table kept at Bancoora, for the year 1832, by Johe MacRitchio, Esg.

Months.	Lowest Ther.	Highent Ther.	Diamal mean of the Bar. at noom	$\left\|\begin{array}{c} \text { Diaraal } \\ \text { mean of } \\ \text { the Bar. } \\ \text { at } 9 \text { P. u. } \end{array}\right\|$	$\begin{aligned} & \text { Rain in } \\ & 1892 . \end{aligned}$	Rain in 1831.	Average of the 3 years.	$\begin{aligned} & \text { Prevail. } \\ & \text { ing } \\ & \text { Winds. } \end{aligned}$	Remarks.
January, ...	62,8	70.0	199,80	29,79	,165	0	,55	N. W.	First two days clondy, rest clear, sometimes variable airs.
February,...	678	74,3	,73	, 66	1,275	3,000	1,425	W.S. W.	Mostly cloudy, heavy raining on the 16th.
March,	22,1	80,0	,69	,66	8,341	1,642	1,787	W.N.W	Variable weather and winds, heavy hail storm all roand on 24, 25, and 26 ; stones said to weigh 1 chittack each.
April,	82,8	88,5	,64	, 60	1,162	4,397	2,643	W.	Mostly strong southerly winds on surface, clondy with strong heat at times, and beavy storms on the 24th and 30th.
May,	84,5	91,8	\$3	,48	4,021	,340	3,8993	W.	Trunsit of Mercury over sun at 6 P, M. cloudy, strong South and Easterly winds till 21 st, afterwards strong beat and winds, on the 11th heavy riain with strong gale, thunder and lightning.
Jume,.......	87.7	94,0	,35	350	5,335	15,989	9,974	W.	Rains set in, on the 24th cloudy, variable wisds and hot before that date.
July,	84	88,6	,388	,370	12,226	10,987	12,904	E.	Very heavy showers with thunder and lightning daring the month, but partial in the neighbourhood.
Augnat,	88	87,0	,337	,347	16,571	11;286	11,5881	W.	Heavy rain with squalls, only 7 days withont rain during this month-heavy thunder and lightring.
Soptember,..	83	88,0	,508	,522	8,283	10,259	7,775	W.	12 fair days, heavy showers on most of the remainders, with thunder and lightring.
October	79	85,0	,640	,651	5,228	5,854	4,2491	N, W.	Severegale for 6 hours on the 7 th, with heavy rains, heavieat part of it passed to the eastwand about 50 miles off.
November,.. December, .	$\begin{aligned} & 72,3 \\ & 64,5 \end{aligned}$	$\begin{aligned} & 78.9 \\ & 70, \end{aligned}$, 812 , 745	791 723	,115	4,460 $\mathbf{I}, 438$	1,846 , 479	N. W. N. W.	Fine weather with sultry days, occasionally some sperks. Ditto ditto Occultation of planet Venus with the Moon 25th, at 10 minutes after 8 P. M.
Averages,...	76,9	82,1	29,596	29,578	57,715	69,652	58,067	W.N.W.	
Fall of the Barometer, 7th Oct. 1832, 0.480 inches. Ditto,. 31st Oct. 1831, 0.700 ditto. Rain fell, 7 th Oct. 1832, 3.895 ditto. Do. do. 31et Oct, and lst Nov, 1831,.. 4.460 ditto.									

JOURNAL

05

THEASIATICSOCIETY.

No. 20.-August, 1833.

1.-Origin of the Shaikya race, translated from the \& (La), or the 26th, volume of the mDo class in the Kí-gyur, commencing on the 161 st leaf. By M. Alex. Csoma de Körös.
On a certain occasion, when Shaxya (in the text whavidr
 gavdin) was in the Nyagrodha grove (S. A'rama), near Ser-skya Gzhe (S. Capilavástu), many of the Shákyas that inhabited Capilavástu being gathered together in their council-house, questioned one another, saying ; Shes-dan-tak! (मेख " Whence sprang the Shakya race? What is their origin? What is the caase or reason thereof? And what is the ancient national descent of the Shákyas 9 If any one should come to us, and ask us about those points, we could not tell him whence the Shakyas originated. Come, let us go to Bhagavan and ask him on the subject, that we may abide by his saying."
Thereupon a very great number of the Shakyas inhabiting Capilaodstu, went to the place where Beagnva'n (behom-ldan hdas) was, and after having made their salutation by prostrating themselves at his feet, met aside.
 Bir !) they repeat again, how they had been assembled, on what subject they had talked, and how they had resolved to come before him ; and then they begged of him, that he would acquaint them with thowe things that they might afterwards tell them to others.

Buagavin thinking that, should he himself tell the history of the ancient national descent of the Sidikyas, then the Tirthikas and

Pariorajakas (or they that are not of his followers) would my. that Gautama tells whatever he pleases, to praise himself and his tribe. Not to give them an opportunity for using such expressions, he reflected within himself who were there among his disciples, who could tell, in an instructive manner, the ancient descent of the Shakyas.

Perceiving Mongalyana to be present, and judging that be was a fit person for that purpose, he called on him, saying, "Mongalyana; I am somewhat indisposed (I feel some pain in my back), and want repose; be you empowered by me to tell to the priests (Gelongs) in an instructive manner the ancient national descent of the Shákyas." He, nothing loth, assented. Sbarya, seeing that he obeyed his bidding, and having folded up his cloak, and put it for a bolster or cushion, leaning on his right side, and laying his feet upon each other, with a clear knowledge, recollection, and self-consciousness, composed himself to sleep.
 lived; Ayusman Mongalyana,) in order to collect his ideas on the subject, entered into a deep meditation, wherein he saw the whole story. Reoovering from his ecstany, he sat down on a carpet ${ }_{2}$ apread on the ground, in the middle of the priests. Then he addreased the Shikyas of Capilavástu, in the following manner:
 world was destroyed, the animal beings (సָअN'SqSems-chan, Senscrit Satioa), mostly were born again amongst the gods, in that division of the heaven, which is called that of " clear light" (S. Abhassoira, Tib. Q̌5AN(4). And they resided there for a long period of time, having an intellectual body, perfect in all its members and limbs, of a good colour, shining by itself; they walked in the air or heaven, and their food consisted of pleasures only.

At that time this great earth was turned into mere water ; it consinted of one lake or ocean. At length, on the surface of that ocean there was formed by the air a thin substance, like skim on the surface of boiled milk, that grew hard and covered the whole murface. Thrat earthly essence was of a fine coloar, odour, and trate. The colour like that of fresh batter; the taste like that of refined honey. Descendants of Gaxtama! Such was the beginning of this world.

Then, some animal beings in Abhassoira, having finished their lives. were borm again to taste of the condition of man, and came to this earth. They were with a perfect body produced from the mind (or
they had an intellectual body), having all their members and timbes entire ; they had a fine colour, and they were shining by themselves ; they walked in the air or heaven, and fed on pleasures only ; they lived for a long period.

There was at that time in the world no sun, no moon, no stars, no distinction of time, no moment, no minate, no night and day, no tnonth and year. No distinction into male and female sex. They were called all by this one name, Animal (సेझN-उa Sems-chan.)

Afterwards an animal being, of a covetous nature, tastod with his
 more he tasted the more he liked it, and the more he liked the more he ate thereof, till by little and little he ate a moathful. Otheranimak beings having observed him, they likewise did the same.

When those animal beings had eaten, successively, each a mouthfut, then entered into their bodies solidity and heariness. The brightness of their coloar vanished, and then arose darkness in the world. Gautamas ! After there had morally arisen darkness in the world, the sun and moon appeared, and so the stars also, and the distinction of time into moment, minate, night and day, month and year, began. They paseed thus a long time, living on that essential food. They that had eaten but little of that food were possessed of a fine complexion or colour, they that had eaten much became of a bad colour. And so from the measure of food, there arose ansong them two species of colour. " Ha ! Animal being ! I have a good colour, thou hast a bad colour ;" thus spoke contemptuously one animal being to another. On account of the sin of such proud talk with respect to colour, that earthly essence disappeared.

Gawamer I The earthly essence having disappeared, the animal beings, gathered together, uttered many lamentations, and recollecting what a fine flavour it had, regretted much the loss of that substance.

Gautamas! After the earthly essence of the animal beinge had vaninhed, there arose from the earth a fatty substance of a fine colour and taste. They lived for a long time by eating of that sabstance. They that ate but little of that food were possessed of a good complexion or colour; they that ate much became of a bad colour. And thus from the measure observed in eating, there arose among them two species of colour. "Ha! Animal being! I have a good colour, thou hast a bad colour;" thus contemptuously addressed one animal being to another animal being. On account of the sin of pride, again, the fat of the earth disappeared.

Geminmas I The fatty substence of the earth harigy dimpppmech. the animel beings gathering together, attered lamentations; and recollecting what a fine flavour it had, they rogrettod much ita loen: teit they could not tell in words their sentiments.

Gautamas I After the greasy substance of the earth had vaniched, there arose a sugar-cane plantation, of a fine colour, odour, and tande. The animal beings paseed afterwards a long time by living on thet food, until the same cause led to its disappearance.

Gautaman! After the cugar-cape plantation had vanished, thare came forth clean and pure sade (rice), without being ploughed or sown, having no otraw, no huak, no chaff; if out in the evening it ripened again till the next morning (or there was every evening and morning ready a fresh erop). The animal boings paseed a loag time living on sáks.

From the wse of that fruit there arose the diatinction of aexen Some of the animal beinga became males, and arme females. The different sexes regarded each other with fixed eyes. The more they regarded each other, the more they became affectionate and deasired each other. Being observed by others, they were repromehed by them for their actions, and hated. They threw on them atomen clods, \&c. (in the same manner as now they, ane at the celobration of nuptials, to cast or sprinkle on the bride scented powder, perfume, chaplets, clothen, and parched rico, saying, May you be happy !) and reproved them much. The others, in their tarn, replied, "Why do you thus abnse us now, in there no other proper time for telling ua these thinga ?"

Gautamas! Thus what anciently was regarded as an immoral action. in now taken for a virtue. They reatrained thamelves for a time (for 2. 3 , or 7 daya) from satisfying their lust. But afterwarde not being. able to contain themselven, they commanced to make some cavert, er. hiding place, whither they might retire from the aight of othera to satisfy their lant; saying repeatedly, We will practise bere what in not to be done eloewhere, and uttering, Khyim, khyim ; covert, covert, pr houne, house.

Gautamas! This is the firat beginning of hqilding hopses.,
They used to gather in the evening the, saly that, was required for the evening repast, and in the morning that which they wanted in the morning. Afterwards it happened once that, a certain animal being having gathered salk. in the evening for the next morning aloo, when he was called on by another animal being to go and gathar saik, he said to him, O animal being, take heed to thine own salm, I have brought
yester-evening the odk, which I require this morning. Then the other animal being reffected with himsolf thus; Ah well then! I shall hereafter take saku for 2, 3, nay for 7 days, at once." He did afterwards accordingly as he had aaid. Then an aaimal being. sid to him, "Come, let us go to bring salu." He then said to him, O asimal being, take care for thine own sálu; "I for myself have brought at emoe, for seven days." Then that animal being reflected with himself thus, " O well, very well, I shall take at once for fifteen days-for one month." And he did accordingly. When the saily had been taken thus by anticipation by these animal beings, there grew afterwirds saiks that was covered with straw, husk, and chaff, and when cat down, grew not again.

Then those animal beings assembled together, and reflected on their former state thus:
 lows a repetition of the above described stories respecting the several ahanges that took place in the state of the animal beings. How perfect they were formerly, and how degenerate they are now.]

Afterwards, being gathered together, some of them said, " We must mete out the land and assign the boundary of each property; saying, This is thine, and this is mine." Accordingly, they measured and divided the land, and erected land-marks.

Gautamas ! This is the first time in the world that men commenced to erect lapd-marks. This also was a natural consequence.

It happened afterwards, that an animal being, who had his own stlu, took away that of another not being given to him (or stole it), Other animel beings having seen him, that, though he had his own salw, he had taken away that of another, not being given him, they said thus to him, "Oh animal being! thou having thine own ailu, why takest thoa that of another, without being given thee ?" They: seized him and dragged him on this and on that side, and took him into. the congregation, and then reproved him thus, "Sirs ! this animal being, having his own sdidu, has taken away three times that of another. without its being given unto him."

Then those enimal beings said to this, thus, "Oh!animal being, thou having thy own salu, why takest thou that of another which he had not given thee? Oh! animal being; go now away, henceforth do not, act in this manner?" Then that animal being thus said to the others, "Intelligent beings ! This animal being having dragged me on this side and on that side, on account of the salu, taking me into the congregations hat also abused mee (with his language)." Then those animal
beings thus said to that animal, " Ha ! animal being! after having dragged this animal hither and thither on acoount of the siku, and having brought him into the congregation too, why hast thou abead him ? Oh ! animal being, go thou now thy way, hereafter do not than."
Then those animal beings reflected with themselves thus, Intelligent beings! On account of sálu, one is dragged hither and thither, and is rebuked also in the congregation. But we should meet, and from among us we should elect one (who is of a better complexion, handsomer countenance, more beautiful, more fortunate, and more renowed) for the master and proprietor of all our fields or lands.

He shall punish from among us those that are to be punished. He shall reward those that merit to be rewarded. And from the prodice of our lands we shall give him a certain part, according to a rule.
They accordingly met, and elected one for their master and propriotor of their lands, and for the arbitrator of their controversies, saying to him ; " Come, animal being, punish from among us those that are to be punished, and reward those with a gift that merit to be remanerated; from all the products of our lands we will pay you a certain rate, eccordingly to a rule." Afterwards on both sides, they did accordingly. Since he was carried (or honoured) by a great multitade of ani-
 crit, Mahá Sammata, "Honoured by many."

Gautamas ! At the time of Mahá Sammata, man was called by this name, " Animal being."
[The following five leaves (from 171-175) are occapied with an enumeration of the descendants of Mabí Sampata down to Karna
 sons, Gotama and Bharadhwaja (T. rNa-va-chan.) The former took the religious character, but Gotama being afterwards accused of the marder of a harlot, was unjustly impaled at Potala, and the latter succeeded to his father. He dying without issue, the two sons of Gotama inherit, who were born in a preeter-natural manner; from the circumstancos of their birth, they and their descendants are called by several names;

 shing-pa, (S. Iskhwaku.) One of the two brothers dies without issae, the other reigns under the name of Ixsiwaxu.

To him succeeds his son, whose descendants (one handred) afterwards successively reign at Potala (녹RFた), Gru-hdsin. The last of

[^76]

 again. He obtains the daughter of a king, under the condition that he shall give the throne to the son that ehall be burn of that princess. By the contrivance of the chief officers, to make room for the young prince to seccession, the king orders the expulsion of his four sons.
. They taking their own sisters with them, and accompanied by a

 पबस), and live in hats made of the branches of trees. They live there on hanting; and sometimes they visit the hermitage of Capila the Rishi. He observing them to look very ill, asks them why they were so pale. They tell him how much they suffer on account of their restraint or continence. He advises them to leave their own uterine sisters, and to take themselves (to wife) such as are not born of the same mother with them. O great Rishi! said the princes, is it convenient for us to do this? Yes, Sirs, answered the Rishi, banished princes may act in this way. Therefore, taking for a rule the advice of the Rishi, they do accordingly, and cohabit with their non-uterine sisters, and have many children by them. The noise of them being inconvenient to the Rishi in his meditation, he wishes to change' his habitation. But they beg him to remain in his own place, and to design for them any other ground. He therefore marks them out the place where they should build a town : since the ground was given to them by Capila, they called the new city Capilavastu. They multiply there exceedingly. The gods seeing their great number, show them another place for their settlement. They build there a town, and call

Remembering the cause of their banishment, they make it a law, that no one of them hereafter shall marry a second wife of the same tribe, but that he shall be contented with one wife.
 that he had four sons, asks his officers, what has become of them. They tell him, how for some offence His Majesty had expelled them, and how they had settled in the neighbourhood of the Himalaya, and that they have taken their own sisters for their wives, and have been much maltiplied. The king, being much surprised on hearing this, exclaims several times : Shákya! Shákya! Is it possible! Is it possible! (or.
 Shákya name.
 at Potala, succeeds his younger son iditich 4 Q , rgyal-srid dgah, (he that desires to reign.) On his dying without childrea, the baniehed princes ancossaively inherit. The three first have no issue; the son of
 widx. His descendantas to the ramber of 55,000 have reigned at Cepiinvartu. [An enomeration of the princes who reigned at Potela aftur Iramwatv' followa, which is indentical with the list in Sanskrit eathorities ; the names being translated into Tibetan according to their literal meaning ; as for Mahé Sammata, Mang pos blurr-va, greatly honored, \&ce.]

Here ends the narration of Mongaliana. Sha'icia approves andrecommends it to the priests.
II.-Second report on the Geology of Hyderabad. By H. W. Voysey, Esq. Surgeon and Geologist to the Trigonometrical Survey of Indin, cated Secanderabad, the 28th June, 1820.
I had the honor of submitting a geological description of part of the dominions of His Highnese the Nizan to the Marqurbs of Habtinge in June last, since which I have visited a considerable additional portion of the same country, including part of the Honorable Company's territory. I now beg leave to offer a more complete geological sketch of the country through which I have passed, embracing in a great measare the substance of the former report, but more systematically arranged.
The space included between the extreme points of my different journeys is about 3° of latitude and 5° of longitude, viz. from 16° to 19° N . lat. and from 77° to $82^{\circ} \mathrm{E}$. long. : within it are foar rivers, the Godáveri, Kistna, Maujira and Moussa, two of which may be ranked among the principal rivers of India, viz. the Godaveri and the Kistmal. The two first-named rivers take their rise in the Western Ghauts, and some of their tributary streams at their origin are only separated a fer miles from each other. Their general course, is nearly south-east. The Manjira differs the most from that course, being forced to doable on itself when it approaches the high land, commencing about thirty miles north-west of Hyderabad. The course of the rivers accords with that of the ranges of mountains, and the valleys through which they ran.

Monntains.
The granitic part of this country may be called both mountainomas and biilly, and in the plains and valleys are found elevations which are mini-
atares of the loftier ranges. These ranges are few in number, and remarkably interrupted and irregular, their extension inconsiderable, and their height above the level of the sea about $2,500 \mathrm{ft}$., nost of them falling far short of that height. Single isolated hills and groups, with round and conical summits, are by far their most common features.

Although the complete isolation of these hills and groups first atrikes the observer as being the prevailing character, on a closer examination it will be found that the apparently isolated hills are connected at their base by scarcely distingaishable elevations, parsuing the N. W. and S. E. direction, common to them and the larger ones.

They are extremely bare and rugged in their outlime, and consist of piles of rock, one block being heaped above the other in irregular succession on an enormous mass of concentric granite. In the process of decomposition these form tors and logging stones of a singular appearance.

The hill on which the Fort of Bhowdinigarh is built and that of Mául Ali, 2017 ft . above the level of the sea, may be taken as specimens of the isolated hills and groups; and the ranges of Mulkapur and Golconda as specimens of the continued. The only parts of the country which are entitled to the name of plains are those in the neighbourhood of the rivers, being formed by their inundations and therefore of amall extent.

The above description applies to the greater part of the granite country : those ranges of granite however which run N. E. and S. W. from Guntur to Gondooina, forming the pass of the Kistna at Bejvara and that of the Godiveri at Papkunda, are of a different character; the ranges being less interrapted, more elevated above the plains, although not higher above the level of the sea, and altogether of a different structure. Their sides are very precipitous, and oblige the traveller to use his hands and knees for a considerable portion of the ascent.

Their outline is not at all rugged, and the logging stones and tors of the former granite are nowhere visible.

The Cavalry cantonment of Ba'lara'm, six miles N. of Secanderábád, is one of the highest inhabited villages of the granite country, and from thence to the northward, the country gradually decreases in height as far as Menachpet : the same takes place more suddenly at Malkapur to the eastward, and at Patanchera to the N. W. The city of Hyderabad, close to the walls of which the river Moussa runs, is by barometrical measurement 1672 feet above the level of the sea, and the cantonment of Secarderabad 1837, which agrees with Colonel Lamar
ron's trigonometrical mensurement within 19 feet. Colonel Lantron's observatory being 10 feet high, and the house where the obeorvation was taken between 5 and 10 feet lower than the base of tho observatory, the agreement will be much closer.

The outline of the basaltio trap hills is smooth and rather flattened with a few conical elevations in the range; or they consist of an accamulation of round hills with deep ravines intersecting and separating them. They are covered with long grass to their summits. Their course is the same with the granite they cover, but it frequently happens that no regular direction can be perceived.

The sandstone country and rocks are flat, the sides of the hils steep, with extensive gaps in the course of their range, at times nearly reaching to their bases; their direction is N. W. and S. E. or nearly so, and it is probable that they extend over a considerable portion of the S. E. part of Gondwona.

Rivers.

The rivers of India, and particularly the Godiveri and Kietna, are subject to great variations in the quantity of their waters dependent on the periodical rains. The small rivers are nearly dry in the manth of May, and the channels of the larger contract to a fifth from their size in the middle of the rains.
I before mentioned that the tributary streams take their rise near to each other, and pass through a country of nearly aimilar formation, niz. basaltic trap, and discharge their waters into the sea within 60 miles of each other by several mouths, which like those of the Nile or the Ganges ran through a delta formed by their own alluvium. Their waters are much discoloured in the rains, and deposit on their banke and througtont the whole extent of the inundation, which takes place more or leas every year, a thick layer of black alluvial soil, called by Europeans " black cotton soil." These banks vary from 50 to 80 feet in height, the latter being the usual height of those of the Kistaa. About 50 mikes from their embouchure they both pass through the chain of granitic mountains which extend from Gaxtir to Gondioana before mea. tioned.
The pass of the Kistra at Bejocira is much broader than that of the Godiveri at Papkonda. This may be the cause of the more extensire inundations of the latter, since its channel is contracted from a breade of two and one mile to two furlongs by the lofty and precipitous sides of these mountains. This defile constitutes the S. E. boundary of His Highness's dominions. Its extent from the last Nizam's. village to the nearest Company's village is about ten miles, which apace is uminhabited
the banke or sides of the mountain being so steep as even to preclude communication in any other mode than by water.
. The extent of the modetn inandation varies from six to three miles on each side of the river, but judging from the distance at which the black alluvium is found from the banks of the river, these periodical loods have been more extensive*.
The hast took place in the year 1816, and washed away houses and cattle in great numbers; and there are traditions of two others in the course of the last century, each greater than the last. I am not able to speak with so much certainty of the inundations of the Kistua; I have however seen the black alluvium covering the plain in which the diamond mines of Purteal are situated, extending six miles from its banks; also at Shermahomedpet, five miles N. W. of its bank.

These inundations are considered as important benefits by the inhabitants, and the produce of the land is proportionally increased after their occarrence.

Tanks.

The lakes I have seen are all artificial, and are found only in the granitic and sandstone country ; they are usually formed by uniting two projecting points of low hills, which nearly separate the upper half of a valley from the lower, by enormons canseways of granite, or mounds of earth, which collect the different streams rushing from the hills daring the rainy season, forming a sheet of water from three to ten miles in circumference.

This mode of retaiuing water artificially is probably coeval with the first increase of population in this country, as the smanll supply of water derived from wells would not be equal to the cultivation of rice, whiok in the only grain extensively produced in the granitic soil.

After the rains the loss they sustain from irrigation, evaporation, \&o. is supplied by infiltration, nevertheless many become dry before the monsoon recommences. Those tanks which are neglected and no loager supply rice-fields are speedily covered with the large leaves and flowers of the nelumbo indica, othelia alismoides, and other aquatic plants : their waters acquire a noisome smell and un wholesome taste. The number of tanks and their state of repair afford a fair criterion of the pròsperity of the country.

[^77]They are less frequent in the sandstone coumtry, and the unirrigated cultivation is accordingly more abundant.

In the basaltic trap they are rarely soen, and the irrigation of rice when caltivated is performed solely by wells.

Hot Springe.

There are two hot-springs. One called Gondála is situated in the sandy bed of the Godíveri, about two furlongs from its left bank, a few miles below the pagoda of Raddrachelam. It is covered in the rainy zeason by the river, but is left dry during the greater part of the year.
The bed of the river about one mile and a half wide contains granitic sand, above which appear rocks of granite and trap mixed in various ways.

The apring is situated close to these rocks. When I visited it in February, it was covered with sand, and we were obliged to dig in three places before we discovered the hottest part. Around this spot to the distance of 15 yards the temperature of a stick thrust into the groand was sensibly raised, and on digging to the depth of three or four feet, water was found hot, but of an inferior temperature to that of the central spot. Its temperature at sun rise was 139°, that of the others 120° and 1300° whilst that of the air and river was 70°. The falling in of the land, the pit being aboat four feet deep, so evidently reduced the temperature, that it is very probable we should have found it much higher on digging deeper, which we were prevented from doing by the inconvenience the labourers suffered from the hot-water. The presence of sulphuretted hydrogen was sensible to the smell; but the impregnation was not atrong enough to blacken a silver pencil case : the tissue of a slipper was slightly discoloured on being dipped into the water.

On evaporating 2880 grains, six grains of saline matter were left behind, consisting of sulphate of soda, common salt, and muriate of lime.

It is much resorted to from its mupposed efficacy in curing cutaneous disorders. It is worthy of remark, that the rocks in the neighbourhood contain no iron pyrites. Its heat therefore cannot be ascribed to the spontaneous combustion of that mineral.
On the opposite bank of the river is a bluff rock of sandstone, through the crevices of which water infiltrates and is collected in small reservoirs, caused by the continued dropping on the soft stone. Its temperature at nine o'clock was 68°. I do not consider this to be the mean temperature of the place, since its latitude, $18^{\circ} \mathrm{N}$, and height above the level of the sea not exceeding 130 feet, would make its mean tem-
peratare much higher. It is called by the natives, "the cold spring," in contradistinction to its neighbour Gondála.

About 30 miles to the N . \mathbf{W}. of this place is the hot-spring of Bangak, situated in a valley surrounded by sandstone rocks. It is a pool of water, about 40 feet long by 20 broad and five feet deep. From the deepest part a number of bubbles of air or steam are continually ascending ; there its temperature is 110°, but at the sides 100°. It holas in solution a small quantity of carbonate of lime. It is surrounded by loose blocks of a porous black limestone : the water is tasteless, and remarkably pure in other respects.

I have frequently received information of the existence of springs of water both in the granite, the trap, and the sandstone countries, but have always been disappointed in my search after them; as I have invariably found that the rills which flow down to the rivers are supplied by infiltration of water through the rocks, from the higher ground, and their temperature always that of the surrounding atmosphere. This perfectly accords with the structure of the country, and the absence of rain during eight months of the year. The hills being none of them high enough to intercept the clouds, and deprive them of their water.

The temperature of a well at Beder, 200 feet deep, was 77° in the month of March, and that of a well, 40 feet deep, at Secanderabad, 78° in November and in June : this is probably very near the mean tem-, perature of both places.

Soils.

The fertility of the soils which compose the cultivated districts of the granitic part of this province would depend greatly on the facility with which the rock of which they are formed, decomposes, were not water the most important requisite in the cultivation of rice. The soil is of course siliceous, but varies as mach as the granite rock itself, which will be described in another part of this sketch. Generally, it has few spontaneous productions. The rich valley of Malkapur forms an exception, and it may be said that usually the spontaneous fertility is in the inverse ratio of height above the level of the sea.

The following is an analysis of a garden soil at the cantonment of. Secanderabad, which has not received much manare.

Specific gravity of soil $1 \cdot 70$. Four hundred and eighty grains contained; viz.

Of water of absorption,. 10 grs.
Stones, consisting of quartz and felspar,........ 255
Vegetable fibre,.... 2

The soil of the basaltic trap country is generally very retentive of moisture, and accordingly those plants which do not require an artificial supply of water are its principal productions: sach are cotton, jován (ligusticum ajwán), horse gram, Zea mays, carthamus tinctorius, ricinus communis, \&c. \&c.

The iron clay in the environs of Beder is very sterile, and is so porous that all water percolates through it to the substratum, which is basalt ; from this cause it is that the wells at that place are deep.

The sandstone soil contains a considerable quantity of clay, and is retentive of moisture; irrigation is however employed for rice, and generally it may be said to partake of the nature of both the trap and granite soils.

Above all others that I have hitherto seen, that arising from the decomposition of the clay slate marked B. in the map, is the richest and most spontaneously productive.

On the tops of its mountains I saw the loftiest teak trees, and in its plains the most exuberant vegetation.

The black alluvium found on the banks of all the rivers except the Moussa, which takes its rise in granitic country, is of the same nature with that which covers the trap mountains from the decomposition of which it arises.

Rocks.

The description of the soils naturally leads me to that of the rocks, of the debris of which they are composed.

The granite is found of all shades of grey, from black to white ; the most predominant is reddish grey; these colours depend upon the felspar and the mica, and on the hornblende, which often occupies the place of and accompanies the mica, and is with difficulty distinguished from it. Compact felspar of a greenish tinge is a very common ingredient, and in several places I have found carbonate of lime a constituent ; the quantity, however, is generally small, and only to be detected by its effervescence in acids. A tuffaceous limestone is found through:
out the granite in nests and beds; my knowledge of it is yet too limited to decide on its nature.

The granite very frequently contains angular and rounded masses of a micaceous granite, which appear to bave been enclosed in it when in a fluid state; at times the edges of these masses are commixed with those of the containing rock, and at others the adhesion is so loose as to allow the mass to fall ont, us the more easily decomposable matrix wears away. I have seen these masses, through the whole extent of the granite country; and it first suggested to me the probability of the contemporaneous formation of the whole.

I may here observe, that the specific gravity of these masses is greater than that of their matrix, as is also their infusibility, from the greater quantity of mica they contain.

The granite of the Godáveri at Papkunda is never in concentric layers. It contains half-formed garnets and micaceous iron ore. The felspar of some specimens has a very pearly lustre : this mineral is sometimes wanting, and the rock then consists of quartz and garnets, with a few specks of micaceous iron ore.

At Bejwára the granite is slaty (gneiss), with an eastern dip at an angle of 70 or 80 degrees; the felspar is more abundant. In some irregular veins of earthy carbonate of lime, I found earthy grey mainganese ore.

At Gharibpet, a few miles from Palinshah, the rock which I believe to be a continuation of the Kainikgiri range and connected with the granite of the province, is a compound of mica, kyanite, garnete, quartz, and felspar. If the rock were at all slaty, its name would be mica slate; it is however not at all schistose, but a solid mass of rock three hundred feet in height, and four or five hundred in length.

Trap veins.

The trap veins which run through this rock constitute the most remarkable fact in its history. They consist of hornblende rock, greenstone, greenstone porphyry and basalt, containing minute crystals of felspar. They are found in every part of the granite, and have generally the same direction, nearly E. and W., with a zigzag course of various length and breadth.

Some of them have been traced fifteen or twenty miles, their breadth varying from a few feet to 100,200 and 300 ; at times their edges are commixed with those of the granite: the central masses affect a rhomboidal form, which in the course of their decomposition become rounded.

In a few instances I have seen these trap rocks in beds which do not appear to have any particular directions.

This was the case in the bed of the Godiveri near the hot-spring, also on the banks of the river, and 15 miles inland, near Pabisshah, and at the foot of the micaceous rock of Gharibpet.

Sandstone.

The sandstone varies considerably in composition and colour. Its variations however occur principally in the neighbourhood of its junctions with the other rocks. Its moat common cement is lithomarge, which is also found in it in nests and beds of various sizes, and of colour both white and reddish white.

It is thus found at Jallikara Gídani, 20 miles N. E. of Ellore, at Chintapet, at Palínshah, at Mangapet and Tyellapuram.

At its junction with the granite to the S. E. of Hyderabad, twelve miles from Thatkur, it would be scarcely recognized as sandstone.

It there consists of a conglomerate, containing pebblea of quartz, felspar, a few scales of mica, and rounded pieces of a rock resembling the granite of Pápkunda, in a cement of indurated clay strongly impregnated with iron. It soon however changes to a rock, containing grains of sand cemented by lithomarge as before described.

The rounded pebbles of quartz, in some instances, form nearly the whole of the mass. It sometimes contains septaria of a black ferruginous sandstone of a curvilinear form, which project as the rock decomposes.

A few miles to the N. W. of Buddrachellam commences a range of flat sandstone hills called by the natives Vindhaya; they extend npwards of sixty miles on the right bank of the river.

Both white and grey sandstone were brought to me gathered at their bases.

At the junction of the sandstone with the granite at Ramgiri it contains crystals of red felspar and a few scales of mica. In no instance have I seen this sandstone stratified. The height of the highest flat range is about 3000 feet.

Basaltic Trap.

The basalt which covers the granite to the N. W. of Hyderabad at first appears only on the summits of some of the hills; the latter rock still occupying the valleys and forming the sides of the mountains. It afterwards gradually increases in extent until it covers it in all its parts, the granite re-appearing only in the beds of some of the rivers, and forming the base of some isolated peaks. It is sometimes found columnar, the columns being of all sizes, from a foot to a yard and a half in diameter, as at Oudghir, Monegal, \&c. It varies from a very compact semi-crystalline rock, resembling hornblende rock, to a poroas
basalt which passes into wacken, containing stilbite, mesotype, icthyophthalmite, heliotrope, calcedony, green earth, quartz with cryntals of calcareous spar imbedded, the form of which the quartz has taken, demonstrating that this mineral has been the last deposited. The wacken passes into iron clay, and in some places the basalt may be seen with the wacken and iron clay in the space of a few yards. The latter forms elevated table land at Béder, which is 2,359 feet above the level of the sea; it closely resembles that of the red hillsat Madras, Nellore, Singhirikunda (in the two latter on granite), all on the sea coast, but in this instance rests on basalt. I observed in it plumb blue lithomarge, and pisiform iron ore.

On the basaltic hill of Medkunda I observed large masses of flint lying on the surface and deeply connected; also pieces of a siliceous stone, containing shells which had lost their carbonic acid: the external surface of these masses effervesced in acids. These shells belong to the genera turbo and cyclostoma, and living specimens are found in the beds of most of the rivers as well as on the rocks in their neighbourhood. The specific gravity of these stonen varies from 1.90 to $2 \cdot 00$, that of the flint is 2.60 . A few miles from this place I observed the same shells enclosed in small pieces of earthy limestone; they were lying on the basalt, which is here 2000 feet above the level of the sea and about 200 above the river Manjira : the base of the hill being granite, and the basalt not occupying more than 100 feet.

Quartz rock occurs in the granite in beds, as at Pitlam, Gazypet, and in the environs of Hyderabad: the rock in the neighbourhood of the latter is elevated 40 or 50 feet above the level of the plain through which it runs; its course is north and sonth, and its extent aboat twelve miles. It contains considerable quantities of amethystine quartz, whick is not pure enough for the purposes of the lapidary.

The loose masses of quartz, as well as those which appear above the surface, have a rhomboidal form. This rock runs directly opposed to the greenstone veins, and intersects three of them. I have reason to believe that the trap passes through the quartz, although I have not yet distinctly observed it, except in one instance near Hyderabad.

Clay Slate.

The clay slate which is found to the eastward of Hyderabad, between Byarám and Palínshah, is about 20 miles in breadth and perhaps 30 miles in length, with a north and south direction. One of its highest points, Panch-bondal, is 2600 feet above the level of the sea. The valleys contain sandstone, clay slate, and quartz rock ; this latter is also found on the summits in veins and beds.

Some of the mountains exhibit marks of great disturbance : the dip of their strata is to the south-east, and on their summits the quartz rock and clay slate appear to be indiscriminately mixed. The chasms formed by these disturbances give passage to foaming cascades, the only sound which breaks the awful silence of their solitude.

The rock is generally indurated clay slate passing into flinty slate, containing drawing slate but no roofing slate.

On the banks of the Kistna between Ameasoate and Warripiz beyond which I have not traced it, and from Warripilf to within three coss of Nacricul, is found a limestone in horizontal strata.

When first seen it lies on the surface of the earth in large flat maeses partly covered with alluvial soil ; its colour varying from a dirty white to a pinkish white, from which it passes into a compact black rock which is capable of receiving a good polish. It subsequently assumes a whitish green and pinkish grey, and on the banks of the river it is found of al these colours except the black. Veins of green hornstone are found passing through it, and at times small masses of red iron ore. It cons tains no petrifactions.

It is well adapted for building, for sculpture, for mortar, and I believe for water cement. Large pagodas and forts built of it bear fewer marks of age than most of the granitic structurea.

The town of Dachapilk is entirely built of it, as well as a large pagoda and fort at Warripili. The famous basso relievo of Amerswouti, for the first account of which we are indebted to Colonel Macyenzib, are formed from this rock.

A pare lime is obtained from numerous veins of calcareous sper on the river bank, and I conceive the black limestone contains the requisite proportion of alumina and iron for making a good water-cement.

No inland carriage is required, since it is quarried on the banks of the river, and may be carried down at all seasons of the year to M sulipatam.

> An analysis of one hundred grains of grey slaty limestone gave
> Carbonate of Lime, 84
> Alumina, 8
> Iron,............... 4
> Lobs,
> 4
> Grains, 100
> Iron Ores.

I have hitherto seen no ores of iron in the granite. The mandstone and iron clay are the most productive. They consist principally of earthy brown add red iron ores, poor in iron, but easily smelted. The
modes of smelting are well known to be very rade, and have been frequently described*. On calculation I found that the price of their iron in its best state was double that of the best English iron at home. The ore from which the steel is produced, which goes by the name of the "Hyderabad steel," is the same with that described by Dr. Hyne in his travels in India, p. 191. I have not yet seen the process of making it, but from a specimen which I found much inferior to the English steel in hardness, I should suppose it not to be the same as the Indian $3000 t z$ so much valued at homet.

Dianond Mines.

On the banks of the Kistna and within reach of its inandations are the celebrated diamond mines of Golconda. It is probable they have been so named from their being the property of the sovereign of Gotconda, which kingdom received its name from the celebrated hill fort and city called old Golconda, near the modern city of Hyderabad.

They are situated in a plain on the left bank of the Kistna, formed by its alluvium, and bounded on the east by a chain of mountains running nearly north and south, on the west by the river, on the north by the granite of Sher-Mahomed-pet, and on the south by that of Beswara. In this plain a few peaks of granite of 15 or 20 feet in height are seen rising above the surface of the black alluvium, but none are found nearer the mines than one mile and a half. The mine situated nearest the hills is two miles distant from them. These hills consist of a mixture of quartz, felspar, horiblende, and mica, the latter in very small quantity; the hills near them at Condapili are of sienite approaching to greenstone, the hornblende being in the greatest proportion.

From the circumstance of these sienitic hills being sarrounded by granite on all sides, I ventare to suppose that they are merely a repetition of the phenomenon of the trap veins on a much larger scale, in this case forming mountains differing in their constitnent parts, but not more than I have observed in other instances. The taluses of these mountains extend to a very short distance from their bases, and as I was not able to find in the rubbish of the diamond mines any substrata resembling them, Wernsr's supposition that these rocks, which he calls trap from the examination of specimens, were the matrix of the diamond, will prove unfounded. This receives a further confirmation from the fact, that one of the mines near Pullchinta is situated on or near limestone, and the mine of Malavill 20 miles sonth-east of Parteal lies on granite and is surrounded by that rock.

[^78]Of the six villages situated in this plain, Parteal is the aaly one in which diamonds are sought for. There even no fresh excavations have been made for many years, and the workmen have been since employed in examining the old rubbish of the former excavations. They believe, in common with the searchers for diamonds in Hindustan, that the gem is always forming in the mine, although very slowly.

The village of Partoal presented a striking contrast to the Company's village we had just quitted: it was in ruins, and the inhabitants ill clothed and half starved in their appearance. I afterwards visited the mines of Antior one mile from the Kistna, Barthem' Pandoa, and Malavil', but in none did I find labourers.

There is still a considerable quantity of ground unopened in all these mines: indeed the sides of the excavations, which have produced the finest diamonds in the world, still remain untouched. The want of capital, and the objections of the semindars to a farther eneroachment on the cultivated lands, may be the causes nperating chiefly to prevent farther researches, together with the fact of the cheapness and plenty of the Brazil market.

The only stone common to all the mines I have visited, and which I understood to be indicative of the presence of the diamond, is the calcareous conglomerate*.

Garnets.

The garnet mine of Gharibpet is situated soath of Palansiah about eight miles. As I advanced up the ravine, in which I noticed veins of granite and trap and sand composed of mica, garnets, kyanite, quartz, and felspar, large scattered masses of rock were strewed on each side, which had fallen from the summit. On the top of the immense mass of rock were several detached pieces, no doubt destined to fall as soon as decomposition shall have smoothed the way.

Accustomed to see garnets in mica slate in Scotland and elsewhere, I was disposed to call this rock by the same name, but I did not perceive in any one instance any thing like stratification.

I found it throughout composed of mica, garnets, kyanite, quartz, and felspar ; in some specimens the kyanite was next in abundance to the mica. Veins of quartz containing kyanite were very frequent. The garnets, which were seen in great profusion on the surface of the rock, were generally of a very coarse kind, as well as those which I found strewed on the surface of the ground.

At the depth of eight or ten feet in the alluvium at the foot of the rock were found the precious garnets. The theory of crystallization

[^79]proposed by Mr. Mifriuss*, and founded on experiment, will serve to explain why the precious garnets are only found in the soil beneath the rock.
I conceive that in this instance, as well as many others I have witnessed, of crystallization, the small particles of garnet are brought together by molecular attraction; and by the temperature, which is nearly constant, the moisture and superincumbent pressure, crystals of the precious stone are formed.
In this mode I have seen felspar and zeolite recrystallized, at the foot of the rocks, as well as in the allavium they afford by decomposition.
The garnets when collected are gently pounded, and the bad ones broken : those which survive the blows are reckoned of good quality.
The cheapness of these precion3 stones becoming greater every day, from the quantity foand in all parts of the world, and the facility and exactness with which they are imitated rendering them of smaller value"; the discovery of a fresh mine is scarcely worthy of notice.
I cannot close my present sketch without expressing how much I have been assisted by the kindness of Mr. Ruserll, resident at Hyderabad, and of Mr. Ralpi, a gentleman in His Highness' service, who was my fellow-traveller for three montha in a difficult part of the country, which I might never have seen but through his aid.
III.-Bectrian and Indo-Scythic Coins-continued. By Jas. Prinsep, F. R. S., Sec. As. Soc.

The present plate introduces us to some of the coins of Doctor Swinky's' collection already alluded to in my last communication. It is as well to premise that all order of arrangement is out of the question where new objects are every day dropping in, and where the epoch of so many of our coins is not yet satisfactorily ascertained. Thus it happens that although headed "Bactrian," the last plate, as well as the present, contains coins of other dynasties.
Dr. Swinsy parsued a course very similar to that of Colonel Tod in forming his collection.-"The plan I have found most saccessful under favorablecircumstances of locality, or where no one has already explored the same ground, (and I have followed it many years before I heard of Colonel Tod's eminent success in the same pursuit,) is this : upon the line of march I employ an intelligent sèrvant, generally a Musulman tailor, to buy up old pyse, which the banyas in some towns are in the habit of putting aside as useless, perhaps from father to son, and which rarely

[^80]see the light except on occasions of this sort. Out of some dozens procured in this manner for as many current pyse, a few may be sufficiently curious to reward the trouble of search. Such beautifal coins as Lieut. Bunnse brought back with him from the Panjab and Oxus are no longer to be procured in India; indeed ancient silver coins are of very great rarity compared either with those of gold or copper, and the only two Bactrian coins I have been so fortunate as to discover, were obtained out of the limits of our provinces."

I have not attempted to engrave any of the numerous sketches of his antiques which Dr. Swinar has been so obliging as to forward, but have confined myself to those of which he has sent sealing-wax impressions, or paper casts made in the school-boy fashion (but not to be despised on that account), by wrapping the coin in several folds of paper, and rabbing the exterior with a key or hard blunt point. Bactrian coins, Plate VIII.
Figs. 1, 2, and 3, are described at pages 311 and 313.
Fig. 4.-A small silver coin of Apollodotas, weighing 36 grs .
Obverse, Head with diadem and filleta, and a neckcloth, inscription circular, close but quite distinct ; AmOnnoaOtor baxineoy IOTHPOI KAI \&INOIATOFOZ. The introdaction of the conjunction KAI I do not remember to have seen on any other Greek coin.
Reverse. A standing figure of Jupiter, radely executed, holding a thonderbolt in his right hand, raised, and a kind of shield in the left : from the arms depend two ends of a sleeve or scarf; on the right is a singular monogram, (No. 4. of the series at the foot of the plate,) differing widely from that of Colonel Ton's coin of the same king, (No. 6. of the same series.) The legend is distinct but illegible, and agrees in character with that upon many of the ball and elephant coins(see Wilson's plates, figs. 3, 4, 31; Tod, figs. 11, 12, \&c.)
The native who brought this coin to Dr. Swinsy stated that it was procured by him at a town called Kaital, in the Sikh territory, not far from Karnal.
Fig. 5.-A coin of Menander, agreeing in its general features with the last; weight 34 grs.
Obverse. A well executed and intelligent face, with the diadem; latter part of the inscription not very distinct MENANAPOT bAXLAERZ IOTH(POZ?)
Beverse. The figure supposed to be Jupiter in the leat coin appears in this rather to be Minerva wielding the bolts of Jove, or it
may be a native warrior throwing a bundle of javelins or darts. The monogram (No. 5) resembles the last without the hook, (nuless the hook below, as I at first supposed, forms a part of it); one half of the inscription consists of the same letters as appear on the coin of Appollodotvs : it must therefore be the native title equivalent to Baridcous $\sigma=0$ npos.
This coin was purchased of a shroff in the bazar at Subathú.
In favor of these two coins I may venture to repeat the remarks of Professor Schlegrl, on the equally valuable pair discovered by Col. Tod.-" These two medals are beyond all price, as much for their admirable preservation as for their extreme rarity and their importance to history." And I shall make no apology for also translating the Professor's learned commentary on that part of the Bactrian history connected with them, at length, as much more satisfactory than a partial gleaning or plagiarism of his remarks, which so well exemplify the use of numismatology in correcting the vagaries of historians.
"In the profound obscurity which envelopes the history of Bactria, we must cull with care all that can throw the least light upon it.
" We find only two passages in ancient authors which mention ling Apolcodotus. Arrian, the reputed writer of the Periplus, says, 'A \AA ' of μ ' $\chi p \mathrm{p}$ vôv iv Bapurdjoss

 even now ancient drachme are current at Barygaza [Brigu-gacha or Baroach], bearing, in Greek characters, the stamp of the kings who reigned after Alexanden, Apollodotus and Menander."

The two coins now brought to light, agree better with this passage from Arainn than those of Col. Tod, on account of their exact similarity, which would allow them naturally to be conpled together in speaking of them.
"The other passage concerning A pollodotvs is from the summary of the history of Trogus Pompeius, which is placed at the head of the abridgment of Justin. Prolog. Ixxi.
"Deinde, qwo rege pugnante, Scythice gentes, Sarance et Asiani Bactra occupevere et Sogdianos. Indica quoque res addita, gesta per Apollodotum et Menandrum reges eorum."
"The printed editions have Apollodorum, which was corrected by the learned andjudicions Baysr, on the authority of the Periplus. This reading is now fully confirmed by a medal (two), an authentic and public monument. Vaillant and Longorreis suspected a corruption of the text, and sought to correct it in another way. They thought that the name of Apollodotos, the historian of the Parthian and Bactrian kings, had been confounded with that of a king, and Longuerue proposed to read ex Apollodoro, gesta per Menandrum et Eucratidam, reges cormm. This is not correcting but disfiguring arbitrarily an ancient text; and yet the latest editor of Justin in Prance, M. Lexaire, recommends this unwarrantable conjecture!
"Bayer, however, while he reinstates Apollodotys, dispates his title to the kingdom of Bactria, which Col. Tod again vindicates with reason. Bayee wowl make him one of those Greek kings who, at that epoch, reigned separatcly over a part of India, such as Demetrios, son of Eutiypemos. This is in the frat place contrary to the text of Troges Pompitits : for the word eormm applies to Bactra et Sogdianos. The coin confirms this refutation, for by what motive should a Greek king, not having possession of Bactria, put a legend in Bactriaa characters on the reverse of his coin? I call them so, without prejudice to the question of the language to which they may belong. Certainly they are not Sanskrit : they have a strong resemblance to those on the early Sassanian medala. The credit of decyphering them is reserved for scholars acquainted with Zend and Pehlevi.
"To escape from this objection, we must suppose that Apollodorvs reigned in the eastern provinces of the ancient Persian empire, south of Bactria. The medal of Demetrios, son of Eothydemus, discovered by the Baron Meyendorf, bears a Greek legend Baai入focs $\Delta \eta \mu \eta_{i} \rho i o v$; the empire of India is designated by the skin of an elephant's head with which the portrait of the prince is adorned.
"Apollodotus therefore must be admitted among the kings of Bactria. The celebrated Visconti has endeavoured to assign his probable place in Bayer's Chronological Canon of Six Kings, the dates of which are however mostly conjectural : be places him after Euthydemus" (see p.315), "and both the authorities quoted above agree in placing him before Menander. Now Menander certainly reigned between Euthydimus and Eucratidas,; but Visconti will not allow the latter to follow Menander directly : he makes a place between their reigns for Heliocleg, whose name is only known from one medal bearing the inscription 及aciatws 'H $\lambda c o \kappa \lambda$ éous 8 ikalov, and pronounced by Mionnet to be of Bactrian fabric, merely from analogy to other coins of the same locality-an argument by no means conclusive. When a coin of Heliocles shall be discovered in India or Tartary, we mey grant his title to the Bactrian throne."
"It is difficult to assign the exact limits of the Indian dominions of the Bactrina monarchs, or of their contemporaries, who reigned in India itself. The ancieats use the word India vaguely, and sometimes make it comprise the Persian provinces north-west of the Indus. The conquests of the Bactrians may have been made in two directions :-one, towards the east by the Panjab, and onwards; the other, by following the course of the Indus. The expedition of Seleucus Nicator wis directed towards the Ganges; by his treaty with Chandragupta, king of the Prasii (people of the East), he gave up some provinces, and received a nomber of elephants in exchange. It is probable that the first kings of Bactria, on declaring themselves independent, took possession of what remained of Alexandiri's conquests in the Panjab." [Dr. Swiney's coins confirm their domination there, as fur as the presence of medals can do so.] "At any rate, the third king, Eurarybirus, in his treaty with Anpioches the Great, by which treaty his independence we acknowledged, gave up all his elephants. This proves two points: firct, thet Eutaydenus had provinces, or at least subjects in India proper; second, that his rule was not extensive, for the elephants were few in number; added to those givea by Sophagasends to Antiocius, they made but 150, whereas Seleucus received 400 from Chandraqupta.
"Antiochus' expedition was brilliant, but it procured him little solid advantage beyond the acquinition of these war elephants. After his compaign againet Evrinys-
mus and Sopliagasinus he repamed the Indus, and returned by way of Arachosia and Carmania to the western seat of his empire." [Was it after this expedition that he struck the coin represented in fig. 2, depicting the stern of a boat of the river Indus ?]
" Eutaydimus may have profited by the distance of Antrochus, and the decline of his atrength, to deprive him of the provinces situated along the Lower Indus. It is certain that Demerpios reigned there, I think, first as governor in the name of his fatber;-afterwardsas an independent king. Demetrivs did not succeed EutayDEwUs in Bactria : his absence perhaps allowed his competitor to supplant bim. If Demetnids had not been in possession at the death of his father, with what force could he have conquered these vast provinces, when the army of Bactria was at the command of a rival? It is he, no doubt, who founded the city of Demetrias in Arachosia, the name of which is preserved in the geographical work of Isidorus. Thence his dominions extended to the Delta of the Indus.

- Troens-Ponficius ascribes exploits in India to Apollodotus and Menander; Strabo also to the latter. Their conquests then must have been towards the Panjab, since they would have come into contact with Demetrius on the south; and there is no mention of war between the Bactrians and this king of India until the end of the reign of Ejciatidas. Strabo says expressly that Menandie

" This authorises our extending his kingdom to Mathura or even Baitasor, (where Col. ToD's coin was found.) The probability is, that it included the kingdom of Lahore ; for since Strabo says that Menander was the first to penetrate so far, his predecessor's rule of course must have been more limited."

Pletarch bears teatimony to the excellent character of Menandiz as a sovereign ;-" a a certain king, Mznandiz, who had reigned with justice over the Bactrians, having died in camp, the cities in common had the care of his funeral rites, but afterwards contended for his ashes; they at last divided his remains equally amongst them, and agreed that monaments to him should be raised amongst them all*." May not this singular passage have had its origin in a confused account of the monuments raised by the Buddhists to preserve the relics of their lawgiver, of which one at Manikyala seems to have been founded immediately after the Bactrian monarchy was upset, and while the communication of those countries with the west was still perhaps maintainedt? But to return to M. Schleari's epitome :-
"We know nothing of Hzliocles, if indeed he ever reigaed in Bectria. Bat as Evcmatidas whe the first to assume the distinction of grout king, it is natural to cappose that he aggrandized the empire. He may have conquered 1 driana, which Sxamo senys belonged to Bactria.
" For the war between Eucratidas and Demetrios, king of India, we are reduced to the unsatisfactory notice of Jusinus, according to whom Demeraives was the aggressor. Ejcratidas, at first besieged, and in great danger, saved himself by his valour, and finished by despoiling his adversary. In his retreat,

[^81]after terminating this war, he was assassinated by his son. Bayse thinks chat this Demetrivs is the same who in his youth negociated the peace for his father Eúthydemus with Antiochus. However, the great age to which he must have attained is a staggering objection. One may reconcile probabilities by supposing that a son of the same name had succeeded to Demetrius's throne.
"The existence of the parricide of Eucratidas is well established; but his name is unknown, and it is uncertain whether he enjoyed the fruits of his crime. King Eucratidas II. therefore, in Baybr's catalogue, restz only on a double conjectiare-
"Thus end the Bactrian kings hitherto known. The latter history of the dynanty is enveloped in darkness yet thicker than the rest. Justin attributes its destruction to the Parthians; the author of the summary of Trogus-Pompiius to the Scythians; both quoting the same authority. It appears then that both these nations took part in it, but that the Scythians remained in possession.
" In a fragment of Diodorus, or rather in an extract by Protios,it is said, that one of the Arsacida (no doubt the Sixth, Mifhridates I.) penetrated as far as India and seized the kingdom of Porus, i. e. of the country between the Hydaspes and the Acesines. Bayer says with reason that the Greeks, wherever they allude to India, imagine a Porus;-but in this case the historian seems justified, for we that the Bactrians possessed not only that province but even beyond it. By Bayer's calculation, Miteridatrs I., king of Parthia,must have survived Eucratidas by seven years, but these dates are purely conjectural. At any rate, it is after Evcratidas' death that these conquests must have been made : the war between him and Drmbtrius would not have taken place had the Parthians occupied the intervening provinces. Eucratidas was assassinated when in the height of his power :-it is then after his death that the decline of the empire commenced. M. Degurerses, from the Chinese historinns, fixes the epoch of its destruction in the year 125, B. C. The king or kings who may have reigned in the interim are yet unknown-perhape they may be brought to light by Col. Tod's discoveries."

The above condensed and critical sketch of the latter Bactrian kings contains all that is known of them, and leaves us to fill up blanks only as fresh matter may be elicited through the labours of the antiquarian in this fruitful field. M. Schlegel felt pride in adding two cognomens to his two kings : Dr. Swiner's coins have already increased their majesties' titles; giving to Menander the common appellation " saviour;" and to his predecessor, in addition to the same title, the respectable appellation of Philopator, " loving son." This latter title is of more consequence than might at first be suspected, for unless his father were of kingly dignity, he would not have been mentioned : and it is more than probable that his son succeeded him peaceably. But we have no knowledge who the father was, since Demetrius is the only recorded son of Euthydemus. We may suppose him to be sure a bro-ther-perhaps a younger one,-a favorite—" a gift of the gods," as his name implies; and this might account for the deputation of the rightful heir to a distant province : but it is wrang to hazard conjectures upon points of such remote diplomacy !

Figs. 6 and 7.-Two square copper coins resembling in form fig. 7 of plate VII. weight 102 and 121 grs.
Obverse. A figure, apparently female, holding a cornucopia on the left arm : the other indistinct ; legend in parallel lines, and evidently Greek, but only partially legible: the word ba zineoz commences both of them.
Reverse. The Indian Bull with its hump, encircled with the unknown character. Below, in both coins, the letter sigma, \mathbf{z}, or a symbol of that form.
One of these coins was found at Machoarra, a small town near the Satlej river, between Ludiaina and Rúpar ; the other in the bazar at Bussy, on the road from thence to Simla. Dr. Swingy considers them to be not only similar, bat of the same die. It is not possible to do more than ascribe them to the Bactrian dynasty generally.
Fig. 8.-This small copper coin, from the neighbourhood of Seharanpúr, is classed among the Bactrian coins by Dr. Swiney, from the similarity of its monogram to that of fig. 4. The legend also appears Greek : the obverse has a warrior with a bow? and the reverse a lion, panther, or singh, which connects it with one class of the Hindu coins.
Figg. 9, 10.-I have introduced these two of Doctor Swingr's Bac-trian-horsemen, or Eucratidss,' coin*, becanse the head is in better preservation than usual, and a letter or two more of the legend can be added to the scanty list hitherto elicited; thus on fig. 9, we have ERTHP META .. and on the other mera baclaerc, " the great king,"' quasi Mahí Raja. As far as the specimens hitherto discovered can prove it, the no, minative seems to be used in all the coins of this type, instead of the genitive, as usual on Greek medals: the terminations are also corrapted; all which circumstances tend to pronounce these coins to belong to the last princes of the race, as conjectured in asoribing them to Eucratidrs.
Fig. 14, is a small coin supposed to have Greek characters, but undecypherable.
Figs. 16, 17, 18, are drawings of three small copper coins procured by Lieut. Burnss at Manikyála, which differ in some particulars from those already made public, and are on that account, rather than as leading to any fresh observation, now inserted. Fig. 16, belongs, from the side figure of the female, stooping, and the monogram or symbol, to the Ka-

* See Plate VII. and page 314.
niska group. Fig. 18, a man sitting dressed in the Brahmanical dhoti, acceords so far with No. 1 of Mr. Wueon's plate, a gold ooin dug out of the tope at Manikyala by Ger neral Vintura. Fig. 17, is of a novel type, bat the coin was in too imperfect a state to permit an accurate development of the figures.

Hindx Coins.

From the coins of Bactria a transition is easily traced through the dark period of the Indo-Scythian or Buddhist dyaasty, to which numerous coins have been allotted upon such degree of internal evidence as their appearance affords, to the coins of the Hindu Princes of Central India, Andhra, Rajputana, Kanowj, Indraprostha, and perhaps Mayadke or Behar. I have on a former occasion ventured to doubt* whether any native coin, properly so called, had circulation in India anterior to the incursion of Alexander. In none of the ancient books of the Hindus is mention made of coined money. The word swernat or gold, whick occurs frequently in the Puranas, is supposed to mean a lamp of gold of a fixed weight, such as is still current in Ava or China. Mr. H. T. Conesmoors atatesg on the authority of Menv and other anthors, that the suverna (carsha, arsha, or tolaca) was equal to 16 mashas. If the masha was as now about 17.4 grains only, this would certaindy make the suverna\|l small enough to admit of a doubt whether it did not bear some stamp: on the other hand, small lumps of gold called phatang, of a smaller weight and value, and without stamp, are still brought from the hills, and passed as cash in the parchase of goods in the plains. Again, the great analogy which is observed between the earliest Indian coins introduced to our notice by modern research, and those of the Macedonian colonists, is a very strong argument in favor of the supposition that the art of die-cutting was introduced at that period ; and the employment of Greek workmen may reasonably account for the continuance of Greek legends where otherwise they would have been little expected. A further direct and incontestable proof of their connection is derived from the similarity of the

[^82]monogiams or symbols risible upon most of them. I have inserted at the foot of the present plate such of these as ocear in the coins before ns. Most of them may be found on the Greek civic coins of the Hunterian cabinet at Glasgow; those apon the genuine Greek coins are evidently cyphers or compounds of Greek letters ; either numerals marking the date, or initials of persons connected with the mint.
Monogram 1 appears upona coin of Demertaius of Syria (plate r.), and may be compounded of a T, symbolical of Antioch, the place of coinage: it is No. 67 of Coxss's Hunterian Catalogue. Non. 2, on Alexandir's coin, (53 of Combe,) may be A, and may stand for one of the namerons cities of this monarch's name. The third, (plate vii, fig. 1,) is evidently formed of the Greek letters P E, being perhaps the date (105 of the Syrian zera, or 206 B. C.)*, sabjoined by A, betokening the locality. The next four ($4,5,6,7$) occur in the coins of Apollodotes and Mernmper (86, 216, and 326. of Combz). Colonel Tod supposes the latter two and fig. 9 to be formed of numeral letters, but the combination of units is pronounced to be inadmissible. 8 and 9 ap. pear on the coin of the last Bactrian monarch, "the great king." They are not found in Combs : bat the latter may be a combination of the letters $\mathbf{O}, \mathrm{T}, \mathrm{H}$ and E . 10, 11, and 12, having four prongs and the ring below cat open, belong to the sapposed Kaniska coin, and all the coins of the raja and bull, and raja and elephant type. These can no longer be interpreted as letters, though evidently imitated from the foregoing. Mon. 13 occurs in one of Colonel ToD's coins of the same class, with the running figure (13 of 3rd series), but it may probably be an imperfect impression of the foregoing symbol. From monogram 12 to the lozenge form of 14 is but a slight transition, and thas we pass to a wholly different class of coins, ascribed by Col. Tos to the Pandx dynasty; because the inscriptions are in the same character which is found wherever the Pandx authority existed;-in the caves, and on the rocks of Junagur, Girnar, on the pillar of victory in Meywair, and on the columns of Indra-prestha (Delhi) and Prayag (Allahabad).

These coins are decidedly the most ancient of Hindu type which are known, and yet being of pure gold they are generally in a perfect state of preservation, and the characters, though unknown, are very clearly defined; many of them resemble the Tibetan form of Sanskrit. Most of them may be recognized in the inecriptions (or descriptive titles) over the sculptures at Mahäbílipuram, described by Mr. Goldinarax

[^83]in the As. Res. V. page 79 : and as these aculptares are said by tradition to represent the personages and acts of the Mahábharat, the value of some of the letters may perhaps be hereafter recovered. In point of age the coins can only belong to the Mawrya, the Sunga, the Kamoa or the Andhra dynasties of Mr. Wilson's catalogue (315 B. C. to 428 A. D.)

Fig. 15 is copied from a gold coin, presented to me by Captain Wade, who discovered it near Ferozpar : it agrees precise ly with figs. 5 and 7, of Mr. Wilson's plate; the former of which, stated to be taken from a drawing of a coin in Col. MacKinzir's collection, seems to have been reversed by the artist, to assist the engraver, and inadvertently retained in that position. Every letter of the legend is identical in the three coins.
Fig. 13 is from the sealing-wax impression of a coin, belonging to Dr. Swingy : it corresponds precisely with No. 6 of Mr. Wilson's plate, having the tirsul or trident of Siva in lieu of the bird of Visanu.
These two coins are of the description just alluded to. They have been found at Agra, Mathura, Ujayin, Ajmir, and even in Bengal. Mr. Wilson possesses oue found in a tank in the Hugli district. The mixture of emblems on these coins might almost persuade one that they were forgeries, but that no two have hitherto been seen identically the same, and it would be manifestly impossible to forge a new die for each, especially when their price is little beyond the value of the metal. The female on the reverse sometimes sits on a well formed chair or settee, sometimes in the Indian fashion on a lotus flower, at others like Duras on a lion*; she holds a cornucopia in the left hand, in the right a scarf or ribband : a glory encircles her head; her left knee is bare.

The obverse represents a king clad in a coat of mail, and with scale armour on the legs; where the coin is worn, (as in fig. 15,) the dress exactly resembles the modern coat and trowsers. The head dress in fig. 13 has a resemblance to the Sassanian or Persian cap. The left hand is invariably raised, as if holding a spear : the right is extended as if placing an offering on a small fire altar. This hand is more clearly defined in fig. 15, than in any coin of the class I have seen; and it may be questioned, whether the action is not rather that of plucking a flower, for an artist would hardly represent the hand in so hot a position, were the object beneath a fire altar !

[^84]: As another anomaly in these coins, it may be remarked that the letters on the left of the prince, in fig. 15, are identical with the Tibetan triliteral compound $\boldsymbol{y}_{2} s p y$, pronounced as $c h$ or $s h$, with the inherent short vowel a, spya or sha; this combination forms no word in the Tid betan language, but with the vowel sign i (shz) it would signify " ge-
 roy, or governor general.

Now the Tibetan alphabet, according to Mr. Csoma Köröshy, was only formed as a modification from the Sanskrit model in the seventh century of our æra, up to which period it were difficult to conceive that the characteristic monogram of Bactria should have been preserved. The two first letters of the side inscription also resemble the Tibetan या $p d$, or if the antecedent dot be an $r, p r a$.

On the right hand, in fig. 15, is a standard resembling in some sort a Roman eagle; it is probably the' Garura, or bird of Vishne, and if so, is a proof of the connection of this coin with the ascendancy of the Vaishnava sects.

Of this peculiar class of coin, the plates in the Asiatic Researches afford numerous varieties. I now pass to another type, more recent perhaps by several centuries, but more rare than the preceding. The legends are here decidedly in the Devanágari character; yet the devices still bear a near analogy to their Grecian prototypes : the horseman, the bull, the lion, the seated figure, are revived with variations of dress and attitude, but it seems to have been contrary to the feelings or taste of the country to represent the human face, or perhaps the artists found themselves unequal to the task. Mythological subjects were better suited to the Hindus. The bull of Siva, the Singh of Duras, the Garura of Vishnu ; Gunksi, Hanuman, and similar devices, predominated until the latest period in the coins of Southern India and Ceylon*; or until the progress of Mahomedan conquest interdicted the privilege of coinage to the tributary Hindu princes.

From the desultory mode in which materials are collected formy plates, and from a wish to avoid delineating any that have already appeared in print, it is impossible for me to give a connected train of Hindu coins, and the student must refer to the plates in the As. Res. vol. xvii, for more ample information. The medley of types once collected and preserved however may eventually afford the means of a proper classification, although it cannot be attempted in the present state of our scanty knowledge.

[^85]Fig. 11 isan unique coin in Doctor Swrmit's possessiens. I have a sealing-wax impresion, from the shimppeess of which I con. . $:$ elade the original to be of gold.
Obversx: A horseman mounted and holding a. spear with the right hand: the horse is ornamented with trappings in the macive style. A curious scroll or symbol appears in front.
Reverse. Siva's bull kneeling in the attitude of the images of Nardi in the pomples. He is also oldthed in ormamental trappings. Abpye are characters, which seem to form the worde恧 षमम्ट्रें Sri Samagri deva in ancient Nagari; the written \downarrow is met with in one of the inscriptions decyphered by Wilyond, As. Res. IX. 104. No such marae as Samengri deva occurs in the catalogues of Hipdu dynasties of Central India or Magadha, but the import of the worde may perhaps be understood as an honorific appellation, षमक significs " whole, entire." Were it possible that the fourth letter were an old form of we might ascribe the coin to Samanta deve, the first of the Ajmir princes, who reigned, apcording to Wilson, in A. D. 500. But such a conjecture is not warrantable. Wilpord says, the titlea Sri and Deva were apamed by the descendants of Carna, as "Sm Carna Data*", sio We may therefore ascribe this coin to the Andiox-jatipe or Andhra-bhritya dynasty, some time anterior to the Muhammedan invasion.
Fig. 12.-Two coppar coins of this die were broaght by Doctor J. M. Bramusy, from Nipal, in a colleotion of the coise of that country; and I have inserted a drawing of them here. both as a fair pledge that other ancient Hindu coins are fortbcoming in that hitherto anexplored region, and a a furnishing some very legible characters in a clase of coin of frequent occorrence, both in gold and copper. The lion or Singha on the reverse agrees with fig. 8: and with figat 12 of plate vii. The sitting female figure on the obverse tey be identified with figs. $1,11,12,13,14,16,17$, and 40 of Wilson, and with the fourth series of TOD; the characters are however of a different class, the ब for instance, like that of fig. 14, in the last plate, more resembles the peprice form β^{3}, and is found on ancient grants and inseriy iny tween the 5 th and the 12th centaries. The nafint character is noticed by Col. Tod, as predominating in -inl the inscriptions of the Mauri Princes of Chitore from (S. 465 to S. 1191) A. D. 409 to 1135.

- As. Res. IX. page 104.

Digitized by Google
Pive BACTRIAN COINS.

$$
{ }^{5} E_{5} 88
$$

${ }_{\text {Diguraco } y \text { y }}$ Google

IV．－Note on the Zoology of the 2nd Part of the Transactions of the Physical Class of the Asiatic Society of Bengal．

In India，as in almost every other country of the civilized world， natural history，and more especially that part termed Zoology，has been of late years making rapid progress．And surely there is no coun－ try better situated than Bengal for becoming celebrated for the number and extent of its collections，and the rareness of the specimens which may compose them．For，fertile as may be the regions of South America in the productions of animated uature，that field has been repeatedly traversed by the most celebrated men of science in modern 1 ：mes ；and，many well qualified and observant men，have，at different periods，favoured the world with their researches，made during a long residence on that continent．But India has not till now been viewed， by Englishmen，as the rich mine of the treasares of science it really is ；and though foreign nations have sent out able naturalists to travel through the country，and to stretch forth their hands to all they could seize in their line of march；get，the very nature of a travelling zoologist＇s occupation is such，as to prevent him from snatching at more than a few of the gems on the surface of things．He may collect and preserve；he may take home and classify ：but much is set down in haste，much is forgotten；and he cannot become the observer of natare and all her secrets：while the manners，the habits，and the various interesting points of character，only to be developed by a loug and intimate acquaintance with the animals he meets，must be to him unknown．These can only be known through the labours of men，not better qualified，but more favourably situated for the matured studies of zoology than himself．

Sensible of this hiatus in the labours of travelling naturalists，lovers of natural history have established menageries and aviaries at home ： to make up，so far as close intercommunion with animals in confine－ ment can make up，for the deficiency of knowlege，felt after all had been gleaned from books and collections．But natural history must be pursued through tracks different from those of the casual observer of wild animals in foreign countries；or，of the closet naturalist，who views them in a state of degradation，with broken spirits and ruined health，the sure concomitants of slavery in the brute as in man．A true naturalist must go forth into the wilderness．He must follow the objects of his much－loved science into the depths of the forest，to their native haunts，with the intent to observe rather than to destroy：and there，undistracted by other thoughts，and elevated by the magnifi－ cent scenery around him，he beholds their caressen，or their cruelties；
their force or their stratagem ; and feels that nature is now unfettered; that they, like himself, are free.

How different is the state of mind of the man so situated, from that of him who only looks through the bars of a dungeon upon the miserable animals confined within. One views nature with the eye of a classifier alone, anxious to find out some petty point of distinction, some little difference upon which to found a genus; the other with the enthusiasm of a lover. One strives to bend her to his system : the other would embrace her own; nature to him is all in all, and system but valued as an interpreter of nature.

Systems, menageries, collections, however, have their value, and that value is great. To the naturalist of nature they serve, in afterdays, to recal vividly to his mind recollections of the past. To others they offer a portion of science, that otherwise they could not attain.

Mr. Hodason, author of six of the sixteen papers in this second part of the lst volume of the Transactions of the Physical Class of the Asiatic Society, unites the advantages of the travelling and sedentary naturalist. Fixed upon the most stupenduous mountains of the world, and in a situation of political power that rarely falls to the lot of the friends of science, he has opportunities of doing great things for that branch to which he has devoted himself. Much may fairly be expected from him ; and to do him justice he certainly is not inclined to be idle.
The first of Mr. Hodason's papers belong to Ornithology ; the portion of zoological science, perhaps of all most generally attractive. The system he follows is that laid down in the lst volume of the Zoological Journal, (a work no naturalist should be without) by Mr. Vigors, Secretary to the Zoological Society; and which, though perkaps the best devised by English naturalists, is replete with the faults of the MacLeay school. The generic divisions are sometimes founded upon doubtful or minute characters, and there is occasionally a good deal of squeezing to make them fit. Whilst, above all, there is observable in this school an affectation of perfection; a presumption of knowledge; which with the limited acquaintance with nature man must ever be confined to, appears totally unjustifiable to every one, not seduced by the language in which its views are detailed; or willing to surrender his judgment to such great names as those of MacLear, Vigors, and Horspisld. It is however the less necessary to dwell upon this, as the circomstance has not escaped the notice and the censure of some late continental writers : by whom the system has not been eatimated so highly as was contemplated by its patrons and founders.

The first bird Mr. Hodason describes under the name of Aquila - Nipalensis ; and he has noticed the deviation from the type of the genus Aquila, in the lunated form of the nostrils. There is also another point of deviation in the length of the wings, which he describes as wanting three inches, or nearly one fourth of the length of the tail. In the trae eagles the wings are equal in length to the tail, "leurs ailes sont aussi longues que la queue," says Cuvirs ; and it is therefore not improbable that this may be one of those species which form the inosculating links between differing genera. Whether or not the species be a new one, can only be decided on the authority of Mr. Hodason; for he has omitted to state the changes which take place in its plumage, during its passage from the young to the adult state; or the probable age of his specimen. And without these points being ascertained, the moet experienced ornithologist may be mistaken in birds of this tribe.
The Circetus Nipalensis is rightly referred to that genus. It is not probable that Shaw has erred in placing the Falco Bacha in the genus Cymindis ; distingaished as that genus is from all others of the eagle kind, by the remarkable characters of its bill. However the Falco Bacha is said to have been found in India and Java, and Mr. Hodgson's description of his bird agrees with it in several respects : nor is it unlikely that an African species should also extend to India, But then the difficulty still remains as to its being placed by Shaw in the genus Cymindis; with the generic characters of which, Mr. Hodoeon justly says, it does not at all agree.

Our author, like all others who have gone before him, seems to be a good deal puzzled with the family of Laniade or Laniida, as it is termed in his paper. The genus Dicrurus was instituted by M. Vieillot on account of the forked tail of the species known to him. But the danger of giving a generic name on so trivial a distinction, soon became manifested, by the discovery of other species whose tail is not forked. This, among other things, has contributed its portion to throw the family into confusion. And Mr. Hodgson, or any other naturalist, would do a signal service to the cause of natural history by making a complete monograph of the whole Laniada: and (the measure is a strong but necessary one) fixing the old names or new-naming every species.

The other bird mentioned, "which bears a strong general but not particular resemblance" to the former, appears to be the same species as one sent to the Asiatic Society from Midnapar by Assistant Surgeon J. T. Pearbon, in February 1830, and which he also referred to the genus Dicrurus. "I am of opinion," says Mr. Prarbon in a note
accompanying some specimens presented to the Society, " that it may be referred to the genus Dicrurus, near to the Muscicapide; and thin not only from the form of the head and bill; but on a carefal examination of the feathers at the back of the neck, a few long ones may be found, more like hairs than feathers, with a small plume at the tip." Mr. Hodason has forgotten to mention these setaceous feathers; but they may readily be found in the situation indicated by Mr. Prabson.

After all, however, the bird in question, the slate-coloured shrike, seems to be an intermediate species, between Dicrurus and Tricophorus; the strong dentated bill, and short medial setaceous feathers connecting it with the former, and the wedge-shaped, or rounded tail, with the latter genus. It may be observed that Mr. Pearson is inclined to think the species a migratory one at Midnapár.

In his paper on this subject of migration* Mr. Hodason remarks:
"I am led to conclude from what I have observed here, that the mass of the Grallatores and swimmers are found in the plains of India, only during the cold months, for they all arrive in the valley of Nipal from the north, towards and at the close of the rains; and all as regularly reappear from the south, upon, or moon after the accession of the hot weather."

Further on, he says,
"It will be noticed that the Grallatores which visit us or pass over us, are moch more numerous than the Natatores; and, unless I am mistaken, observation is the plains of India would satisfactorily prove that this is a just and decisive indication of the superior prevalence of wading over swimming birds in that extensive region. India, I fancy, is too hot for the taste of the Natatores, a great majority of which seem to affect Arctic regions, or at least, high lntitudes: I throw out the remark for canvas and inquiry,"

This observation is agreeable to what we learn of the manners of these birds in high northern latitudes : and the hint should be taken by some cis-Himálayan naturalist, who will find the inquiry suggested, an interesting and not very laborious one. The wild swan was once seen in Nipal.

The next Zoological paper, the 8th of the part, is on the wild goat and wild sheep of Nipál. And here again Mr. Hodason is puzzled by what has puzzled all naturalists, who have studied these groups of the Ruminantia, from Aristotle to Hamilton Smite; -the line of soparation between the goats and the sheep. Now to a common man no doubt the matter appears easy enough : he knows a goat from a sheep and vice versd any day;-but the line of separation, in spite of all this, is so narrow that the ancients considered the latter a hybrid

[^86]production of the former; and even at this day atories of a mixed prolific breed being common in Russia and America are rather disbelieved to be true than proved to be false, though reason and analogy alike condemn a theory so little supported by what we see, and so contrary to the common received opinions of modern science. Indeed, were it proved that such a breed is in existence, the fact would go mach farther than to overthrow a mere generic distinction. It would shew that the established notion of specific differences depending upon the test of an unprolific offspring, is incorrect ; and, that, instead of there being two genera of goats and sheep, there is in fact bat one species of the whole. Mr. Hodason of course leaves the matter where he found it.

Some uncertainty prevails as to the goat Mr. Hodason describes being identical or not with one noticed by M. Duvaucrl. The notice appears to have been sent to Paris, and it is appended by the Secretary to the Society to the present article, taken however from the original manuscript. M. Duvaucel's specimen, also, was a young one, and as he has not given it a name, nor yet appended the native one, it is imposaible to ascertain whether or not his and Mr. Hodas sos's Capra Jharal are the same. At all events Mr. Hodason does not seem to have known of M. Duvaucsl's paper, and the credit of first bringing this animal to notice properly belongs to him*.
Of the sheep, the Ovis Nayaur, Mr. Hodason has reen only the femate in the adult state, and the young of the male, and he is consequently uncertain whether it is a new species. But in a note appended to the 9th article the author says :-
" From much conversation that I had with the Bhotea who brought me the skin of the young male Nayaur, I now incline to believe that I was mistaken in supposing there are two species of wild sheep in these regions. The Bharal of one dialect is probably the Nayaur of another, and the Himalayan wild sheep most likely only a rariety of that widely-difused species Ovis Argali ; though I must confess I cannot reconcile Linnaus or Siaw's descriptions of the horns of the Nayaur."

The Ratwa deer of Mr. Hodason, perhaps the Cervus Muntjak of Pennant, forms the sabject of the 9th article. There is little doubt of this animal being really the Cervus Muntjak, the Kijang, or at least a variety of that species. Though Mr. Hodgson attaching more importance to colour than it deserves, thinks, that as

[^87]"In one of Burpos's Supplements it seems the Cervw Mruntjak is deacribed as of a greyish brown colour : if this be just, Derous Muatiak will consticute probebly a diatinct species from Rdtwa; and I cannot help thinking that, in such cese, the two ought to be sectionally at least separated from Cervus."

The meaning of its being sectionally separated is not very obvious If he means, as is probable, that the Muntjak and its kind are generical ly different from the genus Cervus, he is quite correet, and he will fiad on reference to Cuvame that this separation has been already made. The new genus contains five species, natives of Jara, the Phillipinea, Malacca, Nepál, and several other countries.

But, to return to the author, it is certain that differences of shades of colour can hardly be a sufficient warrant forinstituting a new speciea, though perhaps it may, by taking some latitude, a variety ; coloar in the whole ruminastia being liable to variation by many contingent circamstances, such as climate, season, age, sex, \&c. If, therefore, there is nothing to warrant the measure of separating Mr. Hobasom's Muntjak, from that of Pennant, but the circumatance of the one being fulvous and the other greyish brown, the specific separation cannot be allowed.

But the Cervus Muntjak, sent from Sumatra, is in every instance of a fulvous, or reddish brown, the colour it would appeear, of Mr. Howe son's specimens. The individual described in Burfon's supplemest was probably aged, if so the difference may readily be acconnted for by the knowledge of the fact, that ias old age comes on, the fulvous is gradually obliterated by the grey. The thickening of the pedestals of the horns at the top in the "form a rose," and the meaning of which Mr. Hodason "cannot divine," is also merely a sign of age.

Thus there is little doubt of the identity of the Muntjak of Pennant, Bupfon, Shaw, and Hodason : and there is reason to believe, this species extends in a continued range, from the eastern Islands to Ni pal, through the whole Indian continent. Two horns attached to the frontal bone are now in Calcutta, which correspond in every respect with the deacription of Mr. Hodgson and Sir T. S. Rarbles, and which were found at Jellasur, in the district of Midsapuir, province of Orissa ; and several fawns were brought into Midnaphis in the year 1831. They all died young, before the horns were developed; yet their general appearance and the form of the cranium left no doubt of their belonging to this genus.

Mr. Hodgson, however, if he has failed to establish a new species of Stylocerus (as the genus or subgenus is now called), bas cleared up one point, that relating to the two antlers or projections on the horns,
being an accident, or lusus aatura, of rare instead of, as was at one time sapposed, constant occurrence. A doubt has been thrown upon Pennant from this circumstance, which he does not deserve, and which our author will be glad to have satisfactorily overthrown.

Article XI. is an admirable description of the most splendid specimen of all the known species of horn bill, the Buceros Homrai of Hodesor. To this description nothing can be added, comprising as it does every minute point, in age, sex, and variety. Four, perhaps five, apecies of Buceros may now be considered as belonging to continental India, and Mr. Hodason seems to have eastablished the fact of their all being strictly frugivorous; and not partially carnivorous, as was erroneonsly supposed, from analogy with the Toucan. Indeed there is good reason to believe that this latter bird has been libelled; the cannibal propensities it has occasionally exhibited having been developed only in a state of confinement.

An anatomical notice is affixed to the description by Mr. Bramlery, a gentleman whose numerous professional avocations are to be regretted as preventing him from devoting zoological talent of no ordinary standard entirely to scientific pursuits. The peculiarity in structure of the cranium mentioned by Mr. Braklay is the want of motion between it and the bill. He might also have noticed another; in the internal cavity of the bill being almost filled with osseous reticulations, instead of, for the greater part, occupied with membranous cells, as is the case in most other species of this genus. Mr. Branney also notices the lax union of the dorsal vertebre, and in doing san touches upon the doctrine of compensation.
Of this doctrine it may be well to say a few words, especially as it seems to be daily gaining ground among certain speculative, but scien, tific men, of whom M. M. Chabribr and Audouin among the French, and MacLeay and Vigors among the English, are at present the acknowledged heads. Their great object is generalization, and the. natural fondness of mankind for conjecture, their means. Their doctrine may be atated in a few words.

All animals have a determinate number of parts, differing only in the degree of development; the development of one organ exerting an inverse influence upon another.
So much for the ingenious and convenient doctrine of compensation. But to return to Mr. Bramley, who in speaking of the bill of the Buceros Hemrai remarks:-
"The cusket (which in of large dimensions) has also its horny covering, though
somewhat different in atructure, that of the former being laminated and bearing a
dowe resemblance to proper horn, while that of the latter is much thinner, of a fibrous consistence, and nail-like in structure. The edges of the bills, of boch mandibles, for about two-thirds of their length from the point, are horny, bat the surface is so irregular and jagged that their appearance leaves no doubt that much of the natural structure has been broken off, by the nse which the bird makes of its bill. In consequence of this when the jaws are close, there is a considerable ncancy between the cutting edges throughout the whole central portion of the bill In some specimens in Mr. Hodgson's collection the fractures have taken pince at such regular intervala, as to give to those parts the appearance of natural indentstions.
"To entertain this supposition, however, would be erroneons, as there is evident reason to believe that in a bill which is perfect, the horn by which it is corered does not extend to its edges, but terminates just before it arrives at these, in a nabe etance not very unlike solid bone.
" The chief difference from the latter is, that it is exceedingly brittle in its natare though it is by no means deficient in compactness.
" That this substance borders the edges of both mandibles in their natural state, is confirmed by numerous portions which are here and there left in all the specimens I have examined. There is, also, a distinct line along the bills denoting the termination of the hora, into this hard structure, which in some individuals is of a red colour and in others a black."

Now this horny covering of the bill does not appear different from that of the casque, (or casket, as Dr. Branley terms it,) in any essential particular, the structure in both being of a laminated rather than of a fibrous nature, and the hard callous edging of the bill is common to all the genus. In the Homrai it is more manifest perhaps than in some other species, but it is still more developed in the Rhinoceros Hormbill. It resembles the enamel-like shelly substance, observable at the hinge in many genera of bivalve Mollusca, rather than bone, and appears to be a continuation and hardened folding of the internal lining of the bill, with which it comes off, or separates, on long maceration in water. On a careful examination of a bill in this state, it will be found to be not confined to the edges of the bill, but also to be met with, in a greater or less degree, at the gape, and along the central ridges inside the morth, both above and below.

The last zoological article in the volume is also by Mr. Hodeson, and entitled "A description of the wild dog of the Himálaya." The apecific character and name are as follown :-
"Canis Primevve (mihi) the Buanou of the Nipalese. Habitat, the whole of the sub-Himalayan ranges from the Sutlej on the west to the Brahmaputra oa the east.
"Sprcific Charactrz. Wild dog, with six molatr only in the lower jow, dothe coef, having soled foet, large eroct ears, and very bushy atraight tail, of malial \$ength, doep rusty colowr abowe, yollowish below.'"

Mr. Hodason's object in this paper is to bring to scientific notice a new variety of dog, and to prove that variety to be, as he terms it, the Cesxis primavus. Some of his characters, it will be seen in the above quotation, are generic instead of specific. And the circumstances of there being six molars in the lower jaw, and of the peculiarities of the arine and eyes, and in short the whole differences from the common dog pointed out by Mr. Hodason, surely so far from proving that the Buansw is the Canis primavus, the type of the canine race, go very much in favour of the theory which may be formed by " the querulous objector," who rejecting Mr. Hodason's speculations may bei nclined "to sabstitute his own; creating, if he pleases, a new subdivision of the Digitigrades, characterised by one tubercular tooth behind the great carnivorous tooth of the lower jaw."

Bat to enter fully into this subject would be to exceed the limits shat can be allowed to this paper; and the more unnecessary, that after all it would still remain as uncertain as at present. But whatever may be the result of Mr. Hodason's speculations, he has certainly given in the Buansu a new animal to zoology.

Something should be said apon the subject of the plates and the nomenclature. Of the former it may be remarked, that they are considerably better than the zoological ones of the last part (indeed they could not be worse, it may fairly be presumed), though they are much inferior to others in the present part. They are evidently fac-similes of the drawings made on the spot chiefly by native artists, and it would be hazardous to deviate from these even for the sake of pictorial improvement. It is matter of congratulation that Mr. Hodeson has not followed the system of nomenclature, to which it is to be feared too many men of real genius have lent their names, that of calling a production of nature after the sorname of an individual. It is a practice which must tend to the confusion of science; and which becomes ridiculous by the ill assorted union of a barbarous cognomen with a classical termination. One great reform of Linnæus was the substitution of a trivial name for a description, or titulus; but it was intended that that mame should be descriptive in itself, so that the mind might be gaided by the ear. True it is that in some instances even Linnsens forgot his own rules ; but the errors of great men should be a beacon to their less talented fellows, rather than an example or an excuse. A compliment of this kind may display an amiable, a grateful, or an admiring disposition, when paid to our friends, or to public benefactors ; but, this is not a subject in which they should be exhibited, for science is surely diverted from its proper channels when made to administer merely to private friendship, or to public applause.

Mr. Hodesore's plan, however, is not without objeotions, thosigh. infinitely saperior to that deprecated above. Native names are oftere applied to a large class of sometimes very different animals, and vary in every district : and a name derived from the habitat is objectionable where that habitat extends through a wide range. The Parre Chineas sis, or Sinensis, for it has been called by both names indiscriminately, has been found at Tamlúk; and the Buceros Gingianow is a native of Midrapúr.

By the above notice it will be seen that the zoological papers in this part are most creditable to Mr. Hodgson in every point of view; exhibiting as they do, his knowledge, research, and indastry, in the most favourable light : and it is to be hoped that his excmaple will be followed by the many men of talent which India can boast of, and whe have time at their disposal. Among those who have already dintinguished themselves in this way, may be mentioned Messis. Hopesom, Benson, Grant, Hutron*, and several anonymons contributors of articles in the "Gleaninge in Scibnce," and "Joumal or rese Asiatic Socirty." We may fairly anticipate that their exertions will be redoubled by the example set before them by Mr. Hopason; nay, we may surely in these times, and nnder a government, the head of whick is so justly celebrated for the anxiety he has ever evinced to promsote the cause of science, indulge a hope that officers, duly qualised for the purpose of investigating the productions of nature, will be seat upon missions, likely to afford facilities for the purpose, into renote or little frequented countries. Our expeditions, hitherto, have not beea remarkable for the scientific talent they have displayed, though the countriez of Java, Birma, Tibet, Siam, and Chira Punjf, aford the most valuable fossil remains of a former, and the most curious specimens of the living world. An amusing instance of the English-Indian method of pursuing scientific inquiries, is to be met with in the expedition sent by Major Burner to collect fossils on, the site of Dr. Canwrond's collections ; in which the exertions of that gentleman, remarkable as he is for his zeal in the cause, were frustrated by the fact of hin having nobody but an Apothecary at his disposal, who was so little conversant with the subject, that though " the ground was every where strewed with fragments of petrified bones and trees, he unfortunately fell in with nothing worthy of notice." "He seems," says the Pditor, " to have looked for skeletons in a more perfect state, and to hare imagined that such had been collected by Dr. Ganwrund, which is fir

[^88]from being the case.". It is really deplorable the manner in .which nataral hiotory has been neglected in India : and justly has it been remarked that we know more of the animals of Africa than of Bengal, a country that has been so long in our possession! France created her magnificent work on Egypt and its productions during a warlike occupancy of a few months: England after a peaceable possession of India of many times the number of years, has not, onder the patronage of her Government, done enough to fill a single volume. J. T. P.

V.-Note on the extraordinary Fall of the Barometer during the Gale of the 21 st May last.-By Jas. Prinsep, Sec. \&oc. HRRT.

In the meteorological register for May I noticed the great fall in the Barometer which took place previous to and during the severe gale that did so much damage at the mouth of the river Hooghly: I have since been favored with an extroct from the register of the barometer kejpt on board the H. C. Ship Dake of York, one of the numerous veseels wrecked or stranded along the Hijelee coast. This ship lay apparently in the line of greatest force of the gale, and the depression experienced in the barometer, confirmed as it is by the indications of a sympiesometer also on board, give us a terrible proof of the intensity of the storm : the fall in Calcutta was three-quarters of as inch $;$ at Saugor it appears by the following note, for the authenticity of which I can vouch, to have been upwards of two inches !
" My dear Sir,
" It is but now that I am able to forward you the particulars of the fall of the mercury during the late gale. They are as follow :-

"The times of the changes are copied from those set down almost inmediately afer the gale, of course from recollection. Some of the lower altitudes of the mercury, aleo, may be more or less incorrect, having been below the range of the index.
"The oil in the sympiesometer retired completely into the bulb when the merciary in the barometer disappeared, and rose again a little before it. "The mera

- We proceume this must have bean below 98.50 inchen-En.
cury in the barometer did not, after Tuesday night, or rather Wedneaday morning, act as it should have done, which was found to be owing to some wrater having got down upon the leather bag and lcosened it from the wood, and 80 having permitted the escape of the mercury."
W.T.D.

The severity of this hurricane fell on Kedgeree and Saugor. It was not felt at Balasore. Should simultaneous observations have been made at Midnapar, or elsewhere within its influence, they will prove useful in tracing its course.

I take this opportunity of recording the observations made during the storm of the 7th October, 1832, which were delayed at the time in expectation of receiving further information such as should enable me to map the progress of the storm, but in vain, as I was only favored with coincident observations at Ghazipúr, which place may be esteemed quite out of the influence of the phenomenon, although a slight fall of 0.110 inch is perceptible in the register. The first column in the table below is derived from the log of the ship London, Captain Wimule, which, it may be remembered, of all the ships then running up the Bay, experienced the effects of the gale in the severest manner, being dismasted and nearly destroyed. This gale however fell far short of the recent hurricane.

Range of the Barometer during the Gale of the 7th October, 1832

At Bankura (by the Met. Register published in the last No.) the fall of the berometer was 0.490 incher

> VI.-_Climate of Singapur.

The following abstract tables of the Thermometrical and Barometrical range for six years at Singapur were drawn up by Captain C. E. Davis from his own daily observations, and were presented to the Asistic Society in the year 1827. The barometer is not corrected to the freezing point, neither are the hours selected capable of shewing the diurnal oscillations of the pressure; but in all other respects the tables are very regular, and form a valuable addition to our meteorological information.

1822	Baremeter.									Thermometer.								
	Average of the Month.			Greatest Range.			Least Range.			Average of the Month.			Greatest Range.			Least Range.		
	$\begin{gathered} 6 \\ \text { A. B. } \end{gathered}$	Noon.	$\begin{array}{r} 6 \\ \text { P. M. } \end{array}$	$\begin{gathered} 6 \\ \text { A. } . \end{gathered}$	Noon.	$\begin{aligned} & 6 \\ & \text { P. } 1 . \end{aligned}$	$\stackrel{6}{\text { A. }} \text {. }$	Noon.	P. M.	$\begin{gathered} 6 \\ \text { A. m. } \end{gathered}$	Noor	$\text { P. } \begin{gathered} 6 \\ \text { P. } \end{gathered}$	$\left\|\begin{array}{c} 6 \\ \text { A. M. } \end{array}\right\|$	Noon.	$\begin{gathered} 6 \\ \text { P. M. } \end{gathered}$	$\begin{gathered} 6 \\ \text { A. } \\ \hline \end{gathered} .$	Noon.	$\left\lvert\, \begin{gathered} 6 \\ \text { P. } \end{gathered}\right.$
Jannary	29.94	29.97	29.92	29.99	30.00	29.99	2988	29.88	29.88	75.5	82.9	81.	77.	86.5	86.	73.	75.	74.
Februa	29.92	29.93	29.91	29.98	30.04	29.98	29.85	29.88	29.82	75.7	84.4	82.	77.	88.5	86.	73.	78.	78.
March	29.96	29.97	29.92	30.02	30.05	29.99	29.90	29.91	2987	76.	84.4	82.	77.	89.	85.	74.	77.	78.
April	29.93	29.96	29.90	30.00	30.04	29.96	29.88	29,91	24.84	76.4	85.	82.6	78.	87.	86.5	73.	81.	80.
May	29.89	29.91	29.85	29.99	30.03	29.94	2980	29.77	29.78	75.5	85.3	83.6	84.	88.5	87.	76.	80.	79.5
June	29,90	29.92	2989	29.97	29.99	29.95	29.80	29.77	2978	78.4	84.6	83.3	88.	88.	87.	84.	77.	74.5
July	29.91	29.92	29.88	29.97	29.99	29.96	29.86	29.88	29.81	77.8	86.6	81.2	83.	89.	87.	75.	76.	76.
Angu	29.91	29.93	29.88	29.99	29.99	29.94	4985	29.88	29.88	766	82.2	85.4	81.	87.	88.	72.	77.	79.
Sept	29,90	2992	22.87	29.98	29.99	29.95	29.84	29.87	29.81	769	84.4	84.	80.	88.	86.	75.	75.	79.
Octob	2990	29.93	29.91	29.95	29.98	2997	29.84	29.85	29.83	77.	84.9	82.9	80.	89.	86.	73.	80.	79.
Novemb	29.91	29.93	29.89	29.94	29.97	29.94	29.87	29.88	29.84	76.2	83.6	82.5	78.	88.	85.	74.	78.	77.
December	29.89	29.91	29.86	2998	29.99	29.92	29.83	29.85	29.80	761	80.6	79.3	78.	85.	84.	73.	73.	74.
Annual average,	29.91	29.93	29.89	29.98	30.00	29.96	2985	29.86	29.82	76.4	84.0	82.5	79.1	87.6	88.9	78.8	77.2	77.3
January,18	29.95	29.97	29.92	30.06	30.06	29.99	29.89	29.84	29.86	74.2	81.	79.2	76.	85.	83.	72.	76.	74
Febraary,	29.95	29.97	29.93	30.02	30.07	29.99	29.88	29.88	29.83	74.2	82.3	80.1	76.	86.	84.	78.	74.	76,
March	29.88	29.95	29.89	29.99	30.00	99.95	29.89	29.88	29.83	73.3	84.6	81.4	78.	87.	84.	74.	79.	78.
Apri	29.91	2991	29.85	29.95	29.96	29.90	29.85	29.87	29.84	76.1	84.8	82.3	78.	87.	85.	72.	79.	78.
May	29.87	29.90	29.86	29.91	29,95	29.91	29.84	29.86	29.81	77.3	83.8	82.6	79.	87.	86.	75.	81.	78.
June	27.88	29.90	29.87	2994	29.97	29.91	29.81	29.83	29.81	77.4	84.	83.1	82.	87.	86.	75.	78	81.
July,	29.89	29.90	29.84	29.90	29.05	29.91	29.83	29.88	29.80	76.7	84.8	83.9	81.	88.	86.	74.	79.	81.
Augu	29.90	29.91	29.88	29.94	29.96	29.91	29.85	2985	29.83	77.7	83.5	82.7	81.	87.	86.	75.	78.	77.
Septemb	29.91	29.94	29.88	29.96	29.97	29.92	29.87	29.89	29.84	77.3	84.9	83.8	81.	88.	86.	75.	76.	76.
October	29.92	29.93	29.90	29.99	89.99	29.93	29.88	2988	29.82	76.5	83.6	82.8	82.	86.	86.	74.	78.	79.
Novemb	29.91	29.93	29.90	29.96	29.98	29.98	29.85	29.88	29.85	76.7	82.3	80.6	78.	88.	88.	74.	77.	76.
Decembe	29.95	29.96	29.92	2999	30.03	29.98	29.89	24.90	29.85	76.5	83.6	81.3	76.	88.	86.	73.	81.	73.
Ampal average, .	29.91	29.93	29.88	29.97	29.99	29.94	29.87	29.87	29.83	75.91	83.7	82.1	59.	86.9	85.4	73.7	78.	77.6

- 1824.				Gre				R			$\begin{aligned} & \text { arage of } \\ & \text { Mont } \end{aligned}$						R	
	$\stackrel{6}{\text { A. M. }}$	Noon	$\stackrel{6}{\mathbf{P} .}$	$\begin{gathered} 6 \\ \text { A. M. } \end{gathered}$	Noon.	P. M.	A. м.	Noon.	P. M.	$\begin{gathered} \mathbf{6}^{\circ} \\ \text { A. M. } \end{gathered}$	Noon.	$\stackrel{6}{\mathbf{P} . \mathbf{m} .}$	$\begin{gathered} 6 \\ \text { A. M. } \end{gathered}$	Noon.	$\left\lvert\, \begin{gathered} 6 \\ \mathbf{P} . \\ \hline \end{gathered}\right.$	$\begin{gathered} \mathbf{6}^{\prime} \\ \text { A. } \\ \hline \end{gathered}$	Noon.	$\begin{gathered} 6 \\ \text { P. } \times 2 \end{gathered}$
	29.99	30.00	29.97	30.09	30.10	30.09	29.87	29.88	29.85	75.4	833	80.3	77.	88.			80	78.
	29.95	29.96	29.94	30.03	30.00	29.97	29.87	29.90	29.90	76.3	839	81.6	78.	88.	84.	74	80.	78.
March	29.94	29.96	29.90	30.08	30.09	30.0	29.88	29.91	29.86	77.	84.2	80.3	80.	86.	85.	74.	79.	81.
April,	29.90	29.94	2988	29.97	30.92	29.95	29.85	29.86	29.82	78.9	84.5	83.2	81.	88.	89	76	78.	78.
May,	29.88	29.92	29.90	29.94	29.97	29.92	29.83	29.85	29.81	77.7	83.1	82.8	83.	86.	85.	74	76.	81.
June,	29.89	29.90	29.84	29.93	29.96	29.95	29.88	29.82	29.80	79.	84.5	83.4	82	86	86	74	80.	78.
July	29.92	29.93	29.98	29.98	30.90	29.95	29.80	29.88	29.86	80.	84.9	86.4	83.	87.	86.	76.	80.	80.
Aug	29.84	29.96	29.90	29.96	30.00	29.98	29.87	29.87	29.87	79.4	84.5	83.7	82.	88.	86	75	77	77.
Septe	29.92	29.95	29.90	29.98	29.99	29.95	29.87	29.90	29.86	77.3	84.3	83.8	82.	88.	87.	74	76	79.
October,	29,91	29.93	29.89	29.97	29.99	29.94	29.87	29.87	29.85	76.6	84.3	83.1	78.	87.	86	74.	79	78.
Novem	29,91	29,93	29.89	29.95	30.00	29.95	29.83	29.85	29.81	76.4	82.5	81.6	82	86	85.	73	79.	76.
Decemb	29.97	29.96	29.92	30.00	30.03	29.99	29.90	29.92	29.89	75.3	80.2	79.8	78.	84	83.	73.	75.	77.
Annual average,	29.91	29.94	29.90	29.99	30.06	29.97	29.85	29.87	29.84	77.	84.	82.7	80.7	8	85.8	74.2	78.2	78.2
	29.94	29.95	29.92	30.03	30.06	29.99	29.90	29.90	29.87	75.1	80.9	79.9	78	.			82	4.
Pebru	29.96	29.99	29.93	30.02	30.04	30.00	29.88	29.91	29.87	86.2	85.2	79.8	79.	87.	85	74.	82.	78.
March	29.91	29.93	29.89	29.97	$\underline{29.99}$	29,97	29.83	29.85	29.83	76.5	84.6	83.6	89	88	86.	73.	76.	79.
April,	29.91	29.94	29.88	29.99	29.99	29.95	29.85	29.87	29.82	77.2	84.6	83.7	81.	87.	87.	73.	80.	79.
May,	29.88	29.91	29.87	29.94	29.99	29.91	29.83	29.84	29.82	77.6	84.7 .	83.7	81.	87.	86.	75	78	80.
June,	29.89	29.91	29.88	29.98	29.97	29.97	29.80	29.86	29.82	79.9	84.3	84.1	84.	88.	87.	75.	77.	77.
July,	29.88	29.85	29.87	29.95	29.96	29.92	29.82	29.83	29.83	76.6	82.9	82.6	82.	88.	85.	73.	78.	77.
August,	29.91	29.93	29.91	29.95	29.99	29.95	29.85	29.88	29.84	76.5	82.2	81.4	81.	87.	85	75.	78	78.
Septem	29.92	29.98	29.91	29.99	30.03	29.98	29.85	29.87	29.83	77.6	83.3	80.6	82.	87.	85.	74.	76.	77.
October,	29.91	29.93	29.90	29.96	29.97	29.95	29.83	29.88	29.80	76.8	83.6	83.5	79.	88.	86	75.	76.	79.
November,	29.97	29.89	29.87	29.91	29.95	29.93	29.80	29.83	29.80	76.6	84.3	82.9	79.	86.	86.	71.	80.	79.
December,	29.88	29.90	29.88	29.94	30.00	29.98	29.82	29.85	29.82	75.7	81.7	80.8	78.	85.	86.	73.	75	75.
Annual aterage,	29.90	29.92	<9.89	29.97	29.99	29.95	29.84	29.86	29,83	76.8	83.6	82.2	80.2	87.	85.6	73.6	77.6	77.6

VII.-Culminating Stars observed with the Moon at Násirabid. By Lieadn Colonel Thos. Oliver, \&c.

Date.	Stars.	No. of wires.	Sidereal Time of Transit.	Intervals in sidereal time.
February 16th, 1831,	D's lst border, α Ceti,	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { H. M. s. } \\ & \begin{array}{ll} \text { s. } & 58 \\ 2 & 52.0 \\ 2 & 53 \\ 26.4 \end{array} \end{aligned}$	$\begin{array}{rl} \text { m. n. } & 2 \\ +1 & 54 \\ \hline \end{array}$
March 21st, 1831,..	a Orionis, D 's lat bord.... a Geminorum, a Canis man, B Geminorus,	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{lll} 5 & 46 & 01.8 \\ 6 & 34 & 33.1 \\ 7 & 23 & 49.0 \\ 7 & 30 & 27.6 \\ 7 & 34 & 58.4 \end{array}$	$\left\lvert\, \begin{array}{rccc} -0 & 48 & 31.3 \\ +0 & 49 & 15.9 \\ 0 & 55 & 54.5 \\ 1 & 00 & 25.3 \end{array}\right.$
March 22nd,	a Orionis, a Geminorum,. a Canis min. . D's lst border,	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{lll} \hline 546 & 01.8 \\ 7 & 23 & 48.9 \\ 7 & 30 & 27.6 \\ 7 & 34 & 36.6 \end{array}$	$\begin{array}{\|rrrr} -1 & 48 & 34.8 \\ 0 & 10 & 47 & 7 \\ 0 & 04 & 09.0 \end{array}$
September 1	$\left\{\begin{array}{l} a \\ \text { a Scorpii, } \\ D \end{array}\right.$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 161904.7 \\ & 173658.9 \end{aligned}$	117542
November 12th		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	21 15 55.0 21 22 4.8 21 33 52.4 21 37 43.7	$\left\lvert\, \begin{array}{rlll} +0 & 06 & 45.8 \\ 0 & 17 & 57.4 \\ 0 & 21 & 48.7 \end{array}\right.$
November	$\boldsymbol{\beta}$ Aquarii, No. 2643, D's lst border,	$\begin{aligned} & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{array}{lll} 21 & 22 & 41.1 \\ 22 & 04 & 25.6 \\ 22 & 07 & 32.9 \end{array}$	$\begin{array}{lll} \hline-0 & 44 & 518 \\ 0 & 03 & 07.3 \end{array}$
February 8th, 1832,	a Arietis, D's lst border, No. 293, \qquad a Tauri, \qquad	$\begin{aligned} & 5 \\ & 5 \\ & 3 \\ & 3 \\ & 5 \end{aligned}$	$\begin{array}{lll} 1 & 57 & 42.4 \\ 2 & 22 & 26.4 \\ 2 & 35 & 51.9 \\ 4 & 26 & 17.6 \end{array}$	$\begin{array}{lll} -0 & 24 & 44.0 \\ +0 & 13 & 25.5 \\ 2 & 03 & 51.2 \end{array}$
February 10th,		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	1 57 42.2 3 18 03.7 3 24 29.9 3 30 44.8 4 16 03.5 4 19 04.4 4 26 17.1	$\begin{aligned} & \left\lvert\, \begin{array}{rrr} -2 & 18 & 21.3 \\ 0 & 57 & 59 \\ 0 & 8 \\ 0 & 51 & 33 \\ 0 & 18 & 18 \\ +0 & 03 & 009 \\ 0 & 10 & 136 \end{array}\right. \end{aligned}$
March 9th,	D's 1st border, γ Orionis,	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{lll} \hline 4 & 57 & 29.9 \\ 5 & 16 & 07.3 \end{array}$	+0 1837.4
March 10th,		$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	4 26 17.3 5 23 25.3 5 32 16.8 5 46 04.5 5 59 22.3 6 02 04.5	$\begin{array}{\|ccc\|} \hline-1 & 33 & 05.0 \\ 0 & 35 & 57.0 \\ 0 & 27 & 05.5 \\ 0 & 13 & 178 \\ +0 & 02 & 428 \end{array}$
March 12th,		5 5 5 5 5	4 26 17.0 5 16 07.1 5 46 04.7 7 35 019 8 05 40.1	$\left\lvert\, \begin{array}{llll} -3 & 39 & 23.1 \\ 2 & 49 & 33.0 \\ 2 & 19 & 35.4 \\ 0 & 30 & 38.2 \end{array}\right.$

Date.	8tars.	No. of Wires.	dereal time of Transit.	Intervals in Sidereal time.
April 8th,	a Geminorum,	5	$\begin{array}{ccc} \text { I } & \text { м. } \\ 7 & 23 & 52.2 \end{array}$	$\begin{array}{r} \text { H. M. } \\ -022 \\ \hline \end{array}$
	a Capis min,	5	73030.2	01550.4
	β Geminorum,	5	73501.6	01119.0
	2's lst border,	5	74620.6	
	No. 989,		75620.7	+01000.1
May 7th,	D's lst border,	5	92932.9	
	No. 1197,	5	95120.2	+ 02147.3
	a Leonis,	5	95925.5	02952.6
May 9th,	a Hydree,	5	91920.0	- 20110.5
	a Leonis,	5	95925.6	12104.9
	No. 1338,	2	111511.0	005195
	D 's lst border,	5	112030.5	
	No. 1369,	5	113638.7	01608.2
Jane 6th,	β Leonis, ..	4	114029.3	- 01649.2
	D 's lst border,	5	1157185	
	a Virginis,	5	131622.1	11903.6
Jape 7th,	No. 1465,	5	123309.7	014536
	D's lst border,	5	124803.3	
October 1st,	D's lat border, B Aquarii,	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{array}{lll} 18 & 21 & 28.1 \\ 21 & 22 & 44.6 \end{array}$	301
Norember 1st,	B Aquarii, . . .	5	2122441	00437.1
	D's lst border,	5	212721.2	
	7 Capricornis,	5	213047.7 .	+ 00326.5
	a Aquarii, ..	5	215710.9	02949.7
	a Piscis anst,	5	224823.4	12102.0
November 29th,....	B Aquarii,			03400.8
	D's lst border,	5	215644.8	
	a Piscis aust, ..	5	224822.8	05138.0
March lst 1833,....	a Tauri,	5	42620.4	20357.8
	\boldsymbol{y} Orionis,	5	51610.3	11407.9
	No. 804,	5	61903.0	01115.2
	D's lat border,	5	63018.2	
	a Geminorum,	5	72356.6	+ 05338.4
March 28th,			51543.5	05250.4
	No. 684,	5	52739.3	04054.6
	775,	5	60447.1	00346.8
	D's lst border,	5	60833.9 6	
	No. 820,	5	6 6 6 28393	$\begin{array}{llll}0 & 19 & 29.4\end{array}$
	831,	5	63339.1	$\begin{array}{llll}0 & 25 & 05.2\end{array}$
	872,	5	65412.0	04538.1
	a Geminorum,	5	$\begin{array}{llll}7 & 23 & 56.1 \\ 7 & 35 & 05.2\end{array}$	$\begin{array}{lll}1 & 15 & 22.2 \\ 1 & 26 & 31.8\end{array}$
March 30th,	- a Geminorum,	5	72356.0	05023.6
	B	5	73505.1	03914.5
	No. 967,	5	74554.8	02824.8
	D's lst border,	5	81419.6	.
	No. 1049,	5	83007.0	+ 01547

Date.	Stars.	No. of Wires.	dereal time of Transit.	Interrals in Sidereal time.
March 31st,			н. м. s.	$\begin{array}{ll} \text { H. M. } \\ -1 & \text { M. } \\ \hline 151 \end{array}$
	$\begin{array}{\|l\|} \alpha \\ \beta \\ \beta \\ \text { Ceminarum min. } \\ \hline \end{array}$	5	73505.2	14240.1
	No. 1130, . . .	5	90939.6	007 25.]
	${ }_{\mathrm{D}}$'s lst border,	5	91705.3	
	a Leonis,	5	95929.1	+ 042238
	No. 1222,	5	100743.2	0 0 0 503783
	No. 1232,	5	101251.6	
April 27th,	No. 1097,	5		00732.5
	D's lst border,	5	*	009072
	No. $1122, \ldots$.	5		0 0 12463
April 28th,				
	No. 1171,	5	73214.3 9	$\begin{array}{lll}2 & 24 & 50.3 \\ 0 & 20 & 431\end{array}$
	1175,	5	94914.4	- 07506
	D 's list border,	5	95705.0	
	a Leonis,	5	95928.8	+ 00223.8
	No. 1254,	5	102401.2	02656.2
	No. 1284,	5	104029.1	04324.1
April 29th,	a Leonis,		95928.6	- 55402
	No. 1254,	5	102401.2	- 31076
	1303,	5	105205.6	- 03032
	D's lst border,	5	105508.8	
	No. 1328,	5	110842.1	${ }_{0} 13333$
	No. 1334,	5	111231.7	$0{ }_{0} 17229$
	1338,	5	111513.2	0204.4
April 30th,	a Leonis,		95928.8	15150.1
	No. 1371,	5	113717.3	$\begin{array}{llll}0 & 14 & 01.6 \\ 0\end{array}$
	- Leonis,	5	114032.9	6.0
	\%'s lst border,	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	11511822.5	02063.6

N. B. The numbers in the column headed "Stars" refer to the Catalogee of the London Astronomical Society.

Any of your readers who may have had observations of Moon Culminating Stars corresponding with any of the above, will confer a favor on me by pabliching them in your valuable Journal.
VIII.-Chemical Analyses. By Jas. Prinsep, Sec., \& $c_{\text {. }}^{\text {. }}$

1. Threes specimens of soil from sugar-cane fields.

The first was from a village called Mothín the Sarju, ten miles north of the bank of the Ganges at Buxar. The other two were from soils on the south bank of the Ganges near the same place. Nos. 1 \& 2 are represented as requiring irrigation, and No. 3, as sufficiently retentive of moisture to render it unnecessary. There is a substratum of kenker

- This evening I had no obserriations of well known Stars to determine the er. 10 of the Chronometer and Instrument : but the Entervals may, I think, be dopended on.
throughout the whab of that part of the country, and to some mixture of this earth with the surface soil the fertility of the latter is escribed : the cane produced is of emall size, but it yields a pretty rich juioe I by the native procese each maund of juice affords six seor of gúr.

100 parts of each sort treated simaltaneosealy gave the following results :

No. 1.No 2. No. 2

The earths were not further examined, but the two first consisted chiefly of sand, whereas the third was somewhat argillaceous. All three were of a soft fine-grained alluvium without pebbles : the analysis confirms the qualities ascribed to each of the specimens.
2. Slaty anchracite from the hills south of Fatehpor in the Foshangubdd aitos trict, Nerbwida; tramsmitted to Governament by Claptain J. R. Onceleys
A heary dall slaty coal, splitting into lamine marked with ferraginous oxide; colour brownish grey, inclining, where rubbed, to the lustre of graphite : streak brown : specific gravity 1.880 .

Exposed to a red heat, burns without flame, and leaves a very copious red ochreous ash. It is of a poorer description than most of the Indian coals, although evidently connected with the same deposit as the Towa or Burhandhí coal, included in the table published in the Gleanings, vol. iii. p. 283, and described further in page 299 ;-whick Ieft only is per cent. of ash. Richer coal doubtless accompanies thiese upper shales. Captain Oussiex has traced the deposit farther south to Thencmin near Bhawergarh, bnt no specimens have yet been farnished from the latter place. The composition of the Nerbudda coal is as follows :
Water, separated on sand-heat 3.5
Volatile matter, not inflammable, 10.5
Fired chareoal, 22.0
Red earthy reaidue, 64.0
Composition-Volatile matter, principally aqueous, C8. 0
Fixed carbonaceous matter, 16.7
Red ash, 21.3
100.0

The great bell of this church, whose jarring and discordmant sound has more than a million times reminded the neighbourhood of its cracked condition, has at last been removed, and a new bell is abont to be founded to supply its place, under the superior skill of an eminent Eagineer officer. The metal of which the old bell was composed tarns oat to be of a very brittle nature, and it is not surprising that it should have cracked (as recorded) under the effects of a zor-se-tan injunction from the delighted minister to the sexton, when it was first set up: it has a specific gravity of 8.887 , and consists, in a hundred parts, of -

Copper	67.0
Tin,	25.0
Zinc,..	8.0

5. Ancient Copper Spear-heade, from Agra.

An article in one of the English journals of science, some months ago, having mentioned, that on analysing ancient weapons of copper, found in Germany, the metal was found to be hardened with tin*; I was induced to examine some of the ancient spear-heads, which are frequently dug up in the neighbourhood of Etdiva, and are refer. red by the natives to the period of the Mahabharat war. Some of these presented by Mr. Cancroft to the Benares Lit. Soc. are deecribad in the Oriental Magazine, for December, 1826.

Three of them were examined : the exterior colour of all was that of unmixed copper.
No. 1. An arrow head, (so called) broke with a purple granular fracture : spec. grav. 8.459 at 85°.

No. 2. A similar weapon, broke with less facility, and had a better grain : spec. grav. 8.801.

No. 3. A spear-head, or kind of sword-blade, true copper colour and texture: tough : spec. grav. 8.835.

Very slight traces of tin were discovered on solution in nitric acid, but not ponderable, and rather proceeding from slight imparity of the metal worked up than from intended mixture-no traces of silver or lead were found. The difference of specific gravity was perhaps due to the brittle texture of the first specimen, and to the sword-blade having been fashioned under the hammer.

6. New Patent Sheathing Metal for Shipo.

A patent has lately been taken out in England, for a cheap marine metal or metallic sheathing, stated to be compounded of lead, antimony, and mercury, which seems to have succeeded in the only object which

[^89]ever could have been aimed at by its inventor ; that of gulling those who were foolish enough to put their trust in it. The following facts give authentic testimony of the worthlessness of the invention :-
" The Renown, a new ship built at Port Glasgow, her first voyage to India, was aheathed with this metal; she had scarcely been at sea a month before the sheath; ing showed a rough and unclean appearance like a piece of wood which had been long in the water, but without the grass to it, and this kept going on worse. and worse: and it was observed from the bowsprit, when the veasel pitched, that in many places it hung from the bottom like pieces of rags; in some places large pieces were entirely gone, and what remained sheved every symptom as if it would soon follow, which it did : on examination of the pieces which canne off, they appeared spotted, as if oxidizing fast into soall holes ; by the time the ship arrived here many hundred sheets were gone from the bottom, and what was: left as far as could be seen was very unclean."

The metal in fact is nothing but a soft pewter, consisting of 95 parts of lead, and five of tin mixed with some antimony. Its specific gravity of 11.130 corroborates this analysis. No trace of mercury conld be discovered by heating it in a retort to a temperature at which this metal would have risen in distillation.

The invention may have been suggested by an American patent taken out in London in 1831 for a sheathing metal of zinc and copper, combined in the proportions of 95 zinc to 5 copper. This compound, although superior to the pewter on account of its stiffness, would probably be liable to corrosion much more rapidly than copper ; the inventor however states that the addition of a small portion of copper, greatly diminishes this liability, and adapts it well for the sheathing of ships and other purposes.

Zinc by itself corrodes very rapidly in a damp climate. A remarkable instance of this was witnessed not long since, in removing some slabs of epelter which had been stored on the floor of a godown belonging to Messrs. Cockrrbll and Co. The lowermost slab was converted into a solid white substance throughout, apparently crystalline in its atructure; specific gravity 3.0. On heating in a test tube per se it disengaged mach water and became yellow ; it dissolved with moderate effervescence in nitric acid. It was therefore a hydrated carbonate of zinc, or perhaps rather a mixture of hydrated oxide and carbonate, agreeing closely with the mineral from Bleyberg in Saxony, described by Sxitason* as hydrous carbonate, a sub.species of calamine, which he states to be a stalactitic formation. This is a remarkable instance of the formation of a natural insoluble mineral by artificial, thoagh unintentional, means.

- Thomson's Chemistry, iv. p. 483.

Ir aupade river.

A small specimen of this ore, received from Mr. Broce of Sadiys, is Asam, was found to contain one-fifth per cent. of silver : or after expelling the sulphur the lead would contain one-fourth per cent. This would hardly pay the expence of extraction, but the specimen was too small to give a fair average. The ore is however very valuable for the lead alone, yielding from 60 to 70 per cent. of that metal.

At Brahmakund, in Asam, from Mr. Bruce's specimens, occurs a very fine white porcelain clay, which mightbe turned to use were there any demand for fine pottery in India, and were the lacality a little more accessible.

IX.- Earthquake of the 26th Auguot.

The daily papers have published notices of this phenomenon, as ebeperved as great many places in the interior of India, with more or less detail, from which the following general facts may be gathered :-
The direction of the vibration was from north-east to sonth-west : there were three principal shocks; the first about half past six P. m. the second at half pant eleren; and the third or mont severe ahock, at about five minutes to twelre (Caloutta time). In the places where it was most felt slight and continued ribrations sepen to hare been experienced for the whole of the day following. As the time of the second vibration was accurately noted in Calcutta by the stopping of an astronomical clock, we may assume it as the best point of comparison with the times noted at other distant points. Applying the difference of longitude, a few of them may be thus clanced.

	Observed h. m.	Dif. Long. m.	$\begin{gathered} \text { Cal. Ti } \\ h . m \end{gathered}$	
Katmandd, Nipal, eecond shock,	1045	+ 18	- 10	7 very severe: loed noise
Rungpar, ditto	1189	- 2	1118	8 many houees indrad do.
Monghyr ditto,.	11 9?	$+7$	113	4 walls cracked, noise ha
Arrah, ditto..	1115	$+14$	118	9 walls injured, do.
Under Rotas hille, ditto.	1110	+ 9	- 1130	
Corakhpar, ditto,	11.90	19	115	0 walls cracked, tec
Alhhabed (vague), ditto,.....	11	- 88	119	93 hollow sound frome riven
Bankura, ditto,	1130	4	- 113	4 some auch aince 184
Calcutta, ditto,..			113	48 no injury done.

At Monghyr, Rungpár, Mozufferpar, Mallai, and other places withis the direct line of influence, many houses were destroyed or injured, and the alarm was greet. At Katmandu, however, the following extract of a letter from Dr. A. Camprailh, dated the 28th inst. will shew that the consequences were more serious, and judging from the course of the phenomenon we may reasonably fear some dreadful catistrophe towards Lassa on the north of the great Himálayan range.
" On the evening of the 26 th , about 6 o'clock, the valley and neighbouring hils were visited by a severe shock of an earthquake : it lasted about 40 seconds, and during its continuance, there was a distinctly audible noise as of ondannce pasiang rapidly over a drawbridge. It seemed to me to come from the eqst, and I fell that it was travelling with the speed of lightning towards the west, and just under my feet: the houses shook most violently, and trees, shrubs, and the smallest plants wre
 - damage was done to life or property. At $\&$ to eleven we had a similar shock in severity and duration, and at eleven a most tremendous one. It commenced gradvally, and increased until the houses, trees, and every thing on the face of the ground seemed shaken from their foundations. The earth heaved most fearfulty, and when the shock was at its worst we heard the clashing of falling tiles and. bricks in every direction; and to add to the impressiveness of the scene, a general shout rose from the people in all directions. The murmar of human prayers was carried audibly from the city to our grounds (a mile), and nothing could be wore imposing and vast than the scene. In a dead calm the noise of a hundred cannon burst forth : foll grown trees bended in all directions, and houses reeled about like drunken men. In our grounds no lives were lost, but in Katmandt 19 persons were buried under the ruins of their own houses, and in the towns of Bhatgaon and Patan, many more. This great shock coatinued for nearly a minute, and during the following hour there were six distinct and strong shocks, the ground in the intervals being scarcely if at all steady; and from this time till yesterday morning there were upwards of 20 distinct and sharp shocks. The loss of property has been very great, 125 bouses fell in Katmandu during the night of the 26th, and nearly as many more have been levelled with the ground. Up to this time, in consequence of the torrents of rain that have come down, fibishing the work of destruction commenced by the earthquakes, the city and towns have been evacuated, men, children and women of the purdah, rich and poor, have been and still are on the plains about the towne. Innumerable temples have been destroyed, and the very gods of them have beèn crushed to atoms. A fine and large brick temple (100 foet bigh), built in imitation of the great one at Jaganath, came down by the ran early yesterday morning, and two fine pillars built by BHim SEN were demolished by the great shock. All yesterday and last night we had occasional small shakes, and we are still in a state of suspense regarding the finale. In 1829, daily shocks continued to occur for 40 days, but none of them equal to the great one we had on the 26th."

A subsequent note from the same gentleman, dated the 30th instant, gives further particulars of this disastrous event :-
"We still continue to be revisited by occasional shocks of earthquake, all less violent than the great one of the 26 th , but sufficiently alarming. This morning, when at breakfast, we had rather a sharp one : they all seem to come from the same direction; that is from the east and north-east. The places east of Katmanda have suffered most: Bhatgaon, a large town, has been almost entirely deatroyed ; upwards of 1000 houses have been levelled with the ground, and few have escaped serious injury. 300 souls have perished in this town (Bhatgaon) alone, and the total number of lives lost throughout the valley, as yet ascertained, is eatimated at 500 . The unfortunate people in many instances are in sore distrese ; their stores of grain being buried beneath the ruins of their late dwellings, and without money to purchase other food. The grain shops, as well as all others, are shat, and the people dare not return to their houses, but remain without sleep or shelter in the open air, under torrents of rain. The house of Matabar Sing, (a goodly modern mansion) is quite deatroyed, and the large garden houses of Beic Sen, and his brother, Rav Bir, are rendered, for the present, untenable. Scarce a large bouse in Katmanda has eacaped serious injury. The fort af Chiropani, on the road to this from the plains, is much injured, and almosi all the Gorernment buildings have sustained great injury."
A. C.
Meteorological Register, kept at the Assay Ofice, Calcutta, for the month of August, 1883.

JOURNAL

05

THE ASIATICSOCIETY.

No. 21.-September, 1833.

1.-An Inquiry into the Lavor governing the two great powers, Attraction and Repulsion, as operating on the Aggregation and Combination of Atoms. By Julius Jeffreya, Esq.
n.4.t.

Thover the causes of the three states of matter, as they are called, that is to say, the solid, the liquid, and the aerifurm, together with those causes by which the union of the different kinds of matter in compound bodies is effected, and those also by which bodies are expanded, contracted, or preserved of the same magnitude are subjects of great coriosity and importance, yet they belong to a branch of Chemistry which is at present in an unadvanced and imperfect state. Those justly celebrated philosophers who have done honor to our age by their discoveries in other branches have not yet carried their examination so far into this part as to arrive at any settled opinions concerning it, and not unfrequently in the same author doctrines have been advanced which are irreconcilable with each other.

The branch of natural philosophy to which the present inquiry is devoted having continued, with little advance, since it was written, in the year 1822, the doctrines I have endeavoured to establish, and the body of arguments by which they are supported, maintain still whatever of novelty or importance they may have possessed. As, however, in so considerable a period, a few of the arguments may have been brought forward by others, though not perhaps similarly applied, I have thought it proper to mark by including brackets, thus [], such parts as have undergone any alteration upon a revision. The body of the work remains verbatim as when first written.

Whether by directing my attention to this part of Chemistry I have been enabled to auggest any such modes of reasoning as may be applied
to the advantage of the science, it would be presumption in me to pronounce an opinion. The question must depend upon the strength of the arguments which I use, and which I now submit to the judgment of the philosophic public.

Part I.—Of Attraction.

Attraction is usually divided into two kinds.
The first of them Gravitation, or that by which bodies have a tendency to approach each other, and on which the sciences of Mechanics and Physical Astronomy depend. The second Contiegous Atrraction, or Attraction of Atomb, by which the atoms of bodies are kept in connection with each other, and which alone it is my province at this time to consider.

Contiguous Attraction, by a division subordinate to the former, is usually considered as comprehending two species, Attraction of Aggregation, or the attraction existing between homogeneous atoms, and Chemical Attraction, or that which is between heterogeneous atoms.
This distinction has arisen from a supposition, that similar particles exert an attraction towards each other which obeys laws different from those of the attraction between dissimilar particles. That such is an unnecessary distinction might be inferred, were there no other, from this consideration, that when one solid combines with another to form a compound solid, it is not possible to make a distinction between the attraction uniting its compound particles and the affinity by which the constituents are united. Thus in sulphuret of iron the cohesion of the iron and the sulphur is overcome by their mutual attraction which forms them into compound particles, and these again cohere in a new solid differing entirely from either of the former. The attraction which keeps the particles of the sulphuret in a state of aggregation cannot be distinguished from that which brought their elements together ; for it favors the union of the elements, and aids in preventing their separation.
With reference to this and other differing opinions relative to contiguous attraction, I propose to begin this Essay by a somewhat minute examination of it under the following heads. 1st. By inquiring into the distance at which it operates; whether it is confined to near particles only, or extends to more remote ones. 2ndly. By inquiring how far the attraction of atoms is general ; that is, whether all atoms in nature attract, and are attracted by all, or whether attraction between atoms (chemical and cohesive) is confined to a limited number. 3rdly. By inquiring into the effect of mass on contiguous attraction;
that is, how far the attraction between atoms (chemical and cohesive) is increased towards any given atom by the mass.

4thly. In what ratio of the distance the force of attraction of atoms varies; which will lead me to confirm by arguments the opinion that gravitation and contiguous attraction are the same property of matter, differing only in the circumstances under which it is presented to our observation.

1st. Of the distance at which attraction of atoms operates.
From the effects of cohesive attraction being in most cases evident only at very small distances, and from the particles of bodies in the aerial state actually appearing to repel each other, it has been generally inferred that this force is exerted only at very limited distances ; and hence its name, contiguous attraction.
Although the effects of cohesive attraction may be apparent only at very small distances, yet it is scarcely correct to infer that this force is eserted only at such distances until due attention has been paid to the causes, which, by affecting the phenomena, may create deception upon the mind. These appear to me of two kinds, -the minuteness of attracting atoms, and all causes which operate against the attraction of atoms.

On the magnitude of atoms must in a great measure depend the greatest distance at which the force of their attraction is sufficiently powerful to be apparent.

If it be admitted that the force of this attraction decreases in as great a ratio of the distance as that of gravitation, then, since atoms are so small as not to be perceptible to our senses, it will follow that however strong their attraction may be when almost contiguons to each other, it will not be apparent at any mensurable distance, though in fact, it may be exerted in some degree at unlimited distances; for if two attracting particles of matter were sufficiently increased in magnitude without altering at all the laws of their attraction, this force might be evident at any distance however great, unless it be supposed (which would indeed be very unphilosophical) that attraction ceases at some certain distance suddenly and abruptly.

The other caases which may create deception as to the distance at which this attraction is exerted, are all powers which oppose its force. From the attraction of particles being constantly opposed by the powerful agency of heat, its force in liquids is scarcely apparent, though in fact it may be very powerful, for it is only the excess of the attraction over the repulsion that can be measared.

The two following are proofs of attraction in liquids, and also thate it is very considerable*.

Sit Humphary Davy remarks very justly, "Cohesion is asaally mid to act only at the surface of bodies, or by their immediate contact, bat this does not seem to be the case. It certainly acts with much greator energy at small distances; but the spherical form of minute portions of fluid matter can only be produced by the attraction of all the parts of which they are composed for each other ; and most of these attrse tions must be exerted at sensible distances." To this remark, I may be allowed to add, that the attraction between the particles of a liquid, must, moreover, be a very powerfal force; for it is not only able to resist the force of repulsion, but also to gather the particles into drops against their tendency to gravitate.

Another proof of the force of attraction in liquids, appears to me afforded in the fact, that the expansion of liquids increases in a greater ratio than the temperature, or that liquids expand more from equal additions of heat at high than at low temperatures. If the pressare of the atmosphere were the only force opposing their expansion, i quids would expand less as the temperature increased; for, as a liquid expands, since it presents a greater surfacet either to the air or to the vessel containing it, it is pressed on with increasing force. But if the force opposing the expansion increases with the temperatare, it is plain that equal additions of heat would produce less and leas effect.

If these equal increments of temperature in liquids be considered to indicate equal additions of heat, as is the general opinion, the onty means by which the increased ratio of expansion can be accounted for, it appears to me, must be sought for in a powerful attraction exerted between the particles of a fluid, by the decrease of which attraction, as the particles separate from each other, more effect is produced towards enabling heat to expand the fluid, than the increase of atmonpheric pressure produces in opposing the expansion; so that the sum of the powers opposing expansion is a decreasing force, and hence the expansion itself will have an increasing ratio.

The nature and physical properties of gases, have especially induced most philosophers to consider the attraction of atoms as only acting

[^90]when atoma are very near to each other. From the great elasticity of gases, their atoms are treated of as beyond the sphere of mutual attraction, and some philosophers* have accounted for the expansion being equable for each equal addition of temperature, and for the ratio of expansion being the same in all gases, by the supposition of no attraction existing between their particles, and as proofs of the non-existence of any such attraction. How far this reasoning is correct let us presently examine.

The elasticity of a gas is certainly no proof of the absence of any attraction between its atoms. It serves only to show that the whole repulsion is very powerful and superior to any attraction that may exist between its atoms. Since the attraction between the particles of a gas is inferior to the repulsive power, it cannot be apparent, though it may yet certainly exist.

The gas will possess elasticity, and will expand unless sabjected to a compressing force, such as the atmosphere.

Again, the equable expansion of a gas from each equal rise of temperature, is not any proof of the absence of attraction between its atoms on the ground usually taken, that if there were any attraction present, it ought, by decreasing as the atoms separated, and consequently offering less and less resistance, to allow of an increasing expansive effect from each equal addition of temperature. For it will presently be seen, that equal increments of temperature in gases by no means indicate equal quantities of heat, and therefore not equal additions of repalsive power. Neither does the atmospheric preasure offer constantly equal resistance to the expansion of a gas ; since as a gas expands this force tending to compress its atoms must increase, for as the particles of a gas recede from each other, each is subjected to and

A
 has to support the pressure of a greater number of those of the atmosphere. Thus in the annexed figure the atmosphere, and a volume of subjacent gas. Here, each particle of gas with its elastic mediumt, denoted by the dots A B, is subjected to the pressure of a column whose base is one particle of air.

Let the gas be expanded by heat until the distance of the particles from each other is double. It is now clear, that each particle with its elastic mediam (now greatly

[^91]enlarged) has to support a column of air, the base of which is four particles, two being shown in the side view. Hence the atmospheric force tending to compress any two gaseous particles must increase as they recede from each other; and even very considerably, for eerial fluids expand much from small increments of temperature*.

The experiments of Mr. Dalton, Dr Luc, and others, made chiefy between the freezing and boiling points of water, lead to the conclusion that gases expand $7 \frac{1}{5} \delta$ (of their bulk at 32°) with each accession of temperature of one degree (Furh.) in a simple arithmetical progression; and it appears assumed that this is the law of their expansion by heat. Hence air at 32° by an advance of 480 degrees, i. e. to 512°, would have its bulk doubled. Let us suppose two cabical pints of air to be taken; and let one of them be expanded to double its bulk, i. c. to a quart. Since the distance of the atoms increases as the cube root of the bulk; the bulk of one of these portions of air having become 2 to the other as 1 ; the distance of the atoms will have increased in the former in the ratio of the cube root of 2 to the cube root of 1 , i. e. as 1.26 to 1 nearly; and since the number of atoms under a given surface of the gas expanded to a quart will be 100 , while there are 158 under the same surface in the pint, and the pressure being constant on a given surface, 100 atoms of the former will have to support as much as 158 of the lattor. Let the pressure be called 158 . It is plain each particle of the quart will be pressed on by a force 1.58 , while each of the pint will have to bear only a pressure of 1 .

Again; since, as was shown by Newron, the mutual elasticity of the particles of air (and the same is assumed with regard to all gases), varies inversely as their distance, i. e. decreases in the direct proportion of their separation; and since the pressure increases as the square of their distance; the total absolute force expanding a gas must be in-

[^92]creased in the direct ratio of the increase of the balk. -Thus one cubic inch of air will need the absolute elastic power of each particle to be increased eight times, in order to expand it to 8 inches. The bulk having been increased eight-fold, the distance of the particles will be doubled (i. e. as the cube root of the bulk); on doubling their distance their elastic force is halved, i. e. from 8 it has become 4, and at the same time the pressure is increased as the square of their distance 2 ; and is therefore 4. Here then the elasticity and pressure balance each other, and the particles will be stationary. Hence the power endow. ing the particles with mutual elasticity must have been increused in the same ratio as the increase of the bulk. If these 480 degrees of temperature can double the bulk of a given volume of gas, they mast double the whole absolute quantity of heat in the gas. The specific heat of the gas at 512° will be double that of the pint at 32° in the experiment. Now this is a point which probably no one acquainted with all that is known regarding caloric will maintain. We can hardly suppose that the whole specific heat of a gas at 32° (viz. that due to its capacity and temperature, and all the latent heat due to its gaseous state) is equal only to that introduced by the 480 degrees. Analogy would teach us, that it is, at least, three or four times as much. If then the 480 degrees of heat can effect as muchexpansion as the whole previousily contained in the gas could, we are led nacessarily to the conclusion that the latter is opposed, even in gaseous matter, by an attraction, so far as to have an effective repulsive force equal only to that subsequently introduced by 480 degrees of temperature, nay to much less, for the fact of the presence of this attraction being once established, between the gaseous particles, this force must be considered as operating against the heat subsequently introduced; and must lessen its effective power.

This argument I may illustrate in a more familiar manner. Let a cylindrical vessel half filled with any gas, nitrogen, stand inverted in a vessel of water, so that the liquid being on a level within and without the pressure on the gas shall be just that of the atmosphere. If the surface be two square inches, this will be equal to thirty pounds. Let an equal quantity of oxygen gas be added, and suppose it at first to remain under the nitrogen, and the vessel to be raised so as to preserve the same level in the water. The oxygen will now bear the whole pressure, and communicate the same to the nitrogen above it. Each will be pressed on with a force of 30 pounds. In the course of time, however, the two gases will become completely mixed. Each will occupy the whole vessel, the bulk of each being doubled; but the two together
nut filling more space than before. Now, it is clear, each presees on the water and each bears one-half of the pressare of 30 pounds, 20 that the elastic force introduced with the oxygen gas has enabled the nitrogen to doable its bulk under the pressare of the air; and has done no more. If instead of adding the oxygen gas, heat had been added to the nitrogen until its bulk had been doubled by expansion, it is manifest the 480° which effected this would have introduced as great an effective dilating power as that of the whole specific heat of the orygen gas in the other case. But it will not be contended, that the whole specific heat of the oxygen gas amounted to no more than 480 degrees : for analogy would lead us to conclude, that the latent heat due to its gaseous state (including that of the previons state of liquidity) must greatly exceed this quantity, and if we add all the caloric of temperature, in a substance of a large capacity for heat, from the natural zero up to the temperature of the experiment, we shall probebly underrate the quantity at three or four times 480°. The question then is, whence does it happen that 480° of uncombined heat could aid the expansion of the nitrogen gas, as much as foar times this quantity entering with the oxygen? A reason, it appears to me, can only be found in the following explanation. The latter heat is so far oppoeed by a mutual attraction between the atoms of the oxygen, that its free effective elastic power equals only that of the 480° in the other case.

If then any inference can be drawn from the equable expansion of a gas from equal increments of heat, it is certainly this ; that a powerful attraction subsists between the gaseous atoms, reducing the elasticity of their large quantity of specific heat, in so great a degree, as to leave an effective elasticity equal only to what would be due to onethird or one-fourth as mach heat. But the attraction cannot be apparent, because it is veiled beneath the excess of the elastic power.
The alleged fact that all gases have the same ratio of expansion has also been proposed as an argument against the existence of attraction between particles in a gaseous state. It is said that all gases have the same ratio of expansion, because the force opposing expansion is the same in all, namely, the pressure of the air ; and that if an attraction be admitted between the particles of a gas it must be considered as equal in every gas, for otherwise the ratio of expansion would not be the same in all, and hence that there exists no attraction, for it cannot be considered as equal in all gases. Matare reflection will perhaps induce a different view of the subject. Though a certain change of temperature may produce an equal change in the mass of all gases, yet the separation of the particles may be scarcely the same in any two, for we
have no proof of different gases having the same number of particles in equal bulks.

In the combination of gases, a comparison betwetn their prime equiyalents, their proportions by volume, and the resalting bulks of the compounds, would lead to the conclusion that the number of particles in a given bulk differed materially in different gases. Thus, if it be assomed that in oxygen and nitrogen the number of atoms in a given bulk of each is equal, since one volume of the former combines with one of the latter to form the nitric oxyd gas, it would follow, that ain atom of each unite to form each particle of the compound gas. If, then, in the latter, it be assumed, that in a given bulk the same number of compound particles exist as of simple ones in either of the former, it is clear that the two volumes ought in combining to condense into one volume, since two atoms form one compound particle. But experience shews that no condensation takes place. Therefore, whatever number of simple atoms have combined to form a compound particle, in the same proportion must the number of the latter in a given space have decreased.

Many other combinations of gases would prove equally hostile to the supposition, that all gaes are at the same temperature and pressure equally dense. Hence, though equal rises of temperature may increase the bulks of different gases equally, the separation of the particles may differ in all. And further, the capacities of gases for heat differ materially. If equal bulks of hydrogen and olefint gases be taken, since their relative capacities for heat are as 1 to 1.7 mearly, we shall have these numbers representing the relative quantity of heat by each degree of temperature. It would require 1.7 of heat to expand an equal bulk of hydrogen. Since the pressare on each is equal and increases equally, whence does this arise? We are compelled, I think, to conclude that atmospheric pressure is not the sole force apposing expansion, but that it is aided also by an attraction subsisting between particles in the gaseous state, more powerful in olefint gas than in hydrogen, whence to effect an equal expansion more heat is required in the former than in the latter.

If then any inference can be drawn from the equable expansion by heat of different gases, it is this, that in every gas an attraction subsists between the atoms ; but in some gases, as mighthave been expected, more powerful than in others.

By the above elaborate inquiry, I trust I have shewn that the facts usually brought forward as evidence of the limited distance to which
contiguous attraction is supposed to extend do in reality lead to an opposite conclusion.

Of an attraction between gaseons atoms, both similar and dissimilar, we shall have further satisfactory proof by the consideratiou of the following phenomena. In the transition of aqueous vapour to the solid state, a number of particles, which must have occupied a considerable space, convene to form a flake of snow.

This must surely have been produced by a general attraction throughout all the particles of that portion of vapoor, the attraction between the contiguous particles being doubtless the most powerful. Hence each minute crystal of the flake is formed by the affinity of several neighbouring particles, but the aggregation of all the crystals to form the mass must be the product of an universal attraction of all the particles of the vapour. Otherwise no flake would be formed, bat each grain would be precipitated separately. This instance alone appears a conclusive proaf. Between dissimilar particles there are many like instances. The deliquescence of a salt has been adduced by Newron himself in proof of its attraction "acting at a distance" on the particles of vapour in the air.

The mutual action of the particles of different gases on each other is often evident at considerable distances, as when two gases combine to form a solid or liquid, such as the mariatic acid and ammoniacal ganes, and many others.

If all these arguments and facts be admitted as true, sufficient has been said to prove that the attraction of atoms, whether of similar or dissimilar atoms, is not merely a contiguous force; and as we have had evidence of its being exerted by all atoms in a gaseous state, but have no proof of its ceasing at any point, it must surely be considered as a power that operates, though weakly, at a distance, and that it does not suddenly cease any where.

2ndly. How far the attraction of atoms is general, i. e. whether all atoms in nature attract and are attracted by all, or whether attraction between atoms, chemical and cohesive, is confined to a limited namber.

It would seem to be the opinion of most modern philosophers, that all homogeneous atoms exert a mutual attraction when sufficiently near to each other, and hence that the particles of gases would cohere if brought within the limits of their attraction. That all homogeneous atoms attract each other, there is not any reason for doubting. It has been above shewn that we have no proof of a limit to the distance at which attraction may be exerted, and that even in the gaseous state
all perticles must be supposed to attract each other. Since then in liquids and solids also an attraction is always manifest, it follows that between homogeneons atoms this force is aniversal. We have equal reason to admit its action between all heterogeneous atoms, though it has until lately been considered to exist only between a limited variety.

The fact that many atoms refuse to combine may be readily explained, as Dr. Murray has observed, by taking all the forces that oppose combination into consideration. These forces may in many instances be saperior to that of the attraction, and then the latter will apparently not exist. A very strong proof of the universal action of attraction between dissimilar atoms, and even when in the gaseons state, is afforded by the fact that all gases without any exception will either combine, or else mix, when brought together ; and further that all dissolve water when placed over it*.

The reason of an attraction being naiversally apparent between all gases, though not between all liquids and solids, is readily explained. In the former state, the particles of the body are not detained by any cohesion, bat exert an effective repulsion \dagger for each other, which renders them easy to be put into motion ; hence even a weak attraction exerted by another gas becomes evident. On the other hand, the particles of solids and of liquids, on a small separation from each other, are detained by their cohesion, it being stronger than the attraction. of many bodies for them.

With respect to the attraction, which acts between atoms, I trost that under the present head sufficient has beap shewn, to justify its being considered as a power, which is universal, i. e. which is exerted (though with various degrees of force) between all particles similar and dissimilar.

3dly. The effect of mass on contiguous attraction.
If the statements, laid down in the two former heads, be true, it follows of necessity, that attraction must also vary with the mass, or number of attracting atoms ; and this is confirmed by experiment, with respect to heterogeneous atoms. Thus it is well known, that a particle of sulphuric acid has a stronger attraction for one of potash than one

[^93]of nitric acid has. Let the force of the former be 8 , that of the latter 4. If a compound atom of sulphate of potash were in this cass exposed to three atoms of nitric acid, the potash would be separated; by the united action of the three atoms of nitric acid. In the samemanner, the sulphuric acid may be taken from sulphate of barytes, by an excess of potash, as Brethollet has shewn. In both the above instances, mass evidently operates*. There is also every reason for be-' lieving, that this attraction varies as the mass, between homogeneous atoms, although there are not experiments proving that this in absolutely the case; for such experiments can hardly be expected, aor is it easy to propose a way of making them. In a homngeneous solid mass, this law does not plainly present itself, merely from the smallness of the atoms; from which, as formerly observed, the attractions of all those that are at a distance from each other (which is the case with far the greater part) becomes so much less than that of contiguous particles, (on which the solidity chiefly depends,) as not to admit of measurement with it.

- The law of attraction which is here enforced, is also perfectly conformable with the doctrine of definite proportion, and does not in fact at all affect it, as has been by some supposed.

Frona all that has been stated, it must surely be admitted as a law of this power, that the attraction of atoms varies as their number.

4thly. The ratio in which the force of attraction varies, and the identity of this power, with gravitation.

I have observed, at the beginning, that the opinions of philosophers, apon the attraction of atoms, are various, and in many instances contradiotory to each other. They are particularly so in the present question.

Among other theories is that of Boscovice, which is very generally known. In this it is supposed that atoms do not exert a simple power of attraction towards each other; but that their mutual attraction alternates with a mutual repulsion, not with variations of time; (as has been by some supposed of the affinity of bodies for light) but with variations of distance. Thus that two atoms, when contiguous, repel each other with great force : and that this repulsion decreases with the increase of the distance, and at last vanishes, giving place to at attraction, which increases with the distance to its maximum ; whence it decreases, vanishes, and is replaced by the repulsion, which obeys.

[^94]the same lawn. And that there are numerous alternations of these forces. According to this law, the particles of a mass must always, remain at some one of the intervals between attraction and repulsion. This may be at various distances, and thus may be explained the various degrees of deasity, which the same body may possess at different times. To this hypothesis it may be objected that it cannot be easily admitted, of a simple force, that it should increase, as the centres of. attraction are separated; mach less then, that this force should suddenly, from a certain point, obey an opposite law, and decrease with an increase of distance.

But to admit, in addition to this, that the same atoms, from another certain point, exert an opposite force of repulsion, which obeys the same complicated law, apd that these alternations are frequently repeated, until at last a regular decreasing attraction prevails, is scarcely. possible ; since it does not accord with the extreme simplicity always observable in the laws of nature.

Moreover, it is not possible by this theory alone, to account for the gradual increase of volume which bodies undergo, without introducing the repulsive agency of heat.

Though there are, according to this theory, many points of distance at which particles may rest, it cannot of itself account, even for expan sion, much loss for liquifaction and vaporization. And again, if the agency of heat be added to it, on a reduction of temperature, bodies would not contract in volume, for their particles would necessarily be prevented from approaching, by that region of repulsion, at the lis mit of which they lay. This would involve the necessity of another extraneous agent, namely some compressing force. And thus the two alternate forces, assigned in the hypothenis, are ineffectual without the assistance of the other two, and with them are altogether aseless ; con sequently it is not philosophical to suppose them.

An anonymons writer in the Encyclopedia Britannica* treats of cohesion as a force, which extending to a small distance, is within this distance, " little or not at all altered by slight compression, or expansion." And in another place he says, " it appears, that the force of cohesion cannot be supposed to vary much with the density, and it is therefore allowable to consider it as constant as far as its action extends." I have, under another head, I think proved, that this attraction must not be considered, as extending only to very amall distanees; and the argaments, adduced in support of this, also prove, that attraction is a decreasing force. These are, the increasing ratio

[^95]of expansion in liquids, and the equable expansion of gases from decreasing additions of heat. The former can only be accounted for, by supposing that its chief opponent force, the attraction, decreases. The latter also requires the admission of an attraction between all gaseons particles, and that this force decreases likewise. For, did it not decrease, gases (as it was there demonstrated) could not expand as much from certain additions of caloric of temperature, as from their specific heat, so much more in quantity.

In Dr. Ress's Cyclopædia* we find another author, who expresser a very different opinion. "There is," he says, "an attraction, which is found to obtain in the minate particles, whereof all bodies are composed, which attract each other, at or near the point of contact, with a force much superior to that of gravity, but which, at any distance from it, decreases much faster, than the power of gravity."

And others, observing the apparently great decrease in the force of attraction, as particles are separated from each other, have sapposed that it must vary as the inverse cube, or some higher power of the distance.

All these views have doubtless arisen, from attending to the apparent, rather than the actual, force of attraction. Since attraction, whenever presented to observation, is always opposed by a divellent force, the law of the simple force cannot be investigated by any direct experiment from its immediate effects.

There is however the strongest reason for concluding that contiguous attraction, as treated of in chemistry, is identical with the great universal power, gravitation.

This opinion has been hinted at by philosophers from an early age of this science, and among them by Sir Humphray Davyt. But it may be demonstrated, as I think, in the most satisfactory manner, from the following considerations.
lef. The great Newton has demonstrated, that the gravitation, which prevails throughout the bodies of the system, is compoeed of the sums of the attractions between the atoms of the several bodies. And thas it is, strictly speaking, an attraction of atoms; and it is exerted between the same atoms as the attraction, which usually bears that name.

2ndly. It will be found to possess the same properties also.- First. That attraction of atoms, which constitutes gravitation, increases or decreases as the distance at which it operates is less or greater. This

[^96]the same great author has shewn. For the attraction of a body in the mass (i. e. gravitation) depends wholly on this supposition. This same property we have seen* must belong to the other attraction of atoms. Secondly. The absolute force of gravitation varies as the mass. This, we have also seen \dagger, must be a property of the attraction of atoms chemically considered.-Tbirdly. By decreasing the mass, in gravitation, until the force operating only between a few or single atoms, this force would become imperceptible at a very small distance, which exactly agrees with the attraction of atoms in question ${ }_{*}^{+}$ Fourthly. It has been above§. I think, clearly shewn that the attraction of atoms, as conneeted with chemistry, is universal ; and is therefore in this respect perfectly similar to the attraction of atoms named gravitation.

We have here two forces exerted by the very same atoms, (namely those of which all masses in nature are composed,) and possessing the same properties, as far as a comparison can be carried on between them; and this extending through numerous particulars; whence we may conclude, that both are the same force differing only in the accident of distance, from whence it has acquired distinct names-and therefore, since, by the above-mentioned discovery of Nawton, the forces of atoms composing gravitation vary inversely as the square of their distances, this force must still obey the same law, when considered under the name of contiguous attraction.

The truth of this doctrine, which I have been endeavouring to demonstrate generally, will I think be placed beyond all question, by the consideration of the following case.

A celebrated author, whom I have already quoted, has adduced the spherical figure of a drop of water in proof of cohesion operating throughout all its particles. Let us now suppose such a drop, situated in absolute space, to be enlarged by an accession of matter, until it became an ocean. This ocean would unquestionably retain the figure of a sphere ; its parts being kept together by the same force, not at all changed in quality, but only increased in quantity. From having been once a drop, it would become a planet, and its attraction, which was called cohesion, would now be considered as gravitation.

In addition to this, it may be remarked, that part of the fluid, passing into vapor, would form an atmosphere around the planet, (admitting that it was exposed to the usual source of heat.) The force, which detained this atmosphere on the surface of the planet, would constitute its gravitation, which would be no other than the cohesive

[^97]attraction. And, since it operates between the liquid and gaseons atoms, most of which are at a much greater distance from each other, than any two neighbouring atoms of the vapor, it at once proves that atoms in a gaseous state attract each other at all distances.

> Part II.-Of Repulsion. Div. 1st.

Were the attractive force, which we have hitherto treated of, opposed by no other power, it is manifest, that the atoms of all bodies would be in perfect contact, and that all masses would be absolntely dense. Hence there must of necessity exist some divellent, or repulsive power in bodies; for the atoms of none can be in contact, since all are capable of contracting from certain causes. As they, in contracting, occupy a less space than before, the difference between their present and former bulks must have intervened between their atoms; and even much more; for no limit has been found to the contraction of bodies. It is owing to the same divellent power, that heterogeneous atoms cannot come into contact. Hence the limited number of combinations ; and hence it happens, that most gases, on being presented to each other, merely mix, and cannot enter into combination.

Since a divellent or repulsive force is always as evidently operating to prevent the contact of atoms, as an attraction, exerted by them, is operating to favor their contact, the former has no less commanded the attention of philosophers, than the latter.

Any theory, which would at all admit of investigation, must suppose the great opponent force to the attraction of atoms to depend, either on a repulsive power inherent in and exerted by them; or on this force, aided by the power heat ;-or on the power heat alone.

These I shall attempt to investigate severally.-First. Whether the opponent force to the attraction of atoms is a power inherent in and exerted by them.

The theory of Boscovich and a few others may be placed under this head. His theory, as above observed, would sufficiently account for the constitution of bodies, if their volumes were permanent, and their particles always at rest. But, since all bodies are capable of possessing every degree of density, and of expanding and contracting gradaally, such a theory would interfere with known phenomena, which could not take place on the admission of it.

- Bodies, as I have before remarked, would never expand without the introduction of some extraneous expanding power, nor could they contfact, without the admission of a compressing force, of which we have no evidence, and the action of which could not be explained.

In short, as all powers inherent in atoms must be permanent, and as a permanent repulsion cannot alone account for densities and states, which are not constant, the power opposing attraction cannot be solely a power inherent in atoms.

Secondly. Whether the opponent force to the attraction of atoms depends on a power exerted by them, aided by the power, heat.

In a modern treatise on attraction* and repulsion, it is thus asserted :-" The states of elastic fluidity, solidity, and liquidity, in all of which the greater number of simple bodies are capable of being exhibited, at different temperatures, are not uncommonly conceived to depend on the different actions of heat only, giving a repulsive force to the particles of gases, and simply detaching those of liquids from that cohesion with the neighbouring atoms which is supposed to constitute solidity." And he adds, " but these ideas, however universal, may be easily shewn to be totally erroneous : and it will readily be found, that the immediate effect of heat alone is by no means adequate to the explanation of either of the changes of form in question." "There can never be rest, without an equilibrium of force, and if two particles of matter attract each other, and yet remain without motion, it must be because there exists also a repulsive force, equal, at the given distance, to the attractive force."

To this I answer.-It is undoubtedly true, that, to enable the particles of a body to be at rest, the opponent forces, operating on them, must be in equilibrio. And the remark, just quoted, might properly be objected to those writers who have treated of the force of attraction between the particles of solids, as being greater than the repulsion. But, since the question is, whether or not heat be the repulsive power which keeps bodies in the gaseous, the liquid, and the solid state, this remark cannot be considered as a proof on either side, since it has no reference to this question.

Admitting heat as the sole source of repulsion between atoms, its force may easily, nay must be considered, as equal to that of the attraction, whenever particles are at rest. The opponent powers mast be in equilibrio, whether heat be the source of repulsion, or not.

In the same treatise also, attraction and repulsion, it would appear, are considered as being both exerted between atoms, at all distances within a certain limit. In the first place, it cannot be admitted as possible, that at the same distance, the same particles should at once attract and repel each other. But even supposing it possible;-if this repulsion

[^98]be equal to the attraction in the liquid state, since it must be a permanent force, the attraction, being always opposed by an equal force, would never be able, under any circumstances, to draw the atoms into the solid state.

If the repulsion be considered equal to the attraction, when particles are at rest in the solid state, no solid could contract, onless expused to an extra-compressing force, of which (as before remarked) we have no evidence, and which must only operate at certain times, for otherwise no solid could ever expand.

Since then it has been shewn, that, if an inherent repulsion, exerted by atoms, be considered, as one of the great opponent forces to their attraction, it necessarily involves the introduction of an extrocompressing force, which must only operate at certain times; and since no such compressing force can be demonstrated, it is manifest that such a repulsion cannot be considered as one of the opponent forces to atomic attraction.

Thirdly.-That the opponent force, to the attraction of atoms, depends on the power heat alone.

It has been already proved, that no inherent force of repulsion can be supposed to be exerted by atoms, and that such a force would not account for the phenomena of repulsion, which could not take place on the admission of it. It therefore follows, according to the division, that in heat consists the great opponent force to the attraction of atoms.

It is manifest, that previously to an attempt to explain the action of heat, as the source of repulsion, a decided opinion should, if possible, be formed of its nature.

The difficulty of this is apparent, in the fact, that chemical philosophers are divided between the two opinions, that the phenomena called heat depend on vibratory motions in the particles of bodies, or that heat is a subtle highly elastic fluid pervading all bodies.

1. That the phenomena of heat depend on vibratory motions, in the particles of bodies.
The phenomena of heat are of two kinds:-Those, which are apperent to the senses, and commonly called heat; and those of repulsion. The great philosopher Bacon, being unacquainted with most of the facts proving the repulsive force of heat, could only judge of its nature by those of the former kind. He, observing that great heat was produced by the friction and percussion of many bodies, that iron many even be rendered red hot by percussion, was led to the conclusion, that heat consists in a motion in the particles of bodies. But he did not apply his hypothesis to the explanation of repulsion. Of late years a great
philosopher* has extended the views of Bacon, and has endeavoured to explain all the phenomena of repulsion by a vibratory and rotatory motion in the particles of bodies. This great and meritorious author writes in these words :-" When any body is cooled, it occupies a smaller volume than before, it is evident, therefore, that its parts must have approached towards each other ; when the body is expanded by heat, it is equally evident, that its parts must have separated from each other. The immediate canse of the phenomena of heat then is motion, and the laws of its communication are precisely the same, as the laws of the comma. nication of motion." Since all matter may be made to fill a smaller volume by cooling, it is evident that the particles of matter must have space between them, and since every bods can communicate the power of expansion to a body of a lower temperature; that is, can give an expansive naotion to its particles, it is a probable inference, that its own particles are possessed of motion : but as there is no change in the position of its parts, as long as its temperature is uniform, the motion, if it exist, must be a vibratory or undulatory motion, or a motion of the particles round their axes, or a motion of particles round each other." And, he continues, "It seems possible, to account for all the phenomena of heat, if it be supposed, that in solids the particles are in a constant state of vibratory motion, the particles of the hottest bodies moving with the greatest velocity, and through the greatest space; that in fluids and elastic fluids, besides the vibratory motion, which must be conceired greatest in the last, the particles have a motion round their own axes, with different velocities, the particles of elastic flaids moving with the greatest quickness; and that in ethereal substances, the particles move round their own axes, and separate from each other, penetrating in right lines through space. Temperature may be conceived to depend upon the velocities of the vibrations ; increase of capacity on the motion being performed in greater space; and the diminution of temperature, daring the conversion of solids into fluids or gases, may be explained on the idea of the loss of vibratory motion, in consequence of the revolation of particles round their axes, at the moment when the body becomes fluid or aëriform, or from the loss of the rapidity of vibration, in consequence of the motion of the particles through greater space."

It is under the deepest impression of respect for the author that I allow myself to make my observations on the doctrine supported in the above quotation, which observations are only stated from a persuasion of the importance of one decided and general opinion as to the nature of heat in forming the science of chemical philosophy.

* Sir H. Davi's Elements of Chemical Philosophy.
2×2

It is certainly true, that when a body contracts on a reduction, or expands on a rise of temperature, in the one case the particles approach. and in the other recede, from each other. This approximation, and soparation, is a gradual and regular motion. Thus, if two particles are kept at a certain distance from each other, by any force (whether of heat or not) on the removal of that force the particles must have motion, if they approach ; but when they arrive the distance at whick they are to remain, this motion ceases, and is no proof of vibratory motions in the atoms, nor can it give rise to them. When particles approach, they are put into gradual motion, by the force of attraction; and they will not separate, until a saperior force urges them in a different direction.
Since the particles of matter have space between them, and since they exert great attractions for each other, the force, which keeps them asunder, must be equal to their attraction. If this force is a vibration of the particles, it cannot be permanent. No motion can be lasting, whee opposed by any force, however small, unless it is preserved by an equal force. But the vibration of atoms would be opposed by a very powerful force, their mutual attraction ; which would urge them into aboolute contact; when any vibration must cease, from their impact against each other. It cannot be said, that their motion is kept ap by that of neigbbouring bodies, for the vibration of all particles in nature would very soon cease for the same reason.

The expansion, which a hot body produces, in one of a lower temperature, arises from the divellent power becoming superior to their attraction, and producing a slow and progressive separation of the particles of the latter, which power, as above shewn, cannot depend upon a vibratory motion, for any such motion must soon cease. And even could such motion last, it would not be increased by superior vibrations in another body, but lessened. If two vibrating bodies are brought into contact, their vibrations cease directly, from the one body being a mechanical obstacle to any motions in the other. Bat, if the motion in the one is greater, it will still more check any motion in the other, not only from the obstacle arising from its contact, but also from its increased impact, unless it be supposed, that the particles of the two bodies happen to be moving in the same direction, at the instant of their contact. This, which would involve the idea, that all particles in nature are always oscillating in the same direction, at the same moment of time, is moreover contrary to a supposition in the above theory, that bodies of different temperatures vibrate with different velocities, from which their atoms would soon move in different directions at the same time.

That the particles of solids are in a constant state of vibratory motion is incompatible with their mutual attractions, and their gravity. If temperature depended on vibration of atoms, bodies would soon have no temperature, (i. e. fall to natural zero,) for their particles would soon cease to vibrate.

This theory cannot explain temperature ; for bodies would lose their temperature if temperature be vibration. Nor capacity, if capacity be latitude of motion. Nor conld radiation take place, if radiated heat be vibrations communicated through the air, for according to this theory, the particles of elastic flaids move with the greatest quickness. Thus, suppose the particles of any body A, are vibrating at any given rate 10 , and those of another distant body B, at any less rate 8, as the air between them is vibrating with the greatest quickness, let its rate be 20 . If the air vibrating at the rate 20 does not increase the rate of vibration in A and B, how can it transmit from A to B the small difference of their vibration ?-or how can it receive vibrations from A, which vibrates at a less rate than itself. And moreover, as matter of some kind must be present to transmit vibrations, radiation could not take place through a vacuum, as it is known to do, unless the "sabtle medium" of Nswros* be supposed to exist, which is not a part of this hypothesis, and which, as will hereafter be shewn, is very nearly allied to the "matter of heat" of Lavoisiza.

That the repulsive force opposing attraction cannot be explained by vibratory motions, supposed to exist in the atoms themselves of bodies, has been, I trust, proved by numerous unanswerable objections.
2. That heat is a sabtle, elastic flaid, pervading all bodies.

The doctrine of the materiality of heat has been adopted by the greater part of modern philosophers; and the cause of its entering bodies, and separating their particles, has been explained in three ways:

First.-Borrhanse, with some other philosophers, attempted to explain the distribution of heat, solely by supposing that its particles are mutually repellent. Hence its perfect elasticity, which it was supposed would expand it equally through space, so that, in equal volumes of space, there would be equal quantities of heat, whether occupied by other matter or not. And hence he concluded that equal volumes of matter always would contain equal quantities of heat.

That this is not the case, is proved by experiment, for equal volumes of matter, it is well known, contain very different quantities of heat. Moreover, the argument itself is not sound ; for very dense bodies, between the atoms of which a powerfal attraction subsists, would never

[^99]admit heat, until it was so accumulated in rare bodies, that their elasticity was superior in force to the cohesion of dense bodies, which is so far from being the case, that the elasticity of the atmosphere is evanescent in comparison with the cohesion of most solids.

Secondly.-In his Elements of Chemistry Lavoisier proposed another explanation of the action of heat, in these words:-" It is perhaps more natural to suppose, that the particles of caloric have a stronger matual attraction, than those of any other substance; and that these latter particles are torn asunder, in consequence of this superior attraction of the particles of caloric, which forces them between the particles of other bodies, that they may be able to reunite with each other*."

This hypothesis, which treats of heat as a non-elastic substance, is liable to so many objections, that it has had very few advocates, and was probably relinquished by its great author. It is only necessary to remark one objection, which must bave alone induced him to reject it. If the particles of heat had an attraction for each other so far superior to that apparent in the densest bodies, it is manifest, that it would not be diffused through all bodies, but wonld collect itself into masses absolutely dense, between the parts of which the atoms of no other bodies could possibly exist.

Thirdly.-That doctrine of the nature and action of heat, which has been much received of late years, and which was introduced by Dr. Cleghorn, is sosatisfactory, and conformed so nearly to the phenomens of the actions and motions of heat, that it may be considered as the true explanation. This doctrine, as is well known, considers heat as a body, whose particles are mutually repellent, but attract those of all other bodies, with various degrees of force. Hence its perfect elasticity, and hence its presence in all bodies, but in various quantities in each.

Previously to making any further inquiry into the laws and action of heat, I propose to weigh the facts, which have been considered as objections to its materiality, and to state various arguments in proof of its materiality.

The following facts have been at various times opposed to the material doctrine of heat:

1. That, when many bodies are subjected to percussion, much heat is evolved. Iron may even be raised to a red heat. The explanation of this, which has been given by others, does not perhaps place the fact in quite so clear a light, as the following:-Since the force of cohesion in iron is very powerful, it is plain, that the heat between is

[^100]atoms must be compressed with great force, and must exert an equal repalsion. If the compressing force is suddenly increased, so also must the repulsion, the iron being somewhat condensed. But, when these forces become superior to the affinity, which detains the heat in the iron, it is manifest that part of the heat must leave the iron, and this will take place until the affinity for the remaining heat becoming very great, little or none can be evolved, and the density cannot be increas-ed.-This explanation is verified by the experiment. Less and less heat is evolved, at every succeeding blow, until at last little or none can be driven out, and here condensation ceases.
2. That much heat is made sensible by the friction and attrition of many bodies.

Since the particles of heat attract so powerfully, the atoms of all other bodies, as to enter even the densest, much more then will they be accumulated on the surface of bodies, and endow them with a repulsive force. Hence the fact that two plates of glass cannot be brought into contact, as Nzwton has shewn*. But if two bodies, rubbing againste ach other, have this superficial heat compressed, with a force superior to that which detains the most distant particles of it (which from their distance mast be weakly attracted), it must happen, that part of the heat will be separated, while the friction lasts, and will be renewed as soon as it ceases. This explanation, which I have given of the fact, appears to render it perfectly conformable with the material doctrine of heat. As, in attrition, both the forces of friction and percussion on compression operate, there will be a double cause for heat becoming sensible, which has been just explained under the two former heads. The experiment of Rompord, in which much heat was evolved, in the boring of metal, and yet the parts torn off appeared to possess their former capacity, has been sufficiently explained by Mr. Dalton in these words:
" The fact is, the whole mass of metal is more or less condensed, by the violence used in boring, and a rise of temperature of 70° or 100° is too small to produce a diminution in its capacity for heat. Does Count Rumpord suppose, that if in this case the quantity of metal operated on had been llb . and the dust produced the same as above, that the whole quantity of heat evolved would have been the same \dagger ?"
3. The fact, that heat is evolved, in the sudden change of gunpow. der, by explosion from the solid to the aërial state, has been considered as an objection to this doctrine of heat; for this appears contrary to

[^101]the known law, that in a change from a dense to a rarer state, heat is not evolved, but on the contrary becomes latent. Though this is almost an invariable law, in a simple change of any solid A, into a gas A; yet if in becoming gaseous, A undergoes a change into another gas, B, an absorption of heat is not a necessary consequence; for the heat in the solid \mathbf{A} may be sufficient to keep B in the state of gas, or may even be more than requisite, in which case some heat will be evolved.

Thus the oxygen, in the nitre of the gunpowder, daring the explosion combines with the carbon and sulphur. The carbonic and sulphoreous acid gases may not require so much heat for their existence in the gaseous state, as is afforded by the solid oxygen ; hence heat will be evolved. If the experiments of Lavoisise and Crawfurd may be admitted as at all correct, they will prove the justness of this esplanation.

Lavoisisr inferred from his experiments, on the combinations of oxygen gas, that in nitre it retains $\frac{7}{8}$ of the heat, on which its geseoss state had depended. Crampord has stated the capacity of oxygen gas, as much greater than that of any of its compounds, and hence $\frac{7}{8}$ of its heat will be more than sufficient to supply the latent heat of the carbonic and sulphureous acid gases, formed in this instance.

The late experiments of MM. Clement and Disormes, if correct, would show that the capacity of carbonic acid gas is equal or saperior to that of oxygen, and would increase the difficulty of the explanation by making the one offered inadmissible. It mast however be considered, that no conclusion can be drawn with regard to the habitudes of caloric from instances of sudden and violent chemical and mechanical action. Thus no small part of the heat may be liberated by the resistance offered by the air to the sudden expansion of the gases formed. Whence much heat that would have been latent became caloric of temperature at the moment of the explosion, and whatever was extricated would be readily absorbed again from the air on the diffusion of the gaseous products of the powder.

Again, in so great a chemical change we cannot from any establisbed law affirm, a priori, that heat shonld be either liberated or absorbed. Admitting the capacity for heat of the gaseous products to equal, or even exceed, that of the gases condensed in the nitre of the powder, it does not all follow that the latent heat due to the gaseoms state of the former should equal that of the latter gases ; and these appear in nitre to retain this heat, though solidified by the intensity of the affinities.
II.--On Progressive Development in the cold-bloodedVertebrata. By D.W. Nash, Asst. Surgeon, Beng. Est. A. L. S. Corresp. Member S. A.
Among the many important considerations embraced by the theoretical department of geological science, the question of the gradual transition of fossil remains in the strata which form the crust of our globe,-the supposed development of the forms of organic life in a progressive and ascending series,-and the application by analogy of this hypothesis founded on actual observations of that which has been, to the phenomena which are daily recognized in the present state of things, -are subjects of the greatest interest to the geologist and naturalist, while to the cause of science in general their elucidation is of considerable importance.

On these questions the most eminent authorities among modern geologists are divided, and though not perhaps so violent in the expression of their opinions as the Neptunists and Plutonists of a former day, the adrocates and opponents of the theory of progressive development have entered with no, little warmth into this interesting controversy.

Mr. Lyell in his Principles of Geology, in speaking of the conclusions arrived at by Sir H. Davy from the consideration of geological data, expressly states, that, " the theory of progressive development of organic life from the simplest to the most complicated forms, has no foundation in fact."

On the other hand many observers equally high in scientific reputation have imagined that they see, not only in the fossil monnments of former worlds, the imperishable evidences of a state of things differing from, and antecedent to, that now under our observa-tion,-but also in the organization of the present inhabitants of our globe, indisputable proofs of a progressive advance to perfection in the forms of organic life.

It cannot be denied that the fossil remains which have been observed in the different strata of the earth's crust, are arranged very nearly in the order which the animals to whom they belonged, occupy in the natural system of zoology ;-that those genera which zoologists are agreed in considering as the least developed forms are found in the lowest or most ancient formations, and that, as we ascend from the primitive through the transition, secondary, and tertiary rocks, new and more perfect forms of life meet us at every step of the investigation.

Setting aside the consideration of the order in which the development of the invertebrate classes has proceeded, as embracing too wide a field and requiring a minute investigation of the anatomical relations of this vast class of animals, the cold-blooded vertebrata appear to offer the most convenient opportunity of observing the analogies which subsist between animals of the same type of conformation, but differing in the degree of perfection at which their various systems of organs have arrived.

It appears that at one period of the earth's history-that in which the deposition of the secondary formations was taking place,-circumstances were highly favorable to the development of the cold-blooded tribes of vertebrata. The oceans swarmed with enormous cephalopoda, with gigantic individuals of a saurian race which has long since vanished from the surface of the globe, but whose remains scattered in such profusion through the oolitic group furnish the zoologist with data which enable him to fill up many apparent vacuities in the scale of the creation.

Nor, as might have been expected, if we determine to admit the present as the only true standard by which to judge of the state of things in past epochs, was this form of organization chiefly peculiar to the inhabitants of the waters; the ancient continents contained animals of this type only; the megalosaurus and the iguanodon peopled the forests; the banks of the rivers and fresh-water lakes were frequented by crocodiles and hage salamanders, while the pterodactyli pursued their prey amid the palms, the cycadea, and the tree ferns, of the primeval Flora. But not until after the deposition of the great calcareous formation do we find any trace of the existence of a warmblooded animal : not even the most strenuous advocates for the uniformity of the past and present operations of nature have been able to prove that animal life had progressed so far as the development of the class mammalia, or of birds, until after the epoch just alluded to.
The only exception to be made with regard to this statement is met with in three or four specimens consisting of fragments of the lower jaw of an animal which has been pronounced by the highest authority to have been a species of didelphis. This fossil, discovered in the Stonesfield slate, a member of the oolitic series, lying below the cornbrach and above the Bath oolite, contains nine similar acuminated molares, terminating in three elevated points; but as no living didelphis possesses this number of molar teeth on one side of the jaw, and as those of the didelphis present the characters of insectivorous teeth,
it may be permitted to entertain a doubt as to the animal to which this specimen should be referred.

The shape of the teeth appear to indicate a carnivoroas character in the animal to which they belonged, and bear a considerable resemblance to the molares of the seal.

Supposing this to be the case, the position of this fossil would not be, as Mr. Lrsll imagines, as fatal to the theory of successive development as if several hundreds had been discovered, since its appearance is subsequent to the period in which the great Saurian reptiles were the most abundant; and should it prove to belong to the genus phoca or to some cetaceous animal, it would be an example of the commencement of the type of mammalia in one of the least perfect tribes of the order, and therefore an additional argument in favor of the theory it is intended to sabvert.
In endeavoring to show that there actually does exist what has been called a stimulus of perfection in the organic world, it will be necessary to take a system of organs in its most imperfect form, and to investigate the steps by which nature has succeeded in effecting a series of gradual improvements.

Of the various functions condacing to the preservation of the individual, none is of more importance than that by means of which the oxygenization of the blood is effected, and this fluid rendered fit for repairing the waste of the body, and supplying materials for the growth and increase of the different organs. The development of the respiratory and circulating systems will necessarily be in a certain and constant ratio to each other, and, wherever we see a perfect respiratory apparatus, we have an indication of a proportionally complicated set of organs for the circulation of the blood, and consequently an increase in the irritability and nervous energy of the animal.

The respiration of the embryo in warm-blooded animals is at first solely cutaneous, and the heart consists of two cevities, both systemic, as no respiratory organs are developed. The systemic ventricle is then divided by a septum, and the right ventricle thus formed is prolonged into a tube which opens into the aorta subsequently to the origin of the branches which supply the apper portion of the trunk. This prolongation of the right ventricle is called the ductus arteriosus, and from it are given off small branches, which go to supply the lungs. The circulation is now that of a reptile, the heart in effect consisting of two auricles and a ventricle; but on the emergence of the animal from its fretal state, the lungs become the immediate organs of respiration ; the blood is more perfectly oxygenized; the irratibility of the
animal increased ; the ductus arteriosus is obliterated; its pulmonic branches alone give a passage to the blood, the whole of which, now andergoing the necessary changes in the lungs, is sent from the systemic side of the heart to perform its functions in the animal system.

There is now therefore a heart of four cavities, and a perfect system of respiration, in short, that of the highest type, birds and mammalia. The first appearance of that form of organization which runs through all the vertebrated classes is to be found in the most perfectly developed tribe of the invertebrata, the naked cephalopoda. The chambered and convoluted shell of the nautilus and the ammonite may be traced in the internal skeleton of the sepia, which consists of numerous concentric lamelle of carbonate of lime, connected by an infinite number of siphonculi running right angles to them. Now suppose each lamella separated from that next to it, and the number of connecting siphonculi reduced to one between each lamina, and a polythalamons shell will be produced.

Still higher we find in the loligo a single cartilaginous plate, somewhat coucave anteriorly, as though its edges were approximating to form a tube, enclosed within the mantle, and lying posterior to all the organs of respiration, circulation, digestion, \&c. This cartilaginous plate performs the office, though imperfectly, of a vertebral column, forming an organ of protection for the nervous system. The carbonate of lime, so universal in the external skeletons of all the Mollosca, has here entirely disappeared, as though preparatory to the introduction of a new element characteristic of the skeletons of the higher classes, the phosphate of lime. By a very easy transition from this simple skeleton of the loligo we pass to the lowest of the cartilaginous fishes, where in the petromyzoz, the vertebral column presents a form almost as rudimentory.

The respiratory and circulatory apparatus in the loligo are very nearly the same as in fish, being entirely aquatic : the aeration of the blood takes place in the branchix, placed on each side, hanging freely in the cavity of the mantle, and fixed on their dorsal aspect to cartibginous laminx, which may be considered the rudiments of branchind arches.
The blood brought by the venæ cavæ to two mascular cavities called auricles, and thence sent to the branchixe, is returned to a third muscular heart, to which the name of ventricle has been given. There is here no essential difference from the circulatory organs in fishos, but a lower degree of development is indicated in the permanent disunion of the muscular hearts, a concentration of organs being one of the most characteristic features in perfection of development.

In the most simple of the cartilaginous fishes the vertebral articulations are not distinguishable; the spinal column is little more than a cartilage through which are dispersed granules of phosphate of lime, and even in osseous fishes the proportion of earthy matters contained in the skeleton is comparatively small.

The normal form of the vertebre in fish is, a cylindrical body with two concave, cup-like articulating surfaces; the interval between two vertebre being filled up by a fibro-cartilage, which of course presents two globular surfaces corresponding to the cavities of the vertebre: this circumstance is of considerable importance, as we shall be able to show the steps by which a transition from this form, typical in fish, to the vertebra of a reptile has been effected.

The lateral development and extensive mobility of the intermaxillary bones are also worthy of observation, as the same characters obtain in the next class, the Batrachia.

In the petromyzon, the nervous system exists in a very rudimentary condition-very much in the state in which we observe it in the embryo of the chick; two delicate cords, placed along the back, and giving off from their sides other nervous filaments.

The two nervous cords developed in the embryo upon the serous layer of the germinal membrane diverge anteriorly to enclose three spaces, which being afterwards filled up by cineritious matter become the medulla oblongata, the optic lobes, and the hemispheres of the brain. In the class of fishes the optic lobes, dedicated to the supply of organs of sensation merely, are nearly double the size of the hemispheres; but as we ascend in the scale, the latter become gradually larger and extended backwards in proportion as the former are retarded in development, and also in some indefinable ratio to the power and extent of the intellectual faculties.

The organs of respiration in the class of fishes are always branchial, but present some differences in the two great divisions of the order, the cartilaginous and osseous fishes. In the latter the branchix, formed by innumerable ramifications of the branchial arteries, hang suspended from the branchial arches, having their outer edges free and movable. The water which is drawn into the mouth by the action of the os hyoides and branchial arches, passes over these vascalar follicles, and escapes by an opening common to all the branchim of one side, and defended by. a valvular structure composed of an opercular membrane and a bony operculum.

In the cartilaginous fishes, on the contrary, with the exception of two families, the sturgeons and the chimeras, the branchim, instead of
having a free margin, are fixed, being connected with the integument by their external border. The consequence of this conformation is, that the water which passes over the branchim makes its exit through distinct canals opening on the surface, whose number varies from four to seven in different genera of the order.

In all this may be observed an evident tendency to a higher degree of development, an attempt on the part of nature to cause the respiratory apparatus of the most perfect of the class of fishes to assume the appearance of that possessed by the most inferior among reptilea, and the next step will be to inquire whether there is not to be foum some intermediate state between the two.

The larva of the common frog is, during its larva condition, bond fide, a fish ; its respiration is aquatic ; its circulation double; it possesses four branchix on each side, suspended from branchial arches, not enclosed however by an operculum as in fish, but hanging free from each side of the neck. The heart consists of two cavities, an auricle and a ventricle; the whole of the blood passes through the branchise by four branchial arteries on each side; it is retarned by as many branchial veins, which afterwards unite to form the abdominal aorta. This circulation is strictly branchial not systemic, and is in every respect the circulation of a fish. Daring this fish-like condition of the larva, the apinal cord presents no enlargements in its course, and extends dowi through a number of coccygeal vertebre ; at this period also the optic lobes are larger than the hemispheres of the cerebrum, as in fish.

This then may be considered to be the intermediate point of development between two series of forms of animal life, and here is the stage from whence to set out in marking the changes which are required to render, not only the same type, but the same individnal capable of exercising its functions in a medium very different from that in which it originally existed.

After remaining in its icthyoid condition for an indefinite period of time, the duration of which is influenced by a variety of circumstances immediately affecting the development of the animal, as temperatore, the action of light, the abundance or scarcity of food, \&c. the tadpole begins to undergo certain changes, which are the prelude to a complete metamorphosis; changes which are to give it the organs and habitudes of a land animal, and enable it to act a part in a situation totally foreign to that to which it has been accustomed.

This first of this series of changes takes place in the nervous aystem. The direction of development, which has hitherto been longitudinal, becomes lateral ; the spinal cord abrinks up, and the coccygeal rerte-
bre of the tail are gradually absorbed; enlargements of the cord are evident at the points where the organs of locomotion are to be produced, and shortly after these organs begin to display themselves.

At the same time an important change takes place in the relative magnitude of the hemispheres of the brain and the optic lobes. In fish, as before stated, the optic lobes are the larger, the hemispheres having attained but a very inferior degree of development; during the metamorphosis of the larva, the latter rapidly increase in size, till they have become considerably larger than the optic lobes; the olfactory tubercles are no longer separated from the hemispheres; the whole cerebral mass having assumed a more concentrated form, instead of presenting the appearance of a number of imperfectly united ganglia.

In speaking of the mode in which the blood circulates in the larva, I described four branchial arteries on each side, passing to as many respiratory organs, and conveying to them the blood which is to undergo the process of oxygenization.

Synchronously with the change which the nervous system undergoes, this mode of circulation experiences considerable and important alter-ations;-the anterior branchial arteries, which are so many subdivisions of the aorta, are obliterated-the posterior branchial artery alone remaining pervious; while its numerous ramifications are reduced to a single trunk, the union of which with the artery of the opposite side forms the trunk of the abdominal aorta. From the thoracic aorta is given off on each side a small pulmonary twig, which now becomes the channel through which the blood passes to the organs of aeration.

Another remarkable circumstance is the change which now takes place in the form of the vertebre. The vertebra of a fish, we have said, presents two cup-like articular surfaces, the space intermediate between two vertebre being filled up by elastic cartilage. The vertebre of reptiles always present one convex and own concave articular surface, the globular head of one vertebree fitting into the conoavity of the one immediately below it, so as to form a ball and socket joint. While in the tadpole state, the vertebre of the animal resemble those of fish; but it was observed by Dutrocber, that, at the period when the change in the respiratory apparatus was going on, the intervertebral substances became ossified, each uniting itself to the vertebra immediately preceding.

When the metamorphosis bas been fully accomplished, the lungs of the adult animal are found to be tolerably perfect, but atill not so minately cellular, and consequently not presenting so extensive a surface for the aeration of the blood as in the higher reptiles. Never-
theless, the respiratory organ would appear to have made its appearance in so perfect a form rather suddenly on the stage, if we were not able to trace it progress towards perfection from fishes themselves through other members of the Batrachian tribe, up to the point where we have seen it completely formed, and capable of exercising all its functions in the adult frog. For this purpose we must return to our examination of the class of fishes.

All fish, with the exception of the genus pleuronectes, are furnisbed with an air-bladder, for the most part entirely isolated from any communication with the atmosphere, and inflated with an aeriform fluid, secreted sometimes by the internal walls of the airsac itself, sometimes by a distinct glandular organ attached to it. The air contained in this bag is found to vary with the habitude of the animal, the quantity of oxygen being increased in proportion to the depth of water which it inhabits.

This air-bag, which is totally imperforate in the least perfect osseons fishes, is found to communicate with the external atmosphere in the most perfect osseous, and in the cartilaginous, fishes; in the carp it opens by a long canal into the stomach, in the sun fish and in the sturgeon it communicates with the œesophagus.

In the proteus axguinus and the siren lucertina, animals belonging to that division of the Batrachia called perennibranchia, from the circumstances of their retaining their branchiæ and their aquatic mode of life during the whole term of their existence-we find two air sacs, very similar in appearance to the air-bladders of fishes, each commonicating by a narrow membranous tube with the pharynx. Upon these sacs a minute branch sent off previously to the origin of the branchial arteries, is seen to ramify, but the influence which can be exerted on the circulation by this means is too slight to be taken into consideretion.

Advancing one step higher in the scale, we come to animale which at a certain period of their life lose the organs of aquatic respiration, and breathe atmospheric air only by means of lungs-in short, undergo the metamorphosis we have been considering in the larva of the frog.

This change is first observed in the tritons or salamanders, belonging to that family of Batrachia which from the circumstances indicated has derived the epithet caducibranchic. In these animals the lungs still retain the form of simple sacs, in the upper and back part of which a cellular structure and more complex ramification of the pulmonary vassels begins to appear -a atructure which is at length
perfected in the family of the Grocodilida, where the moot complete system of respiration obtains among reptiles.

It has now been shown, that in the two great systems which exercise the most important influence over the development of the animal, there is a gradual and well-marked progression towards perfection in the organs by aid of which these functions are performed ; and that it does not require the aid of the imagination to trace the steps by which the simple air-sac of the sturgeon has passed through the intervening stages in the proteus and the triton to the elementary lang of the frog and the more perfect organ of the crocodile.

It will be as easy to show that the same system of gradual progression has been followed throughout all the members of the series: the links which unite Batrachia with the Ophidian reptiles, and these latter with the Saurian tribes, are too evident to render necessary a lengthened detail.

In the gents crecilia we are supplied with the form which conneots the Batrachia with the serpent race. The auricle presents a partial septam, an indication of the change to be effected in the heart of the true serpents, where there are three distinct cavities. In the arrangement of the teeth apon the maxillary and palatine bones, the cacilta tesembles the proteas, but in the shape of the teeth comes nearer the true Ophidia.

With regard to the respiratory organs, the left lang is, as in serpents, retarded in development. The skin is soft and naked as in Batrachia, but according to Baron Cevire, it contains, within its substance, mall scales regularly disposed in transverse bands. The true serpents are separated from the Saurian reptiles by the total absence of any vestige of sternum or extremities ; this is the most prominent character, and will therefore be the most easily traced.

If we passed at once from Ophidia, where extremities are totally wianting, to the lizards where they are perfectly formed, we might sup: pese that there had been a sudden production in one order, of an organ, of which we had observed no elementary condition in the order immediately preceding; a circomstance entirely at variance with all that has hitherto been observed.

But in this instance, as in every other, there have been successive etages through which the organs of locomotion have passed. There is a small family of reptiles placed between Sauria and Ophidia, in whom these organs are seen to be gradually developed. In the anguis and the ophiodurus a rudimentary sternum and pelvis are concealed beneath the integaments; in the scheltopusik a amall fenaur has boen added,
which here commences to display itself externally. From hence the gradual progress of the organ may be traced through the chirates, the bipes and the sepp.
In the same way may be seen the gradual increase in the size of the left lung which had been retarded in growth in Ophidia-and the progressive perfection of the organs of sense, of the osseons, and of the nervous systems. With regard to Chelonis, the highest in the class of coldblooded vertebrata, the consideration of the numerons analogies which their anatomical structure shows to exist between them and warmblooded animals, the commencement of a perfect division of the ventricle, and the evident transition from these animals to the cless of birds, are subjects which would extend this paper beyond the limits of a brief memoir.

In the endeavour to trace the connection between these different tribes of animals, it is to be remembered that the materials for investigntion are comparatively few ; that unacquainted as we are with the inter. nal structure, and more minate anatomical relations of the extinct races, we are deprived of the evidence most material to our cause ; jet imperfect as our knowledge of these animals must necessarily be, we are able to trace in their analogies with existing genera, a type intermediate between two important divisions of the animal kingdom, and occupying permanently the station now held temporarily by Batrechia during their metamorphosis.

Examples of this kind, where the intermediate stages appareatly wanting in our systems of zoology are to be discovered in the ancient strata of the earth, are very numerous. Among the fossil Echinodermata in the chalk formation, the gradation of development, from the flattened and ramified euryale, through the clypeaster, the seantelle, the ananchite, the galerite and the spatangus, to the concentrated and spherical form of the cidaris and echisus, must strike the most cursory observer. The tertiary strata of the Paris basin, have furnished us with the links which were wanting in the order Pachydermata to an up the hiatus which separated the pig and the tapir from the clophant.

If these observations be correct, no organ or system of organs, nor any new type in the animal world, can be said to have suddenly appeared on the stage of existence. There are certain laws to which nature herself is compelled to submit, and by which all her operations must be regulated ; and notwithstanding the weight which attaches to the opinions of the learned professor already quoted, I cannot help believing that amongst them is to be found the law of progressive development.

1II.-Some Geological Remarks made in the country between Mirsapar and Sdgar, and from Sagar Northwards to the Jamna. By the Rev. R. Everest, F. G. S. \&c.

Mirzapar is situated on a kankar bank on the sonthern side of the Ganges, and somewhat higher above the level of the water than these banks usually are. The steep side of it, towards the river, shows a section of strata similar to what is usually observed in this formation, viz. beds of clay and calcareous marl of different colours with nodules of limestone imbedded in them. The lowermost of these beds exhibit some inclination and faults in particular places, which indicate that they have suffered some disturbance since their deposition. Upon these the apper beds rest horizontally and anconformably. One or two casts of shells (apparently fresh-water) and some small fragments of vegetable stems, were the only remains I could observe. But the appearance of the kankar nodules here marks more strongly their origin than in any place I have yet seen. They are mostly of the form of atalactites, from the size of a finger to that of a wrist in thickness, and, when broken, shew a compact, splintery, bluish-grey limestone, with occasionally minute scales of silvery mica disseminated through it. Occasionally too they are dependent from the roofs of small cavities in the clay-beds, and at other times spread out into layers, so as to form a complete seam of limestone. Before quitting the subject of kankar, I wish to notice a remark I have sometimes heard made, that probably the formation of kankar is yet going on. Mr. Piddington alludes to this in his remarks on the silt deposited by the river Hugli, and from his analysis it would appear that the quantity of carbonate of lime in the silt is considerable. That kankar may be yet forming in many places where calcareous springs are now ronning, cannot admit of doubt; but that it is at present depositing from the waters of the Hugli or Ganges I am inclined to disbelieve. For, were this actually the case, we might expect to find kankar on low tracts that had been flooded, after the retiring of the annual inundations; whereas the very reverse of this happens. Asfar as my experience goes, kankar is never found on the low grounds that are inundated. On the contrary the kankar banks are the only parts of the country that remain several feet above the level of the highest floods*.

[^102]At the distance of four or five miles to the south of Mirzapir we come to the sandstone range, about 200 feet high, and presenting a steep escarpment to the alluvial plain at its base. Thence it sweeps round in a N. W. direction to Vindáchal, where it may be traced nearly to the bank of the river. The front of it towards the weter is covered with rounded boulders nearly to its summit. From besoe this range extends to Chwnar, as may be seen in Captain Pranirher's map, and east of that to a place called Jemorah, where I have before mentioned it as occurring. It preserves here the same character as at that place, viz. that of a small-grained, highly consolidated sandstone approaching to quartz rock, usually of a greenish grey or faint pink colour, and splitting into large slabs of divers thicknesses. At Findcochal the general dip is to the west at an angte from 5° to 80°. Further to the east, where the road to Saigar ascends it at the pass of Taird, the dip is to the west, and scarcely perceptible. At the Tárá waterfan a deep section may be seen of it. It presents no variety of character. nor is it at all interstratified with marls or shales. At the foot of the pass I found an efflorescence of soda on a kankar bank, similar to what pecars in the plain to the N. W. of Ghazspur.

After ascending the pass we travel over a country nearly fint and covered with soil and vegetation. Abput 20 miles further on, at Ldtyanj, the rock was laid bare in the bed of a small nullah dipping slightly to the north. The soil above it contained pieces of hankar and iron ore, similar to what occurs abont Bankira and elsewhere. Nine miles farther on in the bed of the Balan river, the rock wes exposed with a slight dip to the west. At the foot of the Kattra pass (for the situation of which I beg to refer to Capt. Frannlin's map, (Trame. Phys. C. vol. i.) I met with soda efforescing, and kankar, at the side of a ravine, as I had done before at Táná. From Kattie the road winds up a precipitous ascent over strata of sandstone dipping to the N. W. The sandetone does not appear to differ from that of the lower platform from Kattra to Tórd, but it is here interstratifed with thick beds of red and greenish-grey marl-slate, and rarely with thim layers of a rock resembling greywacke, rather dark-coloured bat centaining pieces of slate imbedded. At Mowganj, two marches beyond Kattra, the dip of the rock was N. B. at an angle of from $10{ }^{\circ}$ to 15% as seen in the bed of the néla. At Low, a little further on, they were quarrying a slaty marl, with shining facets and white streaks running through it. These streaks are calcareous and effervesce strangly with acids. Pieces of a compact splintery limestone are also to we found lying about on the surface. The strata here are horizontal. In the

Pekariga néld, between Lowr and Mangova, we first came to a thick slaty limeatope, generally whitish, earthy, and marly, and varying to yellowish, greyish, and fine aplintery. At Mangova the dip was to the north, a red slaty marl. About this part of the country we begin to see a distant range of hills, bounding our prospect to the south and couth-west,-the Kymur hills; judging from the outline, they appear to be sandstone with a horizontal stratification, and look as if a third platform or table-land axisted in that direction. Beyond Raypúr a low hill appeared to the south of the road, of a thick slaty limestone similar to that at Pakkáriga: the dip very slight and irregular ; layers of a black kind of porphyry are interstratified with it. This black rock sometimes changes suddenly to white, and appears vitrified oxactly like porcolain. At Revad the limestone was extensively laid bare in the bed of the river, but it is here principally massive, pasaing from greyish to bluish black and black, and exactly rosembling the mountain limestone of England. At Rimpuir, one march beyond Rewal, strata of red and variegated marl, most of them calcareons, were exposed in the bed of the rivalet for two or three miles to the south ;-dip slight to the north. Beyond Rampuir the seme bluish black limestone appeared as at Retoah. At Patríhat a similar limẹ, stone was resting on the variegated marl slates, with a alight dip to the north. Near Lohivod we passed over horizontal beds of a crumb, ling green and red marl for a considerable distance. At Ndgovar a cimilar limestone appeared to that at Petrahat, resting like it upon the marl slate. But it here appears to abound in what I believe to be coralline remains, I might rather say, to be entirely composed of thens. I forbear desaribing them, as I have sent specimens with this paper, which can be examined by those who have means of reference at hand*. I was not fortunate enough to discover any of the atems of farns and gryphite shells, deseribed by Capt. Franiklin; nor in my whole journey over this limestone did I meet with any other kind of organic remains than the one I have just now spoken of, though I made diligent search for them during a whole fortnight. They must, therefore, be extremely rare, and in this respect the linecatune differs widety from any of the English limestones above the new. red seandstone. From this place we passed alternately over strata of sandstone, red marl slate, and limestone, without being able to trace their conmection with each other, until we came to Hattal. Here on the alopo

[^103]to the east of the village were horizontal strata of sandstone exposed to view ; at the first nálá, lower down, was a whitish argillaceosa limestone overlaid by sandstone; at a nálá still lower down, layers of sandstone, limestone, and red marl slate were to be seen interstratified. A few miles further on, at Nagar, a low cliff on the side of the river Sonar shewed a section of the strata as follows: uppermost layers, sandstone ;-middle, red marl slate ;-lowest (in bed of the river) argillaceous limestone. I had before conjectured that this would be the case from the continual alternations of sandstone and limestone, every mile or two along the road by which we had travelled, though both were horizontally stratified, and little or no difference of level was to be noticed. This led me to conclude that the limestone was of no great thickness, nothing more indeed than a bed in the sandstone, and the appearances I have now described at Hattah and Nagar confirm this. Capt. Franilin speaks of the limestone being not more than 100 feet thick upon the sandstone, I have never found it 10 feet thick, without layers of sandstone interstratified. Beds of limestone of a similar kind do not appear to be uncommon in this formation : near Cheynpur, about 35 miles to the south of Ghasipur, I had an opportunity of examining one of these. The sandstone range there presents nearly the same appearance as at the back of Mirsaphr, except that it is somewhat higher, and the dip, as far as I traced it, (which wes about 20 miles to the eastward) is inwards, or to the sonth and southwest. At a place called Museaye the limestone may be seen cropping out at the base of a sandstone hill, and dipping at a considerable angle to the south. It is neually slaty, but varies much in character in other respects, passing from grey to black, and then resembling the English mountain limestone. No remains could be found in it, bat about 10 miles to the eastward it is seen again at Bitraband. Bat I have neither seen, here nor elsewhere, any of the beds of loose slate and clay that accompany the lias in England. Were it necessary to class these with any of the European formations, transition limestone would be the most proper name for them. Though it is certainly more correct to consider them merely as beds in the sandstone; which sand stone, it mast be remembered, is never found reposing on any bat primitive rock.

As we leave Patteria, the easternmost extremity of the hills of trup fronts us, and the road winds along it for some distance. For 30 or 40 miles to the east of this the strata of sandstone had become brokea and disturbed, dipping in various directions. Rolled pebbles of sandstone and pieces of agate and chalcedony are seen lying aboat, not
confined to the water-courses and lowest grounds; but extending over the highest ridges. Near Patteria, the bank of the Sonar shewed a section of a bed of pebbles several feet thick, containing fragments of shells of the genera cyclas, paludina, and wxio. At Usláma I observed a carious appearance, which would lead to the inference that kankar nodules and the soil in which they are imbedded were deposited on the sandstone at a time when the latter was in a state very different from what it is at present, viz. soft and flexible. At first sight it appeared that the kunkar and soil were interstratified with the apper layers of sandstone; but on looking further it seemed that both had come in from above through a fissure in the rock, and that the layers at the edge of this fissure had been bent downwards, as if by the superinB
cumbent weight. Thus \mathbf{A},
Now no pressure however applied is sufficient to bend a layer of sandstone in its present state. In the ruined palace of Aebar at Fatteh: puir Sikri, many slabs of sandstone that have formed parts of the roof of the building may be seen broken asunder from long-continued pressure, bat none of them, though there are many entire, are in the slightest degree bent.

At a short distance beyond Patteria the road passes over a white earthy limestone rock, containing sandstone gravel imbedded. This, in some places, loses all massive appearances, and becomes a collection of nodules not differing from kankar. They are however more white and earthy, approaching to the nature of chalk, than I have met with in the country to the eastward. As we advance, the peculiar outlines of basalt present themselves in the country round. The road soon crosees what has apparently been a stream or coulée, and has taken the lowest ground. It is dark-coloured, nearly black, and considerably cellular on the outside; yet this is an effect only produced by weathering; within, it is a solid hard basalt, of great specific gravity, and containing olivine imbedded. The surface of the soil in the country round is strewed with large round balls, resembling the volcanic bombe of volcanic districts : but they too, although scoriaceous on the outside, are, within, a solid basalt. With these are found abundance of agate and chalcedony. These appearances continue all the way to Sager, and the rock does not differ in character, except that it sometimes becomes of a lighter colour, and is then in a high state of decomponition, crumbling under the hand. Three or four miles before reaching Ságar, where the road had been cat through the rock, a
ridge of basalt affecting the columnar form is soen resting spen a lighter coloured stratum, which shews by its state of decorapositios, its great antiquity. From all I have been able to ste or learn of thie formation from others, it appears every where to preserve great andformity of character, apd resembles (as stated by Mr. Lyrill whea speaking of it on the banks of the Nerbudda) the currents of prismatic lava in Auvergne. Currents of porous lava, cones of cinders, scoria, pamice, ashes, all those products that peculiarly belong to modern vodeanic formations, are wanting. We meet every where with a compet heary basalt, with olivine sometimes and augite crystals imbedded, and agates, chaloedony, and jasper in great variety and abundanoe. And though some of the corrents appear to have taken the lowest grousd, yot their outlines are so worn down and effaced, and their surfaces are so deep in soil and vegetation, that it is difficult to aseert even this with certainty.

About a mile distant from Ságar many white blocks appeared by the road side, which I at first mistook for a kind of trachyte. from the peculiar ragged appearance of them : add to this, that crystals are disseminated in the porols earthy base, looking just like the crystals of glossy felspar in that mineral. On minuter inspection, however, it is nothing but limestone. Its softness, its strong effervescence in acid, and specific gravity, (2.67) separate it from every sabstanoe with which it might be confounded. Besides the form I have mentioned, it sometimes becomes altogether earthy, and then reminds us of the most common form of deposits from calcareous springs : at other times it is altogether crystalline, and then passes into a fibroms form, resembling satin-spar, or calcareous alabaster. It has beea deposited at the side of a coulee of basalt, and it is here that Capt. Slesman discovered the remains of palm trees changed to a browacoloured flint, or rather jasper. As one kind of palm tree (the date palm, I believe) yet commonly grows by the side of most ruaning streams in this part of the country, we have no reason to suppose any change of climate to account for their appearance here. The manner, however, in which they are scattered through the soil is not so easily explained. They are asually found above the solid stratum of calc-tuff, and a trunk is seldom found entire ; but they are in sharp angular* fragments, as if they had been shattered by a violent blow : with them are pieces of the calc-tuff, which is found below. In the short distance from Patteria to Ságar we had met with two of these for-

[^104]mations*. They are nothing bat kankar somewhat more developed, and probably were deposited at a period when the continent was raised above the level of the surrounding ocean. Among the remains, however, from the neighbourhood of Jabalpar, which appear also to have come from a recent calcareous deposit, are shells which appear to be marine. At Txismahl, about 30 miles north-east from Ságar, I had an opportunity of observing another mineral more largely develnped than I had seen it in the country to the eastward. This is the hydrated iron ore, which occars in loose pieces about Bardwán and Barkuira, often accompanied by kankar. It is, I believe, the laterite of Dr. Buchanan, and here forms the summit of the Twismahl bill in a bed of many feet in thickness. For the reason why a deposit from springe can thas cap an isolated hill rising out of a plain, 1 must refer to M. Montlosiba's ingenious explanation of the isolated peaks and platforms of basalt in Auvergne. This mineral is largely developed in the country to the north of Twismahl, and is, I believe, the ore which is usually smelted for iron.

We left Tuismahl in a N. W. direction, and soon came upon the sandstone again. It is, to be sure, occasionally to be seen in isolated ridges rising out of the basalt; but now this latter disappears, and it becomes the formation of the whole country roand us. We find the basalt again some miles before reaching. Issdgaxh, a fortress about 50 miles north of Seronj, and it here shews more symptoms of a recent formation than I have yet seen. The coulets are better defined; they have evidently, in some places, taken the lowest ground, and their surface is yet rugged in a degree, but their composition is, as before, a solid basalt. We quit the basalt altogether at Issdgarh, and come upon the sandstone, which we travel upon to Pahargart, about 30 miles west of Gwalior, where we descend into the plain, and find ourselves again among kankar banks and ravines. The sandstone remains unaltered in character. In the bed of the Betwa it was quartz rock. In the country round Delhi it is usually quartz rock, nearly perpendicular, and dipping to the castward. A few miles to the south of Pahargarh I observed a peculiar appearance of the kankar. It forms a calcareous cement to a bed of rounded pebbles, and above this forms another bed similar to those which are to be seen so frequently on the banks of the Ganges.

[^105]
IV.-On the Native 1 llum or Seldjit of Nepal By A. Camphell, Aecivant Surgeon, \&c.
 H2

In the number of the Asiatic Society's Journal for June lats, there is a matice and analysis of one of the mineral productions of Nepal called "Se lajitt," or, by the natives of this plase more commonly "Puthar ka Passeo" or simply "Pacseo" (Sweat). As the analysis was furnished by Mr. Stisver_ son with the object of bringing the substance to public notice towards its extensive employment in the arts, the following particulars regarding it may I hope contribute in some degree to facilitate the above purpose. The spectmen analyzed by Mr. S. contained in 100 parts, 95 parts of sulphate of alumina, but it is not generally speaking procurable in that state of purity; the fol lowing, the result of examination by Captain Robinson of several portions talen at random from the bazar, shews move correctly the value of the mineral as it is obtainable in large quantity, and in the state in which alose it oould be made available for use in the arts. The purer portiona being in such domand in medicine and surgery, are raised in price to an extent quite incomp patible with their profitable application to the general uses of commerce. In 100 grains are contained, sulphate of alumina, 66.

The mineral in the above state (often more pure) is found throughout the lower, central, and upper hills of Nepal. Its external characters are those described by Mr. S." save that the lumps have generally an admixture of red sand, and frequently portions of micaceous stone embedded in them; some of the humps have the smooth surface of stalactites, and are net andike these deposits. All are readily soluble in water, and when touched with the tongue give the taste of common alum. It is said to exude in this sate from the surface of soft rocks; and sometimes to be dug out of their subetance ; and from these sources it is callected in considerable quantitien during the cold and dry seasons, and carried by the Bhoteahs, Múrmis, and other hill people to Katmandú, to be exchanged with the merchants of that city for money or other articles. From hence it is distributed thoughout the valley in small portions for medical purposes, while the bulk of it is carried to the plains of India by petty Newar merchants, and the numerous Baiparís who annually visit this country from various adjacent, and remote parts of Hindústan. The cost of production and transport of an article to the scene of its consumption, is the first knowledge the trader wants ; and if the price pald by Mr. 8. for his specimen (one rupee for two rupees' weight) was the real value of Salajit on the banks of the Ganges, its use in the arts

[^106]of dyeing, printing, \&so at that place, as at any other further removed, muat for ever remain problematioal. The price he puid for it way that which the phinsiaians of India give for a drug to which thoy attach an undue merit, and en the sale of which they realize a huge profit from their aredulous and ignorant patients. A reapectable anthority tells me that he has paid for this atuff at Benares one rupee for one rupee weight, and at more remote places from Napal it is sold at a rate still fhore exorbitunt. The average prioe of white* Salajit in Katmandí ranges from 19 annas to one rupeo a dhamé of three cacha eeer, or from 11 to 15 rapees per pakka maund of 40 seent, and the cont of transport to the banks of the Ganges or Gandeck is as fol-lowi:-

A hill porter will carry two maunds from hence to Hitounda for two rupees cone anna, and a bullock will earry from thence to Patnce four maunds at a charge of two rupees seven annas, or from the same place to Gooindganj (on the Gaidak, 10 miles south of Betiah) for one rupet 14 annas. Thus the mineral can be stored at Patna at an average cost of from 148 to 188 rupees per maand, and at Govindganj for 15 annas per maund less, i. e. for 189 to 179 rupecs. This calculation except the carriage from Hitounda in made in Nepalese rupees, the difference between which and sicca rupees is as 18 of the former to 100 of the latter, and there is no additional expense except an export duty of $\frac{8}{2}$ per cent. ad valovem, levied by the Nepal govern. ment, unless there be (unknown to me) an import duty levied in our pro vinces, on minerals the product of this state.

The quantity now annually exported from Katmatndiu, as far as I can ascertain, is not more than 15 or 90 maunds, but I believe that there would be no difficulty in procoring any quantity required of it, and that without any addition to the present cost ; for as it is found without the previous expense of digging mines, and transported without the necessity of making roads, an increased demand would only have the effect of inducing a greater number of the hill people to collect the stuff in the hills of their neighbourhood, and convey it to the capital ; or perhaps with a steady demand the produce of the lower hills would be carried direct to the plains by the collectors of it, and the profit of the first buyer or Kutmandí merchants by this means saved to the consumers in the plains. Saldijt in Nepal as well as in India is at precent confined exclusively to ase in medicine and surgery, and in both coantrien it enjoys a very high reputation, and is used in both as a remedy in the same diseaser.

In India it is in much greater repute than in the land of its pro--duotion, as its price there shews; and its virtues in some affections are

[^107]said to be unequalled. Internally it is given as a sovereign remedy in parméo (gonorrhaes), in gleet, gravel, stone in the bladder, semi. nal weakness, and sometimes in alvine fluxes; its dose is (to an adult) 10 grains finely powdered and given in ghee: it also composes an in gredient in several of the compound medicines administered by the na tive physicians, and is said (possibly with justice) to be an admirable remedy in gravel as well as in diarrhoea. Externally it is chiefty employed in powder as a styptic in recent wounds, and, in solution, to bruises and aprains, as well as a wash for foul ulcers. In severe cases of falls and bruis es it is internally administered, apparently without any better reason thea the one stated by themselves, viz. that its being good for a bruised leg "ought to make it useful to the internals of a hurt man." It is mach prized by old women as a remedy in infantile diseases, such as slight fever, diarrhces and bronchitis-and few faqírs who dispense health to the bo dy are without this mineral. It is exported, from Nepal in small quantities to almost every part of India, as few traders, from the horse merchant of the Panjab to the Baipárí of Tirhoot, leave this without some of the drug, and the faqírs, who flock here annually in incredible numbers, distribate their small stores to their brethren of the craft at every pilgrimage from Jagarnáth to Mánsurwor, and from Raméswar to Dwarika. This mineral is not confined to Nepal; it is a produce of seme part of Behár*, and is said to be found in small quantity in different parts of the Vindhya range of hills; although according to the testimony of the Katmardí merchants " of inferior value in medicine to that of Nepal." Its use in the arts of calico printing, dyeing, \&c. does not seem to have been contemplated even in India, where those arts have been so long practised; and although printing is done after a rude fashion throughout the valley of Nepal, and the mineral is a native of its surrounding hills, I cannot learn that it is ever used in the making of mordanta, for which purpose the sulphate of alumina is above all other salts the best adapted, and for which it is in such large demand throughout Europe. It remains therefore for European intelligence to introduce this mineral into general use, and when it is considered that all the alum used in Europe for dyeing, printing, whitening paper, tanning and dressing leather, \&c. \&c. is manufactured by a tedious and expensive process, it will seem strange that a nearly pure native sulphate of alumina should be so abundant within a few days' journey of the river Gangea, and not have long ago, attracted the attention of the mercantile community of India, or the numberless dyers, printers, and tanners carrying on their separate vocations throughout the Gangetic valley. To assist Mr. Srevenson or any other person in procuring this substance, I offer such aid as being on the spot will enable me to give.

[^108]
V.-Defence of Lt. Burt's Trisection Instrument.
 To the Editor of the Journal of the Asiatic Society.

Sis,
The accompanying observations regarding the correctness of Mr. Burr's instrument for trisecting angles, described in No. 11, suggested themselves to me, in consequence of my attention having been drawn to it by some remarks contained in a note at page 159 of No. 15, and I take the liberty of sending them to you, in the hope, that should you think them likely to be of interest to any of your readers, you will give them a place in the Journal of the Asiatic Society. As it is not improbable, however, that ere this letter reach you the subject may bave been taken up by a more able correspondent, or that its object may have been anticipated by Mr. Burt himself having forwarded a reply in defence of bis invention, I hope that in either of these cases you will have no hesitation whatever in laying this communication aside.

In the note above alluded to, it is objected to Mr. Burr's demonstration of the correctness of his instrument, that the rad. $b 0$ is not proved equal to rad. a 0 , and that it is in consequence imperfect. In the way however in which I understood the description, it appeared to me that the length of $o b$ was conetant, the leg a d being confined to a fired point of it by a groove; and although not so expressed, I imagine it mast have been intended that, that point should be at an equal distance from the centre with the point a. Should this supposition be correct, the demonstration would, 1 imagine, be complete, without the necessity of proving that the locus of the point b is the circomference of the circle; but that such is the case whenever the angle is trisected, would be eusily demonstrated as follows :-Let BAF (fig. 1) be any angle whereof BF is the chord, and let AC be the line trisecting the angle BAF and crossing the chord BF in D . It is required to prove that if from the point B with the radius $B D$ an arc be described cutting $\mathbf{A C}$ in \mathbf{C} (whence BC=BD) then, that the point \mathbf{C} shall be situated in the cireumference of the circle whose centre is at A and radius=AB, or that $A C$ will equal AB.

$$
\begin{aligned}
\text { Pirat } \angle \mathrm{BDA} & =\angle \mathrm{DAF}+\angle \mathrm{AFD} \text { (EII. I. 32) } \\
& =\angle \mathrm{DAF}+\angle \mathrm{ABD} \text { (Hype.) (No. 1.) } \\
\text { Again } \angle \mathrm{BDA} & =\angle \mathrm{DBC}+\angle \mathrm{BCD} \\
& =\angle \mathrm{DBC}+\angle \mathrm{BDC} \\
& =\angle \mathrm{DBC}+\angle \mathrm{DAB}+\angle \mathrm{ABD}
\end{aligned}
$$

Equating these two values of $\angle B D A$, we have

$$
\angle \mathrm{DAF}+\angle \mathrm{ABD}=\angle \mathrm{DBC}+\angle \mathrm{DAB}+\angle \mathbf{A B D}
$$

Taking $\angle \mathrm{ABD}$ from each side, $\angle \mathrm{DAF}=\angle \mathrm{DBC}+\angle \mathrm{DAB}$
But $\angle \mathrm{DAB}=\frac{1}{1} \angle \mathrm{DAP}$ (by hyp.) therefore $\angle \mathrm{DBC}$ also $=\frac{1}{2} \angle \mathrm{DAF}$ Whence also $\angle \mathrm{DAB}=\angle \mathrm{DBC}$
But the angle ADF or its eqnal $\angle B D C$, or $\angle B C A$

$$
\begin{aligned}
& =\angle \mathrm{DAB}+\angle \mathrm{ABD} \text { or } \\
& =\angle \mathrm{DBC}+\angle \mathrm{ABD} \text { or } \\
& =\angle \mathrm{ABC}
\end{aligned}
$$

Whence $\mathrm{AB}=\mathrm{AC}$.
With regard to the latter part of Mr. B.'s paper, concerning the removal of the fourth leg of the instrument, I am not quite sure that I fully comprehend the mode in which the construction of the scale is detailed. If, however, the follow-
ing be a correct explamation of the meantag, there can, I insagine, be no beatation in admitting the conclusion he has drawn. In forming the scale of equal parts upon this fourth leg AB (fig. 2) each point in the scale is to be successively brought to the circumference by turning the scale round the point A, so as that each division shall in tarn terminate a chord of the variable arc AG, and che lime marking the division is then to be cut on it, in the direction of the radins passing throagh it. At the same time the leg AD being placed in its corresponding position (rix. at an equal distance on the other side of a perpendicular to CG), its divisioas will be marked by the same radius, and this is to be done for every point of the circumference $\mathbf{A G g} \mathbf{g}$.

The divisions upon AD, therefore, form a scale of chords equal in length to those of the corresponding arcs $A G, A g$, and each of the lines forming them, will by the constraction tend to the centre when AD is so situated as to cut off an are three times the extent of that of which AG is the chord; and the application of the instrument merely consists in adjusting the line AD to the chord of the given arc, and then turning round the movable radius CG till it coincide with the division, which in that position would if produced pass through the centre, and which, if the coincidence be exact, will of course direct the radius to an arc one-third of AD. It must however be shown that in any position of AD there can be only ome of the divisions which tends to the centre (or can be made to coincide with the radius), this may be easily proved; for if PL (fig. 2) be the correct division on the ecale, catting off (by radius passing through it) the arc AG $=$ one-third of the are AD , and if f l be any other division belonging to an arc $\mathrm{A} g$ the whole of the divisions having been marked off in the manaer above described, then it may be demonstrated that the radius $\mathrm{C} f$ will, if drawn through f, form with f lan angle $l f n$ equal to the angle $f C$ F plus half the angle $g C^{*}$. The instrument therefore seems to be complete enougt in theory without the fourth leg, but in use, it appears to me that the want of it would considerably diminish its accuracy, as it must be very difficult to bit apon the exact coincidence when the divisions are very numerous, and as any error at the poist \mathbf{F} would be multiplied at G in the proportion of the two distances CF : CG, this would be a serions evil in large angles, as the focus of the point P is a curve thich

[^109]gradually approacher, and ultimately (when the angle trisected equals 180°) passea through the centre.

Mr. B. says that the fourth leg is absolutely necesaary to the first construction of the instrument, but it has oocurred to me that by forming the scale upon AD. in a different manner it might be dispensed with altogether. Por since AG is alwaya equal to AF, and consequently the angles AFG and AGF also equal, it followa that if the arm AB be turned round till AG coincides with AF, that the point G will also coincide with the point F, and the line FL would form an angle with AG; as for instance the angle AGp equal to the angle AFL or AGF. The inatrument would therefore I think be equally correct if the divisions upon $A B$ were first drawn in the way that Mr. B proposes, as above described, and, if this leg whan complete were afterwards converted into the chord AD by reversing the inclinations. of all the lines $\mathbf{G q}$, making them form equal angles on the opposite side of a perpendicular to AB , for then $\angle p G A$ would be equal $\angle B G_{q}=\angle \mathrm{FGA}=\angle \mathbf{A F G}$.

As 1 before observed, the locus of the point F (fig. 2) is a curve passing through the centre C. A representation of this is given in fig. 3, which also shows it continued, and passing through the extremity of a diameter at right angles to GC, which it again meets at M, GM being eqnal to GL, the diameter of the circle GDL. From the circumstances of the distance DK being always equal to 2 vers-ain. \angle DCG (which may be easily deduced from Mr. Buar's theorem) may be derived an equar tion to the curre when the co-ordinates originate at the centre (r baing $=\mathbf{G C}$)

$$
y^{2}=2 r x-x^{2}+\frac{r^{2}}{2}-r \sqrt{2 r x+} \frac{r^{2}}{4} .
$$

As it is also easily described geometrically, it affords a very simple form for the conatruction of an instrument for triseeting any angle from 0 to 180°, and conasting of a single piece only. A representation of one which I have lately made up, and found to answer my expectations fully, is given in fig. 4. It consists simply of an ivory scale, whose edge is sloped off, and accurately formed to the figure of the curve GKC (fig. 3), and a small part of the diameter GL produced on each side to ensure its accurate adjustment to one of the sides containing the given angle, for which purpose also small portions of the edge at \mathbf{C} and \mathbf{G} are cut away, in order that the coincidence of these two points with the centre and point \mathbf{G} of the chord of the given angle may be accurately determined. As no graduation whatever is necessary the instrument is very easily made, and the application of it, which is also extremely simple, will be understood from the following example : I must first mention, however, that for more convenient measurement the exact length of the radius GC is laid off on the centre of the scale between the points M and N.

Let GCD ($/ f g .4$) be any angle to be trisected.
From the point \mathbf{C} with the distance CG or MN as a radius, describe an arc GLD. Dram the chord GD, then apply the scale so as to make its edge coincide with the side CG of the given angle, and the point C with the centre of the circlo

[^110]GLD, and of course since the radius is by construction equal to GC, the point \mathbf{G} will coincide with the point G (of the chord). Make a mark at the intersection of the curve GKC with the chord GD, and a line drawn from the centre throagh that point (K) will trisect the given angle. As the curve GKC is the locus of the point D in fig. 1, when $D B$ is equal to $B C$ and $A B=A C$, which corresponds with the conditions of Mr. Burt's demonstration, it is unnecessary for me to trouble you with any proof of the correctness of the instrument in addition to that already given by him. By extending the principle and making use of different curvest and with some necessary modifications, an instrument might be constructed, in a rimgle piece, to divide any given angle in any given ratio (within moderate limits), bat as I have no hopes that any contrivance for this purpose, however simple in applicetion, or comprehensive in its powers, will ever supersede the good old method by trials with the compasses, I shall not further trespass on your patience by indelging in any useless speculations on the subject.

> I am, Sir,
> Your obedient serreat,

Masulipatam,

3rd July, 1833.

P. S. I imagine Mr. Bort's parallel lines passing through the same point are intended to be referred to diferent places, being coincident, and passing throagh the centre when referred to the plane of the instrument, but parallel when referred to one perpendicular to it.

VI.-Computation of the Area of the Kingdoms and Principalities of India.

Captain J. Sutherland, late Private Secretary to the Vice-President, having beee recently engaged in the preparation of a note on the political relations of the British Government in India, adopted a mode, on the recommendation of the Surveyor General, of obtaining in a rough way the area, or contents in square miles, of each state, without the labour of elaborate calculation, to which the im. perfect data of our maps of the country could not ensure very great accuracy.

The boundaries of each state having been marked off on a skeleton map dram on paper, of equable texture, as accurately as this could be done from information procurable in the Surveyor General's Office and the Political Department, the whole were cut out with the greatest care, and weighed individually, and collectively as a check, in the most delicate balance of the Calcutta Assny Office. The weights were noted to the thousandth part of a grain, the balance being sensible to the teath part of that minute quantity. Fifteen precisely equal squares of paper (anfortamedy

* If the whole curve be used and the chord producid each way, it will intersect it is three points (as shown at KK'K" fig. 3), giving as many ponitions of the line CK, and a many solations of the problem. In this case the intersection with the intorior loop, wat K, mark: the third of the given angle, while those with the exterior bramches of the curve trisect its complement (or if larger, its excess beyond 90°) and sapplement.
\dagger The locus of the point of bisection for instance would be a semicircle on the dinmeter GC.

Digitized by GOOgle
not the same as that used tor the map) were previously weighed to ascertain the extent of rariation to which such a mode of measurement would be liable : the results were not very favorable, neither was the paper of such equal texture as might be fairly compared with that nsed for the map : the weights were as follows-(to the nearest hundredth of a grain, apparently :increasing towards the edges of the sheet.
$\left.\begin{array}{lll}1=2.65 \text { grains, } & 6=2.95 \text { grains, } & \\ 2=2.65 & 7=2.90 & 12=2.75 \\ 3=2.65 & 8 & =2.90 \\ 4 & =2.68 & 9\end{array}\right)$

Before setting to work on the states, an index or unit of 100 square degrees, cut from the same paper, was first weighed to serve as a divisor for the rest.
The weighing process commenced in the driest part of the day, taking the whole of the papers together; thus the continent of India weighed 127.667 grains troy. The sam of the individual weights of the separate states was 127.773. The addition was proved to proceed from the hygrometric water absorbed towards the evening; thus weighed, the British states weighed at first 74.366, at the conclusion 74.445 ; the native powers, at first 53.301 ; the sum of them weighed individually was 53.407 ; afterwards, weighed in groups 53,456, being later in the evening. In drawing out the table for calculation, proper corrections were applied to neatralize this source of error, but coupled with the previous examination of the texture of paper, it is safficient to shew that the following table must be looked upon only as a rough approximation in the absence of better information. The superficial area of Hindastan, exclusive of the independent states of Nipal, Lahore, \&c. according to Hamilton, between the latitudes of 8° and 35° north, and the longitude of 68° and 92° east, cannot be estimated at more than $\mathbf{1 , 2 8 0 , 0 0 0}$ English square miles : and the portion belonging to the British and their allies, at $1,103,000$: this estimate agrees very well with the present statement.

Square miles.
The area of the native states in alliance with the British Government was found to be,

449,845
That of the territory under British rule with the remaining small states and jagirdars,

626,746
Superficial area of all India, . $\quad \underset{1,076,591}{ }$
The extent of coast from Cape Negrais to the frontiers of Sinde is $\mathbf{3 6 2 2}$ British miles, the breadth from Surat to Silhet, 1260 miles.

Captain Suthrrland classifies the native states of India under the three following heads :
1.-Foreign, viz. Persia, Kabul, Senna, the Arab tribes, Siam, Acheen.
II.-Rxternal, on the frontier; viz. Ava, Nepal, Lahore, Sinde.

1II.-Internal, which are those included in the present list. All of these have relinquisbed political relations with one another and with all other states. They are, according to the nature of their relations or treaties with the English, divided into six classes :

First Class. Treaties affensive and defensive: right on their part to claim protertion, external and internal, from the British Government: right on its part to interfere in their internal affairs.

Second Class. Treaties offensive and defensive: right on their part to chaim protection, external and internal, from the British Government, and to the aid of its troops to realize their just claims from their own subjects: no right on ite pert to interfere in their internal affairs.
Square milise
Equare milum
6. Hyderabad, containing, by weighment, 88,884 by Hamilion, 96,000
7. Baroda,
24,950
12,000

Third Class. Treaties offensive and defenive, otates mostly tributary, ecknowledging the supremacy of, asd promising subordinate co-operation to, the Brition Government; but inpreme rulers in their own domains.
8. Indore, containing,

4,245 square miles.
Rajputdna statocen. Square milee. Square milen
9. Oudiptar, (H. 7,300,) 11,784 16. Jeaimí, 9,779
10. Jeypár, 13,427
11. Jondptir,.. 34,132
12. Kotah, (H. 6,500, 4,389
17. Kishengarh, 724
18. Banswára, 1,440
19. Pertábgurh, 1,457
13. Bundi, (H. 2,500, 2,291
20. Dángarpar, 2,005
14. Alwar,............ 3,235
21. Keroli, 1,878
15. Bikhanir, 18,060
22. Serowí, 3,024

Square milen
23. Bhurtpur, (by Hamilton, 5,000,).... $1,94 \theta$
24. Bhopal, (ditto 5,000,)............................ 6, 672
25. Kutch, (H. with the Runn 13,300,)............. 7,396
26. Dhar and Dewas, 1,466
27. Dh6lpar, 1,626

Fourth Class. Guarantee and protection, suboradinate co-operation, hat anpremacy in their own territory.
31. Ameer Khan, $\left\{\begin{array}{lr}\text { Tonk,...... } & 1,103 \\ \text { Seronj, } . . . & 261 \\ \text { Nınbahara, } & 269\end{array}\right\} \ldots . \quad 1,633$ square miles.

Pifth Clase. Amity and friendehip.
33. Gwalior, containing, 32, 944 square miles.

Sixtr Class. Protection, with right on the gart of the British Gownment to control intermal affairs.
34. Sattara, containing, 7,943 square miles.
35. Kolapár

3,184

- This column, and other items marked H, extracted from Hamiciox's Hindustan by way of eomparisons

Of the above states, four are Mohammedan ; viz. Hyderabad, Oude, Bhopal, and Tonk. Of the Hindu states, eight are Marhatta; viz. Sattara, Gwalior, Nagpar, Indore, Banda, Kolapurr, Dhar, and Dewas.

Nineteen are Rajput; viz. Oudípár, Jeyparr, Joudpar, Bándi, Kotah, Kutch, Alwar, Bhikanir, Jesalmír, Kishengarh, Bánswára, Pertábgarh, Dúngerphar, Kerolf, Serowi, Rewah, Dhattea, Jhansi, Terhi.
Six are of other Hindu tribes ; viz. Mysore, Bhartpar, Travancore, Sáwantwárí, Cochin, and Dholpar.

Besides these allied states, there are the following inferior Rajships and Jagirdarís: viz. Chota Nagpir, Sirgajer, Sambhalpar, Singhbhum, Oudipar, Manipór, Tanjore, the Bareich family, Perozparr, Merich, Tansgaon, Nepaní, Akulkote, and thoee of the Sigar and Nerbudda country; also Sikkim and the states of the northern hills.

V1I.-Miscrllaneous.

1.-Importation of Ice from Boeton.

The arrival of the Tuscany, with a cargo of ice from America, forms an epoch in the history of Calcutta worthy of commemoration, as a facetious friend remarked, in a medal of frested silver. In the month of May last, we received a present of some ice from Dr. Wigs at Hugli, (whose efforts have so long been directed to the extension of its manufacture by the native process*) as a proof that the precious luxury might be preserved by careful husbandry until the season when its coolness was most grateful :-little did we then contemplate being able to retarn the compliment with a solid lump of the clearest crystal ice, at the conclusion of the rains ! nor that we should be finally indebted to American enterprise for the realization of a pleasure for which we have so long envied our more fortunate country-men in the upper provinces; nay even the beggars of Bokhara, who, in a climate at times more sultry than ours, aocording to Lieut. Bunesse, "purchase ice for their water even while entreating the bounty of the passenger \dagger !" Professor Lasire, with his thonsand glass exhausters, and his beautiful steam air-pumps, tantalized us with the hopes of a costly treat, and ruined poor Ta ylon the bold adopter of his theory :-but science must in this new instance, as on so many former occasions, confens herself vanquished or forestalled by the simple practical discovery that a body of ice may be easily conveyed from one side of the globe to the other, cross, ing the line twice, with a very moderate loss from liquefaction.

We are indebted to Mr. J. J. Dixwill, the agent for the proprietors, for the following interesting particulars relative to the Tuscany's novel cargo, and the mode of shipping ice from America for foreign consumption.
The supplying of ice to the West Indies and to the Southern States of the Union, New Urleans, \&c. has become within these few years, an extensive branch of trade, ander the succemfal exertions of ite originator Pardnasc Todon, Esq. of Boston, with whom S. Auertix, Eeq. and Mr. W. C. Rogeis are aseociated in the present apeculation.

* See page 80 of the present volume, and former notices in the Clizanmag,
\dagger Journal, vol. ii. p. 289.

The ponds from which the Boston ice is cut are situated within ten miles of the city. It is also procured from the Kennebee and Penobscot rivers in the Stase of Maine, where it is deposited in ice houses apon the banks, and shipped from thence to the Capital. A peculiar machine is used to cut it from the ponds in blocks of two feet square, and from one foot to eighteen inches thick, varying according to the intensity of the season. If the winter does not prove severe enough to freese the water to a convenient thickness, the square slabs are laid again over the shees ice, until consolidated, and so recut. The ice is stored in ware-houses constracted for the purpose at Boston.
In shipping it to the West Indies, a voyage of 10 or 15 days, little precantion is used. The whole hold of the vessel is filled with it, having a lining of tan about four inches thick upon the bottom and sides of the hold, and the top lifts covered with a layer of hay. The hatches are then closed, and are not allowed to be opened till the ice is ready to be discharged. It is usually measured for shipping, and eack eord reckoned at three tons : a cubic foot weighs 58 긱ㄴ.
For the voyage to India, a much longer one than had been hitherto attemptedh some additional precautions were deemed necessary for the preservation of the ice.

The ice-hold was an insulated house extending from the after part of the forvard hatch to the forward part of the after hatch, about 50 foet in length. It was constructed as follows:
A floor of one-inch deal planks was first laid down apon the dunnage at the bottom of the vessel : over this was strewed a layer one foot thick of tun, that is, the refuse bark from the tanners' pits, thoroughly dried, which is found te be a very good and cheap non-conductor; over this was laid aoother deal planking, and the four sides of the ice-hold were built up in exactly the same manner, insalated from the sides of the vessel. The pump, well, and main mast were bosed round in the same manner.
The cubes of ice were then packed or built together so close as to leave no apace between them, and to make the whole one solid mass: about 180 tons were thus stowed. On the top was pressed down closely a foot of hay, and the whole was shut up from access of air, with a deal planking one inch thick, nailed upoo the $1^{\text {ower surface }}$ of the lower deck timbers; the space between the planks and the deck being stuffed with tan.

On the surface of the ice, at two places, was introduced a kind of float, having a guage rod passing through a stuffing box in the cover, the object of which was to note the gradual decrease of the ice as it melted and subsided bodily.

The ice was shipped on the 6th and 7th of May, 1833, and discharged in Calcutts, on the 13th, 14th, 15th, and 16th September, making the voyage in four montha aed seven days.

The amount of wastage could not be exactly ascertained from the sinking of the guages, because on opening the chamber it was found that the ice had melted betweea each block, and not from the exterior only in the manner of one solid mase as was anticipated. Calcolating from the rods and from the diminished draught of the ship, Mr. Dixwell estimated the loss on arrival at Diamond Harbour to be fifty-five tons. Six or eight tons more were lost during the passage up the river, and probably twenty in landing. About oae hundred tons, say three thousand maunds, were finally deposited in the ice house on shore, a lower room in a house at Brightman's ghaut, rapidly floored andlined with planke for the occation.

The sale has not, we believe, been so rapid as might have been expected, amounting to no more than ten maunds per diem, although Mr. Rogers bas fixed the price at the low rate of 4 annas per seer, one half the price estimated for the Hugli ice, which was still calculated to be somewhat cheaper in proportion than saltpetre. The public requires to be habituated to it, and to be satisfied of the economy of ita substitution for the long established process of cooling. There may also be some doubts of the best mode of preserving so fleeting a commodity, but on this head we cannot butadvise an imitation of the methods pursued on a large scale on board of the Tuscany. For the application of the ice to the purposes of cooling ample directions have been given in the Gleanings of Science, vol. iii. p.120. A box, or basket, or tin case, with several folds of blankets, or having a double case lined with paddy chaff or any non-conducting substance, will preserve the ice until wanted, and for cooling water or wine the most effectual method of all is to put a lump of the clear crystal into the liquid : the next best is to spread fragments upon the bottles laid horizontally, and leave them wrapped in flannel for a couple of hours.
So effectual was the non-conducting power of the ice-house on board, that a thermometer placed on it did not differ perceptibly from one in the cabin. From the temperature of the water pomped out, and that of the air in the run of the vessel, Mr. Dixwill ascertained that the temperature of the hold was not sensibly affected by the ice. Upon leaving the tropic and running rapidly into the higher latitudes, it retained its heat for some time, but after being several weeks in high latitudes, and becoming cooled to the temperature of the external air and sea, it took more than ten days in the tropics before the hold was heated again to the tropical standard.

Mr. Dixwall has favored us with a sight of the daily register kept by himself on board, which we regret we have not space to insert at length :-The following extracts however will serve to impart some of the useful information gleaned in this first experimental passage from Boston : we sincerely hope and believe that it will afford ample encouragement for a repetition of the speculation, and eventually for a regular annual consignment of this new staple produce of the northern continents ! a scheme is now in circulation for supplying ice all the year round at 2 annas per seer.

Extracts from the Log of the Ship Tuscany.:

[Having occeston to open the run scuttle, foond the alr pouring up from the hold quite warm : a therm. which atood at 80° in the cabin, rose to 84° in the run.]

[July 2, bored with an auger into the ice house, under the main hatch, and came to ice at 10 inchce from the top. Cargo as usual dry.]

[Instead of the unoul 10 minutes pumping, required an hour to ftree the ship thom water ening so cranckness, and having boen 90 days on one tack. She has been pumped out gemerelly 4 or 5 timent or about 170 strokes per diem.]

[Sisce leaving the trades, the water pumped from the hold has boen 8° to 5° warmarer than the see]

2.-On the Aetion of various Lights appon the Retina. By Sir D. Brewnter.

When the eyes are exposed to strong lights, objects cannot be seen of their troe colours, and even lights of ordinary intensity produce a decided deterioration in the tints of a fine picture. Hence it is that we see paintings to most edrantage whea we view them through two blackened tubes held close to the eye. By this mens the colours are not only more brilliant, but faint lights are brought out which would otherwise have been overpowered by the action of lateral light upon the retina. If we turn a picture upside down, and look at it with the head invertod, a similar effect is produced, becuuse the image is received upon a part of the retima which is not so frequently used; and it is for the same reason that the colours of the sky and of the landscape near the horizon are so beautifully seen by looking at them either between the legs, or beneath the arm with the head inverted.

It is well known that the human complexion is seen to greater adrantage in candle, than in day-light, unless the complexions are very ruddy. This arises from there being so much more red in candle, than in day-light. There are certain statee indeed, of the atmosphere, when dark-blue clouds prevail, in which the ordinary complexion appears to great disadvantage; and persons in variable bealch are oftea described as looking ill, when the change arises from the prevailing colour of the clouds.

When gas-lights were first introduced, it was a common complaint among thove who frequented the theatre that they injured the personal appearance of the andience. This bad quality made them so unpopular, that a red colour was commanicated to the light by inclosing it in a reddish coloured glass. The effect, bowever, arose from the great quantity of light which was used, and from its infloeace upoe the retina ; and if the same intensity of light had been obtained either from oil α from candles, the same effect would have been produced. Oar eyes are now so much accustomed to the use of strong lights that the retina is not so easily rendered insensible to the red rays, and the blue colour of the light is no longer complained of. It in, however, still observed, by those who hare been for the firat time expoed
to ges illumination, and the oyee of such persose muct therefore serve an apprenticeship before they learn to see objects in their true colours.
The blue colour of gas-light was ascribed to the badness of the gas; and the apparent removal of this injurious quality has been attributed to its increased purity and to improved methods of burning it: but the truth is, that bad gas, or an imperfect combustion of good gas, produces a much redder light than good gas burnt in the best manner. The smoke which is produced in the former cases iavariably reddens the flame, and its perfect removal causes the gas to approximate to the light of the sun, which is always bluer than that of the whitest flames from wax, oil, or tallow.
There is a very pretty experiment illustrative of some of the preceding observations, which is easily made. Place two candles at the distance of two or three feet from the eye, and about one foot from each other, and having closed one eye, fix the other intently upon either of the candles, as if it were examining with attention some point of the wick. The other candle will be seen by indirect vision, and after a litle time, it becomes much brighter and bluer than the first, in consequence of the part of the retina on which its light falls being more susceptible than the more frequently used portion in the axis of the eye, upon which the light of the second is incident. The higher degree of excitation of the retina, produced by the candle seen indirectly, renders that portion of the membrane leas sensible to the red rays; and if the excitation is continued, the image will become actually blue, and will be sarrounded with a halo of yellow nebulous light. The blue image, indeed, will sometimes disappear, and leave nothing in its place but a nebulous hole.-Phil. Mag. March, 1833.

3.-Substances contained in Optixm

M. Pelletier in an elaborate memoir on opium printed in the Amalet de Chimie, mentions the following principles as contained in opium; viz. narcotine, morphin, meconic acid, meconine, narceine, caoutchouc, gum, bassorine, lignine, resin, brown acid, and extractive matter, fixed oil, and a volatile, but non-oleaginous prin ciple, which rises in distillation with water.

Added to these substances, M. Betrer annonnces (Journal de Pharmacie, April, 1832), another peculiar principle ; it is bitter, crystallizable, forms salt with acids, especially with acetic acid, with which it gives crystals in the form of very white scales, and with sulphuric acid, white silky crystals; no name is given to this substance by its discoverer.
M. Robiquat, it also appears, has separated a new alkali from opium, which he calls paverin. Only a few details of its properties are yet given (Journal de Pharm. Nov. 1832). It differs very remarkably from other vegeto-alkalies in being soluble in water ; saturates acids, is insoluble in potash, and contains much azote; it is very poisonous, and acts very particularly on the spinal marrow.-Phil. Mag.

4.-Death of Captatn J. D. Herbert.

It is with feelings of sincere grief that we record the loss of our most worthy friend and late coadjutor, Captain J. D. Herberrt, at Lukhnow on the 24th instant. He had been for some time suffering under the effects of the climate: a sudden determination of blood to the head was the immediate cause of the fatal event.

JOURNAL

OF

THEASIATICSOCIETY.

No. 22.-October, 1833.

I.-A visit to the Gold Mine at Battang Moring, and Summit of Mount Ophir, or "Gunong Ledang," in the Malay Peninsula. By Lieut. J. T. Newbold, 23rd Regt. Mad. L. Inf.

On the 20th April, I arrived at Assahan from Malacca on route to Mount Ophir. Assahan lies about 31 miles E. N. E. from Malacca, and is our most advanced outpost towards the frontier of the independont state of M war. The stockade is situated on the summit of a knoll partially cleared of wood and crowned by cocoannt trees; it consists of a defence of apright piles driven deep into the ground, and is about sixteen yards square, with a low banquette ranning round; enclosed by this is a small unfinished caserne capable of accommodating thirty men, constructed of Atap. The knoll terminates on the north-east and west in a swampy sawoah, and is approached by a footpath traversing some rough ground from the south; through the eastern part of the sawah runs the Assahan rivulet, and beyond this is a stretch of forest amid which lies enshrouded Ophir's gigantic foot. Assahan, owing to the exactions and tyrannies practised by the petty Malayan chiefs around, has been almost deserted by the native population; who are now, however, re-assured by the presence of our troops, slowly returning to their ravaged homes.

At a quarter to one p. m. Lient. Hawris and myself left Assahan, with a posse comitatus consisting of a naique, six sepoys, and six convicts; Anas Karo, the Panghulu of Sunjiedua, the Imam of Bokko. Danisl Patgra the Portugueze interpreter, Nassp an Abysginian, and a guide named Haji, with ten Malays provided with "parangs" to clear a path throngh the thick underwood and numerons ratans and creepers with which a Malay forest abounds. After travelling along
a footpath through a dense jungle for an hour or so, we crossed the frontier into the Muar territory. The boundary mark, as pointed oot by the Malays, is a large Bankon tree growing close to the path on the right hand. After crossing the Schong and Gummi streams we arrived at the latter place at a quarter-past 3, p. m.

Gummi is, or rather was, a small village situated close to the foot of Mount Ophir : it contained about 20 houses, almost all of which have been forsaken by their inhabitants, owing to causes before-mentioned. It does not appear to have ever benefited by excess of cultivation, but probably owed its former population to the proximity of the gold mines, which merit a brief description.
About sixty yards from the deserted hat which constituted our "Serai," nearer the mountain, is a house almost concealed by the sloping ground on which it stands, inhabited by six or seven Chinese miners, and immediately in front of it is a gold mine. This place is called Battang Moring. The mine is nearly exhausted; it is situated on the flat marshy ground at the foot of the slope on which the Chinese house stands; in length it measures about ten yards, by four in breadth; and six or seven feet in depth.
It is filled with muddy water, which is drained off by a simple bernboo hydraulic apparatus somewhat resembling the Indian Pukotah. The miners descend for the purpose of digging out the metallic earth, by means of rude ladders formed of the notched trunks of trees; s Chinese, who had embraced Muhammedanism, went through the process, which is extremely simple : having dag out a quantity of the earth, which consists of coarse sand, greyish clay and white pebbles, among which crystals of quartz are found, and greenish stones, be placed it in a shallow funnel-shaped vessel of wood, and carried it to a stream of water, conducted by two narrow channels close to the mine.
The water falling from a height of about a foot washes away the lighter earthy particles and clay, assisted by the rotatory motion of the miner's hand. This done, he carefully picks out the atones and other refuse too large for the water to carry off, whilst the gold dost. in minute portions, sinks to the narrow bottom of the vessel, from which it is extracted, carefully washed, and laid by to be made up into small bags each containing one bunkal, ($1 \frac{1}{2} \mathrm{oz}$. tr.)
The gold of Ophir, though small in quantity, is as fine as that of Pahang in quality, being estimated at ninety touch. A gentleman of the Madras Medical Fstablishment, to whom I showed the crystals and
earth, is of opinion that the latter is the debris of the granite forming the summit; the white masses appearing to be felspar in a decomposed state : the crystals are quartz, and the small grains in the earth also quartz. The gold found in it he supposes to be washed down from the mountain as the rock became disintegrated.

The Chinese showed me a specimen of a stratum of clay of a greenish grey colour, beneath which gold is never found; this is the case with the present mine, which they intend quitting to open another a few paces distant.

The Chinese affirm that one mine does not produce monthly more than one tael of gold. This is probably designedly underrated. A tribute is exacted from each individual of one dollar monthly for the privilege of mining here, by the petty Malay chiefs, Inchis Ahad and Mabmed.

They levy it in person every two months. These two chiefs are nominally under the Tamangong of Muar, (whose maternal uncles they are,) but in reality are little better than banditti.

I give the following on the authority of the head Chinese miner at Moung, as the names of the places around Mount Ophir (for the gold is always procured at the foot), where mines have been established :-

Battang Moung, Kedanon, Rejang, Kaddam, Tanong, Paeedalum, Berinjin, Terring, Kayo Arro, Kamoyan, Jongi, Deddam, Poggi Baru, Chindagon, Ayer Kuning, and Ayer Chamhi.

He also informed me that, formerly, nearly 1000 Chinese worked in these mines; but that of late, owing to the unsettled state of the country, they had nearly been deserted. The Chinese, who still work at the mines in spite of the oppression they suffer, depend on Malacca for their supplies, for which they occasionally dispatch two or three of their number, who take down with them the small portion of gold dust they have been able to scrape together. The wild and deserted state of the country, and the extent of forest to be traversed between the foot of the mountain and Malacca, afford opportunities, not unfrequently taken advantage of, by the marauders that infest the frontier, for the sake of the pittance of rice and salt fish, and a few grains of gold dust. Murder is almost invariably added to robbery. Shortly after my visit, two of these Chinese going up to the mines were found murdered, in the heart of the Rheim forest on the road; one with his head nearly severed from the body ; the corpse of the other lay about 300 paces from that of his comrade : he appears to have sought aafety 282
in a vain flight ; his left arm was cut through at the elbow, and body horribly mangled.

We bad a fine view of the mountain from Gmmmi, as the clouds which had hitherto wrapt its triple peak in grey obscurity, now rolled off in majestic wreaths, revealing to us Ophir's picturesque proportions.

We started from $G_{\text {wimmi }}$ at 9 A. m. on foot : the Malays went on in advance clearing the path through the low thicket, through which our path now lay, to the banks of the Jerram river, along which we waded fór some distance; near this we crossed the track of a rhinoceros. About a mile and a quarter from the river stood the deserted house of a Malay, the last trace of human habitation; this place the Malays call Rullowe, which I believe signifies a place where metal is melted, or the smoke which is produced by fusion; from this it may not be unreasonable to infer that a mine formerly existed in this vicinity.

A little in advance of Rullowe the ascent of Mount Tando commences ; this is the longest but most gradual of the three acclivities which constitute the ascent. Having descended this and scaled part of Gunong Peradap, we arrived at a steep bank of rock, called Padang Battw or Plain of stone. On the right of Padang Battu the rush of the river Jerrase down the mountain side was distinctly audible. The surface of the rock is intersected by numerous creepers, which formed a sort of rope ladder we were glad to avail ourselves of. Here we rested a short time, enjoying the extensive prospect this elevated situation afforded. Leaving Padang Battw far below, stands on Peradap's summit a bluff rock named Battw Serambi, which signifies "the rock of the porch."

The rock was first mistaken for the peak itself, but on arriving at the bushy platform that crowns Serambi"s mossy head, Ophir still stood before us, nearer, but steeper and as lofty apparently as ever. A short descent brought us to the bottom of the third and last ascent, viz. Gunong Ledang. The trees here are of a stunted and venerable appearance, being for the most part covered with moss and lichens, a thin carpet of which barcly conceals the primitive rock beneath : we had lost sight here of animals larger than the smaller reptiles that creep among the decayed vegetable matter beneath our feet.

After passing Gunong Tando, the first ascent, elephants' tracke, which were there numerous, were no longer visible. The solitary scream of that singular caricature on the human species, the "Oonka," and the note of the bird Selasas on Mount Paradap, were the last sounds of animal life the forest yielded.

After a short scramble, in which we were obliged in some places to draw ourselves up by the trees and roots, we attained the summit, from which we canght hasty glimpses through the rolling cloud, fast clearing away, of a magnificent prospect beneath. To the sonthward the states of Segamat and Maar; to the north-west the mountains of Rumbowe and Serimenanti; and to the north-east Jompole and part of Pahang, celebrated for its gold. Turning westwards lay the ruins of the ancient charch of St. Paul's, on the flagstaff hill at Malacca, and part of the town itself; its bight and the sea coast from Mount Formosa to Salengore, the glittering and placid surface of the water enamelled with numerous verdant islets. The view inland presented a vast ampbitheatre of thick foliage (with here and there slight bare patches of sawah and pasture land), thrown into varions shades and tints by the rays of a setting sun.

Theextreme apex of the mountain is formed of a block of greyish granite, surrounded by others, lying on a strip of table ground about 40 yards long by ten broad, on which grew some stunted trees, a few of the fir kind, some lichens and mountain shrabs, among which are found the Petis Patis, Samoot, the Russam, and Pruik Krek; the Malays were nnable to tell the names of many of the shrubs, never having seen them in the valley.

A thander cloud growling and flashing a thousand feet beneath us now interrupted the prospect; owing to its influence, probably, the weather had been sultry during the afternoon; the thermometer (Fahr.) although in this elevated situation not sinking below 76° at $4 \mathrm{p} . \mathrm{m}$. at 7 p. y. sunk to 69°, and at half past five A . м. the following morning to its greatest depression 65I. The height of the loftiest peak above the surface of the sea, as calculated by the thermometer and boiling water, is 5693 feet.
The storm gradually ascending the mountain's sides induced us to seek shelter under an extraordinary overhanging rock, a short way nnder the summit, called Battu Seroodang.
The thunder storm had abated and finally ceased a little after sunset, when a host of fire flies, sole possessors of these heights, contending with the stars in liquid brilliance, floated around us, now soaring to the loftiest peak (for we had taken up our bivouac for the night at the foot of the rock near the summit) now sinking and gradually lost, sparkling and twinkling as they went, in the dizzy depths below. The Malays who were with me, complained much of the cold during the night and particularly before sunrise; but a brisk walk down the mountain side,
which brought us in little more than three hours to Gummi, effectually did away with the cause of complaint.

Whether the mountain just described, or its namesake on Pulo Percha or Sumatra, called by Malays Gunong Passaman, or the Ophir of Bruce in Sofala on the Mozambique coast, or Jamison's Ophir on the S. E. coast of Africa, be the Ophir of Scripture, or not, must still remain matter of doubt.

To the admirers of the marvellous I would recommend the carefal perusal of San Masmed's wonderful adventures, in his ascent to the summit of the mountain to entreat the hand of the enchanted princess of the rock for his master, Maburd Sultan of Malacca, as contained in the Malayan historical work the Silladet-us-Salátin, and the Malay Annals.

Notr.-In justice to the mountain I have visited, suffice it here to quote two passages from Dr. Robinson's Theological Dictionary, Art. "Ophir." "Josephas says, that the country of Ophir is in the Indies, and is called the golden conntry. It is thonght be means Chersonesus Aurea, known by the name of Malacca, a peninsula opposite to Sumatra." Lucas Holstenivs after many inquiries thinks, "we must fix on India in general, or the city of Supar in the Colebes : again Lipsnivs, who has composed a treatise concerning the country of Ophir, places it beyond the Ganges at Malacca, Java, Sumatra, Siam, Bengal, Pegu, \&e."

II.-On the nest of the Tailor Bird. By Lieut. T. Hutton, 37 th Regt. N. I. S.'

In Professor Rennis's work on the Architectare of Birds, he gives two accounts of the manner in which the Tailor Bird constructs its nest, and as neither of these appear exactly to coincide with facts which have lately fallen ander my observation, I have been induced to offer the following remarks forinsertion in the Journal of the As. Soc. At page 258, the professor says:
"The most celebrated bird of this division is the one which in the East is par excellence named the Tailor bird (Sylvia Sutoria, Latr.) the description of whose performances we would be apt to suspect for an Oriental fiction, if we had not a number of the setual specimens to prove their rigid authenticity. We do suspect however that these very apecimens have misled European naturalists a step beyond the truth in their accounts of its proceedings. 'The Tailor Bird,' says Darwin, ' will not trust its nest to the extremity of a slender twig, but makes one more advance in safety by fixing it to the leaf itself. It picks up a dead leaf and sews it to the side of a living one; its slender bill being its needle and its thread some fine fibres: the lining of the nest consists of feathers, gossamer and down; its eggs are white; the colour of the bird light yellow; its length three inches; its weight if of an ounce, so that the materials of the nest and the weight

Slockadeal Assahan
Route fromAssahan to Mount Ophir: by L! Newbold.

of the bird are not likely to draw down a habitation so slightly suspended. A nest of this bird is preserved in the British Museum*."

The second account runs thus:
" There are now three of such nests in the Museum, all of which certainly give some colour to the story of a dead leaf having been sewed to a living one; yet we have the authentic narrative of an eye witness of its operations which mentions nothing of this kind, but on the contrary serves to confirm our doubts. It will consequently be advisable to give this narrative in the language of the original observer, whose splendid figure we shall also take the liberty of copying. Comparing it with the Baya, which we have already described, he says: 'Equally curious in the structure of its nest, and far superior in the variety of its plumage is the Tailor Bird of Hindustan, so called from its instinctive ingenuity in forming its nest; it first selects a plant with large leares, and then gathers cotion from the shrub, apins it to a thread by means of its long bill and slender feet, and then as with a needle, sews the leaves neatly together to conceal its nest. The Tailor Bird (Motacilla sutoria, Linv.) resembles some of the Humming birdsat the Brazils in shape and colour ; the hen is clothed in brown ; but the plumage of the cock displays the varied tints of azure, purple, green and gold, so common in those American beanties. Often have I watched the progress of an industrious pair of Tailor birds in my garden, from their first choice of a plant until the completion of the nest and the enlargement of the youngt.' "

In answer to these statements I shall make a few observations on the structure of two of these nests now in my possession, which were found in the garden of Capt. Hearsey, 2nd Local Horse.

The first was neatly formed of raw cotton and bits of cotton threads, woven strongly together, thickly lined with horse-hair and supported between two leaves on a twig of the amaltis tree (cassia fistula). These two leaves were first placed longitudinally upon each other, and stitched in that position from the points to rather more than haff way up the sides with a strong thread spun from the raw cotton by the bird, leaving the entrance to the nest, at the upper end, between the stalks of the leaves, at the point where they join the branch of the tree. Both of these leaves were of course green and living. Subsequently, however, they were blown down by a high wind, and being now withered, the nest appears enclosed between dead leaves.

Dabwin's account therefore will be found to differ materially from mine, inasmach as the bird neither makes use of a dead leaf in the constraction of the nest, nor does it stitch it with fibres, but with strong cotton threads. The lining also of the nest, instead of being " feathers, gossamer and down," is solely of horse hairt.

[^111]I Mr. S. P. Stacy has favored as with two specimens in which also the stitchea are of spun cotton thread : the nest is of cotton and vegetable fibre.-ED.

It appears to me that the nest described by Darwin may have been originally constructed of living leaves, and that one of them through some accidental cause, being detached from the branch of the tree and becoming dry and withered, led to the belief of the dead and living leaves being sewed together-and indeed a case of this kind happened in Captain Hzaragy's'garden, in consequence of which the bird forsook the nest.

I am moreover borne out in this idea by the figure given by Pennant and copied by professor Rennir, in which (as will be seen in the accompanying sketch*), the dead leaf appears to have been detached from a small stalk growing out of the same stem as the green leaf to which the nest is attached. This figure i δ very similar in appearance to the nest in my possession above described.

The second specimen is more satisfactory still, as in it were found an egg and two young birds nearly fledged \dagger. The nest was at the end of a branch of the Bhela (semecarpus anacardiwm), about two feet from the ground, and constructed of the same materials as the above, viz. raw cotton, cotton threads, also a little flax, and lined with horse-hair alone: the leaves are stitched together partly with thread prepared by the bird, and partly with spun thread, and so well concealed was it, that even after Captain Hrarsey had discovered it (by accident) he could scarcely find it again to shew to me. The young birds were placed with the nest in a trap cage, and thus we succeeded in capturing both the old birds.

I am however of opinion that this is not the kind to which the name of the Tailor Bird has hitherto been applied, but a distinct species.
The following is a description of it :
(Syifin ruficapilla ? Miki.) Length from the tip of the bill to the end of the tail, $5 \frac{1}{1}$ inches in one specimen, and four inches in the other; the tail of one is two inches in length, the other $1 \frac{1}{2}$ inch, and both appear imperfect. Crown of the head fine rufous red, nape cinereous with a tinge of rufous; beck, scapulara, and rump and upper tail coverts, olive green; wings light brown, with a tinge of green at the edges of the outer webs, and a tinge of the same on the upper wing coverts; tail of 12 feathers, narrow, the two middle ones longest, of a lighter brown than the winga and with a faint greenish tinge; the outer feather on each side the tail with a masll white spot at the tip. All the under parts are white. On the sides of the throet is a small black stripe, which is only seen when the bird is is motion, wholly disappearing when in a state of rest. Lega alender and flesh coloured. Upper mandible dark horn colour, under one pale; length of the bill half an inch; iridee rufous red.
'They differ only in length.

[^112]The young birds are similar in colours, except that they are paler and the top of the head cinereous with a faint rufous tinge: bill yellowish.

The eggs are white, spotted, chiefly at the larger end, with tawny spots.
They are very lively little birds, exhibiting a good deal of the manner of the creeper tribe (Certhia), carefully searching beneath every leaf, and into every chink and hole for insects, which they seize with great rapidity, firting their tails up and down, and attering a sharp reiteratedcry.

Now it would follow, the accounts of Darwin and Forbrs being correct, that there is more than one species of bird in India, to which the specific name of Sutoria would apply: for instance Darwin says, the Tailos bird is wholly light yellow, and in this Latham agrees with him; while Forbss on the contrary declares it to vie in colours with the humming birds of the Brazils. It appears to me however that the latter author has confounded the tailor bird with the parpled creeper, (Certhia purpurata, Latr), which is the only bird I can remember at all approaching his description. The nest of the purpled creeper is however to me unknown.

That there is more than one species which sews the leaves of plants together to support and conceal its nests, I am almost certain, as a pair of birds, larger than those I have described, have been several times seen frequenting large-leafed plants, among which were discovered the commencement of one or two nests which had been abandoned, apparently from the leaves being blown asunder almost as soon as sewed together by the strong S.W. winds which prevail here. These birds were brown above and dirty white beneath.

The parpled creepers are now becoming plentifal in gardens here, and as I shall pay attention to their habits, and watch them closely, I am in hopes I shall be able to ascertain their method of constructing their nests also.

The description which approaches nearest to my specimens, is that of the "Long Tailed Warbler" of Latian ; viz. top of the head pale rafous, hind part of the neck, back, rump, wing coverts and tail, pale olive green ; quills olive brown, tail long, slender, composed of narrow feathers ; the two middle ones as long as the body. Inhabits China.

This is so near, that I can consider mine as none other. I do not perceive a specific name affixed to it, and have therefore given it that of "Raficapilla." This however can easily be dropped, should the bird have been already christened.

Nors. As the two firat figures referred to by Lt. H. will be found in the "Architecture of Birds of the Library of Entertaining Knowledge, we have omitted them ; the author's own sketch, No. 3, is inserted in plate aviii.-ED.
III.-An Inquiry into the Laws governing the two great powers, Attraction and Repulsion, as operating in the Aggregation and Combination of: Atoms. By Julius Jeffreys, Esq.
[Continued from page 46L]
Moreover, there is another source for the sensible heat, in the sudden and forcible compression, which the circumjacent air undergoes, at the moment of the explosion, from which condensation the air itself must evolve heat. The explosion of euchlorine gas, with an evolution of heat, is perhaps a stronger objection, than the former, for it is not attended with a new combination of the elements. This is, however, an objection rather to one of the laws of heat, namely, its becoming latent, than to its materiality, against which, in fact, it is only an indirect objection, by shewing the law, that heat becomes latent in a change to a rarer state, not to be universal. But the whole doctrine of latent heat might be imperfect, and yet not invalidate the materiality of heat. Nor should an individual exception (supposing it to be such) be considered as sabverting a doctrine of so perfect, and almost universal application, as is that of latent heat; much less then does it refute the material doctrine, which is not necessarily dependent on the former.

The manner however, in which the above experiment is made, appears to me, as lessening greatly its force, as an exception to the doctrine of latent heat. A small quantity of the gas is used over mercary. As this liquid is incompressible, and so weighty as not to be readily susceptible of sudden motion, it must offer a very great resistance to the instantaneous expansion of the gas, and by this re-action may force out sufficient heat and light to become visible (i. e. a spark or flash); but after the expansion is finished, if mach of the gas had been used, it is not improbable, that a fall of temperature would have been evident, in a thermometer introduced.
4. The fact that some gases combine with each other, and form solids, with but a small rise of temperature, as when ammonia combines with many gases, is an objection the reverse of the former; and like it is an exception to the doctrine of latent heat.

It may however be thus explained; that the affinity of such gases, both for heat, and for each other, is so great, that it condenses most of their heat, without evolving it; in the same manner, as when oxygen and nitrogen gases are condensed in nitre.
5. The contraction of clay by great heat, and of water in advancing from 32° to 40° of Fahrenheit, have been considered as objections to the law of expansion, and therefore to this doctrine of heat. The
former however may arise from the great attraction of clay for water; which only the greatest heat can drive off; and of the latter the usual explanation, that it arises from the loss of polarity, which the particles had assumed, appears quite satisfactory. If these be objections, they apply, at least as much, to the theory of vibration; for even were it possible, that an increase of vibration in particles could give rise to expansion, these experiments would show increase of vibration attended with contraction.
6. The combinations and decompositions often effected by the rays of the sun, are certainly not always conformable to the laws of this doctrine of heat; but neither are they to any other doctrine.
7. It has been objected to heat being the cause of elasticity in gases; that this force varies as the density, although in the condensation of gases, much heat is evolved. But this experiment only shews, that, in the condensation of gases, part of their heat is evolved; which if it remained would cause their elasticity to vary in a higher ratio than that of the density.
8. Lastly, it has been objected to the materiality of heat, that notwithstanding the most accurate experiments have been made, it has always been found impossible to ascertain, that it has weight.

This objection however is not valid, since it has neither been possible to weigh light, though few will doubt its materiality, or the materiality of some ether in which its phenomena are seated; which hypothesis merely removes the difficulty of its materiality one step farther. It has also been very justly remarked by a great philosopher, whom I have already quoted, that if this etherial fluid be supposed as much lighter than hydrogen gas, as the latter is than the metal platinum, it could not probably be ascertained to have weight by any means which are known*.

The above are most of the facts, which are considered as objections to the material doctrine of heat, many of which may be sufficiently explained.

Mach more may be said in support of the doctrine.
As the materiality of light can scarcely be questioned, since Sir Isanc Newton has so ably argued in proof of it, and since on it he has bailt his system of optics, which could not be founded on any other doctrine, the striking analogy between it and heat, must strongly point out the materiality of the latter. Heat, like light, is radiated from the san ; like light, it travels with exceeding velocity ; like light, it is radiated by many bodies, is reflected, is refracted ; and according to Brrasd, is sometimes, like light, polarized. From analogy so strik-

[^113]ing as this, some philosophers have been induced to consider them as modifications of the same matter; or that light, by its actions on bodies, produces the phenomena of heat. But of late years sufficient evidence has been brought of their being separate substances. The experiments of Herschel, and Sir H. Englifisld, shewing that heat is not quite so much refracted in the prismatic spectrum as light, whence that much heat is found within the red ray, are a strong proof of this. Nor do the later experiments of Brrard (supposing them more correct). which would prove, that the intensity of the heat within the red ray is less than was represented by these philosophers, at all invalidate the argument. For it is only necessary to shew, that axy heat may travel from the sun, independent of light, to prove a difference between them.

Hersceme has also shewn*, that if the red ray be thrown on red glass, the light is transmitted, but nearly rio of the heat are detained; and hence, that this appears incompatible with the supposition that the ray is homogeneous ; for were it so, the heat transmitted should have corresponded with the light.

The rays from a fire being differently transmitted by glass (those of light being transmitted, but those of heat being most of them detained) is an argument of a similar nature.

Heat is radiated without light by many bodies below certain temperatures, and others, as phosphori, radiate light without heat.

The analogy between light and heat is so striking, that since the former is material, it is almost necessary to consider the latter as such, and yet there is sufficient evidence of a distinction between them.

Itis evident from his writingst, that Sir Isaac Newton was of opinion, that the phenomena of heat arise from the action of light on bodies, causing vibrations in a " subtle medium" in them. But it is equally plain that by heat he meant, those phenomena only which are apparent to the senses and commonly called heat. From the very imperfect state of chemical philosophy in his day, the doctrine of calorific repalsion was scarcely taught ; and most of the experiments, in proof of the materiality of heat, have been since performed.

This great man has by several passages, especially by some in the 18th query in his Treatise on Optics, suggested the existence of a highby elastic subtle fluid, so nearly allied to the matter of calorific repalsion of the present day, that part of this query, with but the smallest modification, is an accurate description of the latter. "If," observes

- Philoeophical Transections for 1800.
† Optics, Query 18.

Sir Iasac Nawton, " in two large, tall, cylindrical, vessels of glass inverted, two little thermometers be suspended, so as not to touch the ressels, and the air be drawn out of one of these vessels, and these vessels, thas prepared, be carried out of a cold place into a warm one, the thermometer in vacuo will grow warm as much, and almost as soon, as the thermometer which is not in vacuo. And when the vessels are carried back into the cold place, the thermometer in vacuo will grow cold, almost as soon as the other thermometer."
" Is not the heat of the warm room conveyed through the vacuum by the vibrations of a much subtiler medium than air, which, after the air was drawn out, remained in the vacuum ? and is not this medium the same with that medium by which light is reflected and refracted? And do not hot bodies communicate their heat to contiguous cold ones, by the vibrations of this medium propagated from them into the cold ones ? And is not this medium exceedingly more rare and subtle than air, and exceedingly more elastic and active ? And doth it not readily pervade all bodies* ?'"

If to these questions were added this one, " And is it not attracted by all particles of all bodies, but with various degrees of force in each ?" This medium would at once form the matter of calorific repulsion, and the phenomena of moving heat would arise from its motion and vibration, which must necessarily happen, both from its various affinities, and from its own elasticity tending to an equilibrium of force. Caloric, like this medium, exists, from the minuteness and matual elasticity of its particles, in what is a vacuum to other bodies. By

* It is a singular circumstance, that some late authors have quoted this passage in order to shew, that Newton was doubtful about the nature of light, and seemed to accord with the theory of tremulons motions in an universal ether, rather than of moving particles emitted from bodies. It is certainly incredible that Sir I. Newton should at the end of his Treatise on Optics, introduce an opinion whieh would thus overthrow the whole doctrine he had been labouring to establish. Nor is it more probable that entertaining such an opinion, he should have written the 14th section of the 1 st book of his Principia, which with it would be nothing more than rain and idle speculation. But the words of the query convey no such meaning. They express an impression upon the author's mind, that the phenomena of refraction, and reflection, are not the effect of attraction or repulsion exercised by the particles of the grosser bodies, commonly called mediums, upon the particles of light, but those of a very far more subtle medium interspersed between the particles of the above-mentioned bodies. Nothing is said implying that this subtle fluid is light itself; on the contrary it is spoken of in a totally distinct character, as a medium, that is, as a substance having a boundary through which light finde a pasaage, or from the surface of which it is reflected.
the motion and vibration of caloric, or this mediam, bodies become of equal temperature. By the atmosphere of caloric round the atoms of bodies, may be effected the reflection and refraction of light, in like manner as this mediam is supposed to operate. Caloric, like this modium, is exceedingly more rare and subtle than air, and exceedingly more elastic and active ; for it loses much of its rarity, subtlety, and elasticity when attracted by the gross atoms of gases, which it encompasses, endows with mutual repulsion, and in fact transforms into elastic air. Caloric, like this medium, readily pervades all bodies.

Is not caloric therefore no other than this medium ? and hence, material ?
[Lastly, although we have above seen that a vibration or other motion of the gross particles of bodies cannot in any way account for the dilating power of caloric, it does not at all follow that the phenomena of sensible heat may not depend on a peculiar condition of the particles of the matter of heat itself, such as vibrations in them of difforent degrees of intensity. Hence the absolute quantity of the matter of heat may not always be indicated by the phenomena of sensible heat. And in sudden or violent actions, as those of friction, detonation, and combustion, these phenomena may thus be considerably increased without any increase in the absolute quantity of the matter of heat. In this manner the two leading hypotheses may be united, and the chief difficulties attendant on each being removed, a doctrine, deserving of reception, may be established as a well-digested theory of caloric, in its characters of an expanding and heating medium.]

Having now, I trust, shewn, that the opponent force to the attruction of atoms cannot be a repulsive power inherent in them, but, that it arises from the agency of heat; and that heat cannot be considered as arising from a vibrating motion in the atoms of bodies themselves, bat that it is a very subtle fluid, whose particles are possessed of two powers, always inherent in them; namely, that of repelling each other, and that of attracting all other matter :-having shewn this, the next inquiry which would present itself, is, into the laws governing these two powers of heat, were such a direct inquiry possible.

From the extreme minuteness of the particles of heat, and from their attracting powerfully the atoms of all other matter, it will follow. that every atom of the latter is surrounded by numerous particles of the former ; all of which particles of heat, mast tend with great force towards the centre of the atom they surround, and would be in absolute contact with each other, did not their other power (namely, the repulsion which operates between the particles of heat themselves,
prevent their actual contact. Hence they do not form dense masses, but atmospheres round all the atoms of bodies, and endow them witb mutual elasticity, which operating against the cohesion of bodies prevents the contact of their atoms.

From this it is manifest, that the mutaal repulsion between the particles of heat themselves and their attraction for the atoms of all other matter, are forces which operate against each other ; the former tending to expand heat, and the latter forcing its particles near to each other by collecting it around the atoms of bodies in the furm of atmospheres, the density of which will vary as the force by which they are detained round atoms varies.

Since, then, these two powers of heat are always operating against each other, no opportanity can be afforded of measuring either of them as a simple force. Since also the atmospheres of heat are always from other causes subjected to compression, the only force, which can be judged of, is a compound repulsion; namely, the elastic force of the particles of heat modified by their other power, attraction, condensing them round atoms.

The ratio in which this compound repulsion varies, must greatly depend on the force with which the atmospheres of heat are detained by atoms, and will therefore probably differ in all bodies.

It is however of great importance to obtain so much knowledge of its properties, as may account for the stability of atoms which takes place in the formation of bodies, \&c. which must arise from an equilibrium subsisting between the compound repulsion above-mentioned, and the mutual attraction between the atoms themselves.

This investigation, though essentially necessary to a sound explanation of the constitution of bodies in their various states, has not hitherto, I believe, ever been carried on. I shall endeavour to effect it by pursuing the following inquiries :
lst. Whether the repulsion from heat varies in a less inverse ratio of the distance than the attraction of atoms.

2ndly. Whether it varies in the same inverse ratio as the attraction.

And, having shewn that neither of these laws can take place in nature, I shall proceed in a second divssion to consider the important proposition which remains; viz.

That the force of repulsion with which heat endows atoms, varies in a greater inverse ratio of the distance than the attraction; and to demonstrate that all states and combinations of bodies are satisfactorily accounted for by this law.
lst. Whether the repulsion from heat varies in a less inverse ratio of the distance than the attraction between the atoms of the bodies it pervades.

If this be admitted with respect to the law of repulsion, since attraction varies inversely as the square of the distance, let the repulsive force vary inversely as the distance. And since these two forces must be in equilibrio in any solid whose atoms are at rest, let the following represent the forces operating between any two atoms, A and B, at various distances ; and let the atoms be placed at any distance 3, at which point the forces must therefore be in equilibrio.

Here it is plain, that at distance 3 these atoms can be stationary; but if by the slightest force or agitation they are made to approach each other in the smallest degree, as their mutual attraction becomes stronger than the repulsive force, and increases as they approach in a higher ratio, it is manifest, that A and B will come together, and remain in absolute contact.

Again, if \mathbf{A} and \mathbf{B} are separated in any degree beyond distance 3, they will instantly lose their adhesion, as now the attraction loses force in a greater ratio than the repulsion.

This law would in fact constitute what is called in mechanics an unstable equilibrium ; and hence atoms of matter would soon be either in absolute contact or at infinite distances from each other.

Yet, however, in one of the ablest systems of chemical philosophy, which has ever appeared, we find the following passage; "From the very abrupt transition of steam, from a volume of 1700 to that of 1 , without any material increase of pressure, one would be inclined to think, that the condensation of it was owing to the breaking of a spring rather than to the curbing of one." "The last however, " says the author, " is the fact. The condensation arises from the action of affinity becoming superior to that of heat, by which the latter is overruled, but not weakened.
" As the approximation of the particles takes place, their repulsion increases from the condensation of the heat, but their affinity increases, it should seem, in a still greater ratio, till the approximation has attained a certain degree, when an equilibrium between those two powers takes place, and the liquid water is the result*."

[^114]This paseage exactly proposes the above law, that as pariticles approach their affimity increases in a greater ratio than the repulsive' force, or that the repulsive force varies in a less ratio than the attraction. The inadequacy of this explanation may at once be shewn. If, between the atoms of steam, the attraction has become greater than the repulsion, and if the attraction varies in a greater ratio, i. e. increases fanter as the atoms approach than the repulsion, the partices mast come into actual contact. The equilibrium spoken of in this quotation, can no more take place than between the forces of the atoma, A and B, in the diagram, should they be once within the point of unstable equilibrium.

It cannot then be a law of the repulsion of heat that it varies in a less inverse ratio than the attraction.

Secondly.-Whether the compound repulsion from heat varies in the same inverse ratio of the distance as the attraction of the atoms of the body.

Supposing it a law of repulsion that it varies in the same inverse ratio of the distance as the attraction, it is evident that if the two forces are equal at one distance, they will aiso be equal at any other ; and if one force be the greater at one distance, it will also be the grea. ter at any other; and therefore likewise, if one force be less than the other at one distance, the same force will be less at any other.

Let us apply this law to the explanation -
First.-Of the constitution of solids.
When any body passes from the liquid to the solid state, it is rightly supposed, that by the abstraction of heat, the attraction is enabled to bring the atoms of the fluid within the distance at which from the form and qualities of those atoms, solidity naturally sabsists. Bat according to this law ; as the attraction was more powerful at the greater, it will also be at the smaller, distance ; and, in the solid, all the heat would either be expelled or so compressed, that the atoms would be in absolute contact, which certainly is not the case; for all solids are capable of contraction.

Secondly.-OA the constitation of liquids. Although most philosophers admit the existence of an attraction between the atoms of liquids, yet many* consider the liquid state as depending solely on the pressure of the air; without which, all bodies would either be solids or gaves.

- Berrérokier in his Chem. Statica. Translation by Lamserer, page 352And many others.

This Lavorsisar himself has enforced. After some former remarks he continues thus*: "Whence it appears, that without this atmospheric pressure we should not have any permanent liquid, and should only see bodies in that state of existence in the very instant of melting; for the smallest addition of caloric would then instantly separate their particles, and dissipate them through the surrounding medium." This doctrine this great philosopher has supported by experiments on liquids placed in vacuo, which rapidly pass into vapor on the removal of atmospheric pressure.

Although most of these experiments appear to confirm the above doctrine, yet I may state certain objections which appear to me unanswerable. Though most liquids do pass into vapor under the exhausted receiver, yet there are some, such as concentrated sulphuric acid, which scarcely appear to do so. This acid (as is well known in what is named the freezing experiment) by its great attraction condenses aqueous vapor formed in an exhausted receiver, and thas preserves a partial vacuum. It not only remains in the liquid state itself, but also condenses the vapor from the vacuum.

Again. If even all liquids could be shown to vaporize at natural temperatures in vacuo, it would not be any proof of the doctrine, owing to the imperfect nature of the experiment itself. Any liquid under the pressure of the air, must soon be of the same temperature with the air, i. e. endeavour to part with heat with the same force: but as soon as the atmospheric pressure is removed, a great force, tending to expel heat from the liquid, is removed; the effort therefore of the liquid to expel heat becomes less than before, and therefore less than the effort of the circamjacent air. The consequence of this must be, a continual passage of heat from the air to the liquid, and its vapor, which will make the evaporation unlimited. Were it poesible to procure a receiver which should not be permeable to heat, there would soun be a limit to the evaporation of a liquid, and the receiver would doubtless remain exhausted. It is certainly true, that under such circumstances, water would not remain a liquid, and a small part of it would pass into vapor, most of it would become ice. But ether, alkohol, and other liquids which would resist freezing, would probably continue as liquids in a receiver impermeable to heat. The receiver of any air-pump is in a similar situation to that of a common pamp; except that on the removal of the preasure, heat is forced into the former and water into the latter, by the very same force; namely, the

[^115]pressure of the atmosphere. Hence it would appear, that the pressure of the atmosphere does not so materially affect the constitution of liquids, as is generally supposed ; for, although by compressing them with great force, it resists their passing into vapor, yet it at the same time endeavours to afford them the heat requisite for this transition, though doubtless with less force.

Let us now consider the constitution of a liquid, supposing the repulsion from heat and attraction as varying in the same ratio.

And first.-In a liquid, these two forces could not be equal to each other at any one distance of the atoms; for since they would also be equal at any other, no resistance whatsoever would be offered to any force, such as that of the atmosphere compressing the liquid into au absolutely dense mass, the atoms of which would be in contact. They would, in fact, constitate, what in mechanics is named an equilibrium of indifference, liable to be destroyed by the slightest extraneous force.

Again : the attraction could not be the greater force at any one distance, for it would also be greater at any other ; and much more then could no liquid exist, for there would be, besides external pressure, this additional force tending to condense the liquid, and no force to resist their action.

Lastly : if the repulsive force be greater than the attraction at one distance, it also will at any other, and this excess of the repulsion over the attraction, might be sufficient to resist also the pressure of the air ; and the constitution of a liquid might be considered as compatible with such a law. But let us examine this more minutely. If the pressure of the air were removed from a liquid, since the repulsion was so far superior to the attraction, it would necessarily expand the liquid without limit ; for it would, at any distance of the atoms, continue the more powerful force. Bat it has, I think, been above shewn, that there is no evidence of liquids expanding into vapors without any addition of heat. The vapor from a liquid in vacuo is expanded, both by heat assumed from the liquid and by heat forced in by the atmosphere without ; and yet the evaporation of most liquids in vacuo is not instantaneous, as it would be according to such a law. Of some, as sulpharic acid and certain oils, it is at most, exceedingly slow.

There is moreover evidence of the attraction in liquids becoming, on a small separation of their atoms, stronger than the repulsion; for otherwise no attraction would be apparent in them, nor would their atoms ever be collected into spherical drops; which can only be effected by the excess of the attraction over the expanding force. This 202
last is a two-fold argument; for since, on a small separation of the atoms of liquids, their attraction becomes superior to the repuleive force, how is it possible that withont any addition to it, this repulsive force should expand them into gases? And again, since the attraction is the stronger force, when the particles are somewhat removed, if the two forces varied in the same ratio, it has been already shewn that no liquids oould exist ; but atoms, so acted upon, must be reduced into masses absolntely dense.

The conatitution of liquids then could not be nocounted for, if the compound repulsion of heat be supposed to vary in the same ratio as the attraction.
Thirdly.-Of the constitation of gases.
When a liquid passes into the gaseous state, its atome arp so far soparated from each other that their mutual aftraction is much leasened. but from its.great augmentation of bulk, the pressure it is subjocted to is greatly increased. Hence, in a gas the chief force opposing expansion, is the pressure of the air ; and to onable it to resist this force, the repalsion must be so augmented an to oxcoed the attraction by a farce equal to the pressure.

It is this excess of the expanding force over the attraction, which in alone capable of being measared.

The experiments of Mr. Boxle, as is well known, tended to shew that the density of gases varies as the compressing foree: and Nawnron proved that if this be true, the expanding force operatiog betwree the atoms, will be inversely as their distances.

But as only the excess of this farce over the attraction is cappable of measurement, it is plainly this excess of the repulaion which wes shewn to vary inversely as the distance between atoms.

If, then, the repulsion from heat and attraction vary in the same ratio, and if this ratio be the inverse square of the diatance, any difer. ence between the two forces ought also to vary in the same ratio.

And although this difference in the experiment of theoe great philosophers, is seen to vary in a less ratio than the inverse square of the distance, yet it will not appear incompatible with this or arce some higher power being the real ratio of the repulsion between the atoms of any gas, when it is remembered, that on increacing or lemening the density of a gas, by varying the compressing force; in the one case much heat is given out, and in the othar much is sacomed. This muat cause the expanding force apparently to vany in a for leae inverse ratio, than it otherwise would, if heat did not paen out on increasing, or were not assumed on lessening, the density of a gas.

I am ready indeed to aeknowledge, that it is not possible to prove from the constitution of a simple gas, that the two powers attraction and repulsion from heat do not vary in the same ratio ; for the effective repalsion, though (according to this law) superior to the attraction at every distance, may have its force limited by atmospheric compression.

Yet, however, since both in solids and liquids it has been proved that the two forces cannot vary in the same ratio, it may be concluded that they neither can, when a body has assumed the gameons atate, although from the pecaliar nature of a gas, it may not be possible directly to prove this fact.

Fourthly.-Of the solution of solids in liquids.
Of all combinations none are more frequent, than the solution of solids in liquids; and of all states no one is more remarkable, than that of many bodies in solution. Oftentimes a dense solid is disintegrated by the powerful affinity of a liquid; and yet a very weak combination takes place. A combination, in which most of the characters of the bodien remain, contrary to a well known law of combination.

It is somewhat remarkable, that even Berthollex, who has written very fully and ably on Chemical Statics, should have said very little in explanation of the weakness of the combination in many solations. The twa follawing are the chief pasqages in his work, which refor to this important question.
"Solution," he observes, " is thareforg the effect of a power which can overcome the resistance of the force of cohesion, and the difference of spesifie gravity* ; and again, " in reality it (the eolvent) exercises a force similar to that of the affinity which produces combinations, and whose effect is limited, in the solution of a solid, by tha force of cohesion, \&c. $\dagger^{\prime \prime}$ The late Dr. Mumay, while supporting his doetrine of mixed gases, has written move definitely on this subject. "In the solution of a solid," obeerve this able author, " there are oppoeed the force of affinity between the solid substance and the solvent, and the cohesion of the solid retaining the solid particlem in aggregation f." And again he writes: "In the solution of salts in water, the attraction exerted is merely sufficient to give fluidity to the solid and to counteract its cahesion and specific gravity ; the propertios are not altered, \&c. ${ }^{\prime \prime}$

[^116]These explanations, however, though perhaps at first sight apparently satisfactory, will not account for the imperfect combinations which generally take place in solution.

It will not be difficult to shew that the cohesion and greater specifis gravity of the solid, cannot be the forces, which prevent an intimate combination from taking place. When once the attraction for the atoms of the liquid has overcome these forces, the atoms of salt and water would come into absolute contact and form a most intimate combination.

This is evident from the following considerations :-that, as the atoms of salt separate from each other, their attraction decreases. But, as they approach those of the water, their attraction for the latter, increases in as great a ratio as their own cohesion decreases. Hence, since the attraction for the atoms of the water, when comparatively at a distance from those of the salt, is superior in force to the cohesion of the latter, when near to each other,-much more then would the attraction for the water exceed the cohesion of the salt, when the atoms of the salt have separated from each other, bat approached those of the water.

The difference of specific gravity in itself, but an inconsiderable force, does not increase. The effect resulting from all these forces would be, an actual contact of the atoms of the solid with those of the fluid. How much more then, an intimate combination.
This effect can only be prevented, by the repulsive force of the heat ; which must operate between the atoms of a solid and those of a liquid, in like manner as between any other atoms. But if the attraction is saperior to the repulsion at one distance, it will also be at any other, (according to this law ;) and this superiority of the attraction will increase as the atoms of the solid approach those of the liquid. The intimacy of the combination therefore cannot be prevented by the repulsion, if being already inferior to the attraction, it varies in the same ratio with it.
The solution of solids in liquids and the weak resulting combinations, cannot then be explained, if the force of repulsion be supposed to vary in the same ratio as the attraction. Neither could the mere condensation of many gases by liquids be accounted for, as might also be proved.

Fifthly.-Of the solution of liquids in gases.
Although various theories have been proposed, in explanation of the solution of liquids, in gaseous fluids, yet no one is altogether satisfac-
tory, for to each objections may be brought. I shall briefly review them separately, and then inquire whether this fact can be explained, on the supposition, that the repulsive force of heat varies in the same ratio as the attraction. The inquiry will be directed especially to the solution of water in the atmosphere, as being the most familiar and striking instance.

First, that aqueous vapor exists in the atmosphere, solely by its own expansive force. This hypothesis has had two forms. Mr. Dalion has supposed, that between different gases the attraction and repulsive force of the atoms are so nearly equal, that gases are neutral towards each other*; and therefore, that the air has no effect on its hygrometric vapor, which would exist from its own elasticity equally, whether the air be present or not.

Several objections have been brought against this theory, some of which Mr. Dalton has very ably and ingenicusly answered. But there are others, which cannot be answered. One of them appears to me alone so weighty an objection, as to render it unnecessary to enter into any besides it,-namely, that if vapor, existing in the atmosphere, were perfectly neutral towards it, then certainly the density, and not the bulk of the atmosphere, would be increased by the presence of the vapor. But Newton has proved that the contrary takes place.

Aqueous vapor increases the bulk of the air, and even so much as to lessen its density.

If the vapor and air are quite neutral towards each other, how could the elastic force of the former act against the atoms of the air so as to separate them, which must be the case; for otherwise the density would be increased in proportion to the vapor present, instead of being diminished ?

Mr. Dalton has endeavoured to answer this objection by the following comparison, which I shall attempt to examine, inasmuch as I am persuaded it is not applicable, though it has been admitted as such by many ; and I may state a refutation of it, which has presented itself to me, and which I do not think has hitherto been proposed.
" Let" (he says) " a tall cylindrical vessel of glass coutaining dry air be inverted over mercury ; and a portion of the air drawn out by a syphon, until an equilibrium of pressure is established within and without ; let a small portion of water, ether, \&c. be then thrown up into the vessel ; the vapor rises and occupies the interstices of the air as a void ; but what is the obvious consequence" ? " Why," he sayy, " the surface of the mercury being now pressed both by the dry air

[^117]and by the now raised vapor, is more pressed within than withoot, and an enlargement of the volume of air is unavoidable in order to reatore the equilibrium. Again, in the open air: suppose there were 30 aqueous atmoaphere round the earth, only an azotic one equal to twenty-three inches of mercury, and an oxygenons ane equal to sis inches, " the air being thus perfectly dry, evaporation would commonce with great speed. The vapor first formed being constanily urged to ascend by that below, and as constantly resisted by the air, must in the first instance dilate the other two atmospheres, \&e."’"

To this I may object, that in the experiment made on the gases over meroury, this liquid presees on the aqueous vapor as well an os the air ; and therefore both of them can re-act against its and will depress it more than either singly. But in the atmosphere the superincumbent atom of oxygen and nitrogen (which are according to the theory perfectly nentral towarde the vapor), being the compressiag force, cannot press on the vapor, and therefore cannot be re-acted against.

Hygrometric vapor could not therefore cause the atmosphere to expaad as the vapor does the air in the experiment; for the former wapor does not act. on the compressing force of the atmosphere as the. latter does on the morcary.

The impact of the vapor against the atoms of the air, world be sotranaient and occasional (owing to the minuteneas and rarity of the atoms), that it is unworthy of notice as an opposition to the rise of the vapor.

Again, Mr. Dalton continaes thas: "At last, whea all the vapor has ascended that the temperature will admit of, the aqueous atmesphere attains an equilibrium ; it no longer presees upon the other two, bet upon the earth; the others return to the original density, and pressure thwoughout." To this I may observe;-it is very; true, that the others mould return to their original density and prensure, bat thia is an admisesion which itself destroys the supposed analogy of the experimente, in which, while the vapor is present, the air does not retarn to. ite original density. Mr. Dalion continues: "Ia this case it. is true, there would not be any augmentation of volume, when aqueome vapor was combined with the air; humidity would ingrease the weight of the congregated atmospheres, but diminish their specife grasity, under a given pressure." To this it may be replied. It.is

[^118]certainly true, that when aqueons vapor was added to the air, it would not (according to this doctrine) increase its volume, but this is likewise an admiasion which would destroy the analogy of the experiment; and it even forms an impossibility, with the latter part of the sentence. How is it possible that hygrometric vapor (which is an addition of matter) should lessen the specific gravity of the air, and yet not increase its volume ?

The truth, in short, is, that according to this theory, the hygrometric vapor could not increase the volume of the air, but then it must increase the specific gravity. And since this is contrary to the physical fact, it is manifest, this theory is inadmissible.

Dr. Tromson has adopted the other form of the hypothesis, that liquids pass into vapor solely by their expansive power. He supposes, that the vapor and air are not neutral (as was once Mr. Dalton's opinion), but elastic towards each other ; and therefore, that water passes into vapor, although repelled by the air. The following objections will, I think, shew, that this theory will not afforda satisfactory explanation of the fact. It is plain, that the mutual elasticity of the air and vapor must be inferior to the elastic force of the vapor of water, otherwise the latter could not pass into vapor. But the elastic force of aqueous vapor, at most natural temperatures, is not equal to more, than so of the pressure of the air, which pressure must be sapported by the water, and therefore must press on it with a force far saperior to the clasticity of vapor, at any natural temperature. And even, if water could pass into vapor, this vapor, being lighter than air, would separate from it and float above, since it repels the air, unless this repulsion be exceedingly weak.

The experiments of Pictre and of D_{r} Luc, shewing that evaporation takes place quite as readily in vacuo, are no proofs, that evaporation in the air arises solely from the elastic force of water. They only shew (what no one will deny) that the expanding power in water greatly aids its evaporation. Water, under the atmosphere, is compressed with a force 30 times as great as the strength of its vapor (at most natural temperatures) ; there must then exist an attraction between it and the air,' to enable it to evaporate as much as it does in vacuo, when no force is opposing the expansion.

Lastly then, it would appear that the hygrometric vapor must be attracted by the air ; and of an attraction between air and water many presumptive proofs have been already adduced.

But, according to the law, that attraction and the force of repalsion vary in the same ratio, if the former be superior to the latter force,
between the atoms of air and water when at a distance, it will also be superior when they are near to each other. Hence this superior attraction would bring the atoms of the two fluids into absolute contact, much more then, into intimate combination.

But hygrometric vapor is in a very weak state of combination. The mere solution of liquids in gases cannot then be explained, if the two forces are supposed to vary in the same ratio.

Sixthly. Of the constitution of mixed aerial fluids. The fact that all gaseous fluids, however different their specific gravities, mix when placed together, has been already noticed in a former part of this essay. I shall now attempt a brief inquiry into the various explanations proposed, to account for this phenomenon. These have been applied chiefly to the constitution of the atmosphere ; it being a remarkable instance of a mixture, or solution, of gases in each other.

When treating of attraction, I endeavoured to prove, that between all gaseous fluids an attraction is exerted, with more or less force, at all distances.

That the atmospheres of heat round atoms, must endow them with mutual elasticity, is itself evident ; and is proved by the fact, that compound atoms are separated by an addition of heat, as is evinced in the decomposition of bodies by heat.

I shall therefore consider both forces, as operating between all atoms of gases; and inquire whether the nature of mixed gases, can be explained, according to the law, that attraction and the force of repolsion vary in the same ratio ; supposing, first, that these two forces are equal between gases; or secondly, that the repulsion is superior; or thirdly, that the attraction is superior.
1.-If between mixed gases, the attraction and force of repalsion are equal.

Mr. Dalton was formerly of opinion, that mixed gases neither attracted nor repelled each other; and he explained the mixture of gases, by their own elasticity expanding each, which occupied the whole apace between the atoms of the other, as if it were a void.

This very ingenious theory, which in many respects would give a sufficient mechanical explanation of mixed * gases, has, as is well known, been the subject of various discussions. Among others, the following objections of Berthollet, and Dr. Murray, are doubtlese insuperable.

[^119]I shall quote the words of this last author, as being concise. "The repulsion between the particles of any individual gas, is owing to the operation of caloric, and is a necessary attribute of the form in which it exists; and why should there not be the same repulsion between the particles of two bodies in this form? What cause can counteract it, but a chemical attraction exerted between them ?" "Besides, if there is no repulsion between the particles of different gases, as Mr. Dalton conceives, what prevents them from entering into combinations, when they approach within short distances, as they must frequently do in the internal movements of a mixed elastic fluid ? And if there exists no mutual attraction, how are they under any circumstances, as, for example, by compression, or elavation of temperature, brought to combine? It may be added, that were Mr. Dalton's hypothesis just, two elastic fluids ought, in every case, to diffuse themselves in any space, and mix equally, with the utmost rapidity, each being as a vacaum to every other. Yet this facility of mixing is much dependent on their specific gravity." In many cases it is very gradual*.
Mr. Dalton afterwards did somewhat modify this doctrine. He sapposed, that both attraction and the force of repulsion, operate between different gases ; but that these forces are so nearly equal, as to have no effect in producing the mixture \dagger.

Many objections against the former doctrine are thus obviated, and the spirit of the theory is preserved \ddagger.

- Mr. Dalton endeavoured to explain this objection away, by an ingenious comparison. Page 175. He argues, that, if a ball of lead, which falls through the air al any given rate, be divided into numerous atoms, it will descend with far less velocity (for gravity increases as the cube of the diameter of any sphere, but the resistance only as the square of the diameter), and therefore that atoms of air must meet with very great resistance; and hence the slowness of the mixture. This is surely not a just comparison; for the atoms of lead are not resisted merely by absolute impact against atoms of air themselves, but by the atinospheres of heat round atoms which fill the void space between them, and must be elastic towards particles of lead, as towards any other particles. If these atmospheres were removed, and only the atoms of the air itself remained (they being kept asunder by some inherent repulsive force, which in conformity with the theory in question, did not operate against the lead), then the lead would probably fall with at lemat equal velocity, by being extremely divided; as its atoms might descend unobstructed, the air being almost a vacuum to them; for its own atoms probably do not occupy more than got δ of the whole space. For this same reason, two gases ought to mix with the utmost rapidity : the actual impacts of their atoms themselves being very few. But since they do not mix with such rapidity, they cannot be mutually inelastic.
+ New System of Chemical Philosophy, p. 162.
I Let it be however kept in mind, that this theory cannot explain the evapori2×2

To this, however, I may state an objection of another nature, and no less powerful. If these two powers are so equal at every distance, as to neutralize each other, what must be the effect of the amallent addition or abstraction of heat ?

In the one case, repulsion becoming the stronger force, the gases must be totally separated. In the other, the attraction predomipating will bring the atoms into contact, much more then into intimate combination.
2. Secondly, That between mixed gases the repulsive force in stronger than the attraction. Under this head may perhaps be placed the last modification of Mr. Dalton's theory. He admits of gaees being mutually repellent, but lays down the following maxim on which he explains the mixture. "That every species of pure elastic Auid, has it particles globular and all of a size. But that no two species agree in the size of their particles, the pressure and temperature being the same*."

Hence Mr. Dalton argued, that in a pure gas the atoms being all of a size can remain at rest, as the pressure must be equal throughout. But when a gas of larger atoms is placed on the former, that the pressure of their atoms owing to a difference of size will be irregular and unequal : and that therefore an intestine motion must ensue, until, the gases having mixed, each can rest on the same base.
Even if the atoms of bodies endowed with their atmospheres of heen were spherical, it is very questionable whether the above doctrine, though evincing much ingenuity, be really applicable.

It is difficult to say what would be the effect of spheres of diferent sizes pressing on each other. But the atmospheres of heat round atoms are highly elastic, and hence do not press on each other by single points only, as inelastic spheres would; but mast assume some form requisite for general and regular contact ; without mixing. Thus if a long hollow cylinder placed perpendicularly, and closed at the apper end, have the air of a few inches from the top heated; the atoms of the heated air being enlarged (it might be greatly), and according to Mr. Dalton's theory, pressing unequally on those below, a mixture ought to take place. The heated air ought to descend and diffuse itself completely among the cold air. There is little doubt, however, that no such occurrence would take place; the heated air would continue above. But let the cylinder be inverted, and the heated air will rise

[^120]rapidly ; and, even then, a great part will pass through the cold air without mixing with it ; as is plain from the fact, that the hottest air in theatres and heated chambers, is near the ceiling, though it receives its heat below. Yet, in a mechanical point of view, the volumes of air of different temperatures, precisely agree with the different gases of the same temperature, mentioned in the supposition, as far as having their atoms of different sizes.

Dr. Thomson rejects both Mr. Dalton's and Berthollet's explanation of mixed gases. The opinion which he holds, may be brought under this head. In his.System of Chemistry he states it in the follow. ing words: "I conceive, that when two gases are mixed, the particles of each are beyond the sphere of the affinity of the particles of the other. If the elasticity be owing to the action of heat, it seems to follow as a consequence, that different gases must be mutually elastic towards each other. But I think that the elasticity itself is sufficient to account for this mixture taking place, without being under the necessity of having recourse to the hypothesis of Dalton*."

To this doctrine, I may be permitted to object, that since the atoms of any simple homogeneous gas, cannot be supposed continually to circulate, if heterogeneous are mutually repellent \dagger, like homogeneous atoms, why should a mixture take place between gases which are of the same specific gravity? But between gases of different specific gravity, much less, then, could any mixture take place! Lest it should be supposed that difference of gravity in gases may depend merely on their ultimate atoms being of different sizes, but of the same specific gravity, the atom of oxygen, for instance, being 8 times as large as the atom of hydrogen, let it be remembered, that although their wltimate atoms might have the same specific gravity, yet when endowed, and hence enlarged, with heat, their relative size is greatly altered, the atom of hydrogen becomes twice the size of that of oxygen, and therefore has only ${ }_{1}{ }^{\frac{1}{6}}$ th the specific weight.

There would be no more reason for gases, even of the same specific gravity (supposing such), to undergo a mixture, than for any simple homogeneous gas to have circulation among its atoms continually; and still less should gases of different specific gravity mix ; and should the latter already be mixed, surely they would in a short time separate. It does not appear then, from all that has been stated, if the

[^121]repulsion be superior to, and vary in, the same ratio as the attraction, that the constitution of mixed gases could be accounted for.
3. Thirdly, That between gases, the repulsive force is inferior to the ettraction.
After having urged the analogy of a solution of a salt in water, Dr. Murray observes: " It may equally be concladed, that sach weak attractions may be exerted between aeriform bodies,-attractions sufficient to counteract their elasticity and difference of specific gravity, without being sufficiently energetic to cause an intimate combination. And this principle explains the constitution of the atmosphere. An attraction of this kind, may be exerted between the particles of oxygen and nitrogen gases, may counteract the difference of their specific gravities, and prevent them from separating from each other; and thas may be accounted for the two facts, which on former hypotheses appeared incompatible, the uniformity of the composition of atmospherie air, and its having no properties different from those of the gases of which it is composed*."

Under a former head \dagger I have shewn, that the explanation which Dr. Murray has given, of a solution of a salt in water is not correct; and therefore the analogy does not hold good between it, as stated, and a mixture of gases. Although the above passage may appear to account sufficiently for a mixture of gases, it will not admit of a close investigation. It will be easy to shew from their writings, that many authors have reasoned, as if attraction and repulsion were supposed to vary in the same ratio, though none have expressed a clear and direct opinion concerning them.

If then (according to this law \ddagger) there exists " a weak attraction suffieient to counteract the elasticity" of gases at any distance, however great, it will also be able to counteract the elasticity at any less distance, however small ; and hence, of necessity, to bring the atoms of one gas into contact with those of the other; before which an intimate combination would take place.

Sapposing then the repulsive force, operating between gases, to be weaker than their attraction, and to vary in the same ratio with it, the mixture of gases could not be explained, since a perfect combination would ensue on their being presented to each other.

[^122]
Part II.—Division 2.

The minute inquiry which I have endeavoured to pursue into the laws of repulsion, I trust has shewn, that this force cannot vary either in a less, or the same, inverse ratio of the distance as the attraction.

That this inquiry has not hitherto been strictly pursued, by the ablest writers on chemical philosophy, is evident from the numerous, and even opposite doctrines, which have been laid down to explain the various states, and degrees of combination, in which bodies exist; and also from numerous passages throughout their writings. Thus the following quotation from the great Lavoisirr will shew at once, that (from want of a sufficient investigation) he reasoned as if the two opponent forces to each other, attraction, and the repulsion from heat, varied in the same ratio.
" We have already seen," observes this eminent writer, " that the same body becomes solid or fluid, or aeriform, according to the quantity of caloric, by which it is penetrated; or more strictly, accordingly as the repulsive force exerted by the caloric, is equal to, stronger, or weaker than, the attraction of the particles of the bodies it acts upon." And again he writes: "But if these two powers only existed, bodies would become liquid, at an indivisible degree of the thermometer, and would almost instantaneously pass, from the solid state of aggregation, to that of aeriform elasticity. Thus water, for instance, at the very instant when it ceases to be ice, would begin to boil, and would be transformed into an aeriform fluid, having its particles scattered indefinitely through the surrounding space*."

And in another place, he further states that, " without the atmospheric pressure we should not have any proper aeriform fluids; because, the moment the force of attraction is overcome by the repulsive power of the caloric, the particles of bodies would separate themselves indefinitely, having nothing to give limits to their expansion; unless their own gravity might collect them together, 80 as to form an atmospheret."

It is only a want of due reflection on the laws of the two powers, that could have permitted the first of these passages to exist in the work of such an author. How could the attraction in a solid be greater than the repulsion, without bringing the atoms together ? That they are not in contact, he himself has proved \ddagger. That the other statements

[^123]might be true, it is evidently necessary, that repulsion be supposed to vary in the same, or a less, inverse ratio of the distance, than the attraction; either of which has been above proved impossible.

Another author of great merit appears to have written with the same impression. Mr. Dalton argued against Berthollet, that if the mixture of gases depended on an attraction exerted between them, they ought to enter into perfect combination*. This is a just objection, if repulsion be supposed to vary in the same, or a less, inverse ratio of the distance, than the attraction. And neither Berthollet, nor Dr. Murmay, had shewn, that either of these suppositions is impossible; nor did they answer this objection of Mr. Dalton's as if they were aware, that the two forces could not vary in the same ratio.

Again, in explaining the nature of mixed gases, Mr. Dalton (as has been already observed) considered the attraction, and force of repulsion, between the atoms of the fluids so nearly equal, that neither force affected the mixture at all \dagger. But then it is necessary to suppose (to the end that neither may affect the mixture of the gases) in addition to the two forces being equal, that they should also vary in the same ratio.

For, did they not, one of these forces beyond, or within a certain point, becoming the greater of the two, must operateł.

It would be easy to shew, by quotations from all authors, that none have hitherto pursued the inquiry spoken of above; bat it is sufficient ta have proved this fact, from the writings of two of the ablest philosophers.

After having maturely considered the various doctrines, and theories, which are taught in the statics of chemistry; I became persuaded, that several of them were far from satisfactory ; among them in particular, the doctrines, upon which I have been remarking. And while endeavouring to investigate the cause of their insufficiency, an explanation presented itself to me, which appeared free from all the difficulties, and objections, to which former theories are liable; and which will account for the permanency of all states, and combinations of bodies; namely, -

That the force of repulsion, with which heat endows atoms, varies in a greater inverse ratio of the distance than their attraction.

[^124]Let us apply this law,
First.-To the constitution of solide.
Let there be a liquid between the atoms of which, owing to a loss of heat, the attraction has become so far superior to the repulsion, as to bring them to that distance, at which solidity naturally sabsists. And, since the attraction may be conceived to vary as the inverse square of the distance, and repulsion varies in a higher inverse ratio, . let this ratio be the inverse cube of the distance, and let the atoms of the liquid be sapposed to have been at any distance 4 from each other, and let the following diagram represent the opponent forces operating between any two atoms, A and B, at different distances.

Distances.	1	2	3	4	5	6
Attraction,	576	144	64	36	23	\&c.
A_{*}		${ }^{\text {- }}$	${ }^{6}$ B	.		
Repulsion,	1728	216	64	27	13.8	c. ${ }^{*}$

Here it is plain, since between the two atoms at distance 4 from each other, the attraction is 36 , but the repulsion only 27 , that these atoms must approach, and will come to distance 3 , where both forces are equal, each being 64. The atoms of the body, which is now a solid, cannot come nearer ; as at any distance within this, there is an effective repulsion operating, which must keep them at this distance, unless, by abstracting or adding more heat, the point of equilibrium is transferred to a smaller, or greater distance. Thus will be constituted a true mechanical stable equilibrium, and thus the nature of solids, and their contraction, and expansion, are at once explained.

Secondly.-To the constitution of liquids.
A true explanation of the constitution of liquids, which has hitherto never been clearly given, appears to be afforded by this doctrine.

In applying this law ta the constitution of liquids, a third power must be taken into consideration, namely, the pressure of the atmosphere.

Let it be supposed, that these forces have brought the atoms of a geseous fluid into the liquid state; and let the following represent all the forces operating apon any two atoms, A and B , of the liquid at varions distances \dagger.

- It is evident that these series are not supposed to represent the real forces, but are merely intended to illustrate the doctrine more clearly. The diagram represents the forces acting from one atom only, the relative power being the same, as if the forces of both atoms had been represented.
+ Leat when a vapor is passing to the liquid state, any one should attribute the cause solely to atmospheric pressure overpowering the expansive force of the vapor, I may instance the condensation of hygrometric vapor in the air, on a fall

Distances.	1	2	3	4	5	6	7
Pres. of the air,	1	4	9	16	25	36	49
Attraction,	1024	256	113.7	64	40.9	28.4	20.8
A $_{*}$	0		.	B_{*}	0	.	.
Repulsion,	5120	640	189.6	80	40.9	23.7	14.8^{*}

Here it is manifest, that both the mutual attraction of the atoms, and the pressure of the air, are tending to compress the fluid.

If the former force only operated, the atoms would be at distance 5 from each other; as there the attraction and repulsion would balance each other, and constitute a stable equilibrium. But since the latter force (pressure), operates on the liquid, the atoms are brought nearer to each other, to distance 4 (e. g) where the attraction and pressure, amounting together, to a force ($16+64=$) 80 , are balanced by the repulsive force, which at that distance is also 80 . The point of stable equilibrium is thus remored to a emaller distance, where, as long as the same forces operate on the atoms, they can neither approach nor recede of themselves. Again as, in a liquid, the atoms are pressed within the distance, at which the attraction alone balances the repulsion, by a force (the pressure of the air), the effect of which is merely to keep the liquid within a certain bulk, it is manifest, that this external force does not operate towards keeping any two atoms in particular near to each other. Hence the atoms may move on each other, as long as others sapply their place. And thus the peculiar character of the liquid state may be explained.

The remarkable property of a liquid, of collecting itself into drops under certain circumstances, may also be readily explained by this law.
The pressure of the air can have no more effect in forming liquids into spherical drops, than into drops of any other form. The only force, which can effect this, is the attraction of the atoms, which, as in the diagram, though weaker than the repulsion between the neighbouring atoms \mathbf{A} and B , must become the more powerful force between any, but neighbouring atoms; and being the more powerfal
of temperature. Atmospheric pressure can only act on this vapor (whose atoms are perfectly intermingled with its own) so far as it is endeavouring to expasd the air, and can only increase the density of the vapor, until the elasticity of the atmosphere itself prevents its own atoms from approaching nearer to each ofber, or, in other words, until the vapor is of the same density as the natural density of the air; the force therefore, which in this case reduces the oapor into a bigwid, must be an effective attraction, and in part the gravity of the vapor.

- The first of these forces, the pressure of the air, varies as the square of the distance of the atoms. The second, the attraction, varies inversely as the square of their distance. The third, the repulsion, varies in any higher inverse ratio of the distance, e. g. inversely as the cube of the distance.
force, it collects several atoms into a drop, under favorable circumstances.
The gradual expansions and contractions of liquids can also be explained by this law. The distance of the equilibrium is gradually increased, or lessened, by an addition, or abstraction of heat; and whatever difference should exist between the forces at any one dis. tance, a stable equilibrium would be formed at some other, where the atoms would be fixed. The doctrine then, that the force of repulsion from heat, varies in a greater inverse ratio of the distance, than the attraction, affords a happy explanation of the nature and constitution of liqaids, and also of their gradual contractions and expansions, with variations of temperature.
Thirdly.-To the constitution of simple gaseous fuids.
It has been above remarked, that the pressure of the atmosphere is the chief force opposing the repulsion, in a gaseous fluid. But it has also been shewn, under a former head*, that atoms in a gaseous state attract each other. And this force, though certainly much inferior to the pressure, must aid the operation of the latter.
Let all the forces operating from any atom A towards any other atom B, of a simple gas be represented by the following diagram :

In this case, the atoms of the gaseons fluid will be stationary at distance 6 , where the repulsion, being 54 , is equal to the united attraction and pressure, $(18+36)$ which are also 54 . On removing the atmospheric pressure there being a powerful effective repulsion, the atoms must separate greatly, unto that point at which, from the repolsion varying in a higher ratio than the attraction, a stable equilibrium is established. In the above instance, this is at distance 18, where the attraction and repulsion being each 2 , the gaseous fluid will expand no further, although all external pressure is removed.

To this, I am aware, it may be objected, that the air in the receiver of an air pump expands without limit, as long as a portion is removed, and, therefore, that the attraction cannot be equal to the repulsive force at any distance of the atoms.
This however it will be easy to shew is no objection. In proportion as the air expands in the receiver, so does its tendency to part with

- The distance to which attraction is exerted.

2 2 2
heat grow less, (i. e. it falls in temperature,) and hence it rapidy receives heat forced into it from the vessel and external air. The truth of this is evident from the fact, that, during the experiment, the rarefied air at first falls in temperature, but afterwards rises to the same temperature as the external air; and if the exhaustion be again continued, the air again expands, falls in temperature, and therefore agaia receives heat; and, as long as heat is forced into it, so long must it expand, and the point of stable equilibrium be removed to a greater distance. Were it possible to procure a receiver impermeable by heat, there is every reason to believe, that the expansion of the contained air would terminate after several increments of volume ; for it cannot be supposed, that, on the removal of pressure, a gaseous fluid would expand without limit, unless the repulsive force, operating between its atoms. be considered to vary either in the same or in a less inverse ratio of the distance, than their attraction ; and since it has been already shewn, that either of these cannot be a law of the repulsion in bodies, in any degree of combination, or in any other state, analogy will show, that neither of them can be a law of the repulsion of atoms in the gaseons state.

Another objection which may be presented, is, the apparent fact, that the effective repulsion in gases, varies inversely as the distance of the atoms ; for, according to the doctrine which I have laid down, since the actual repulsive. force is considered as varying in a higher inverse ratio of the distance than the attraction, and since the attraction is supposed to vary as the inverse square of the distance, the effective* repolsion ought to vary in a higher inverse ratio of the distance than the inverse square ; and not therefore only inversely as the distance, as it appears to do. To this I may answer, that, as I have before remarked, an ingress of heat takes place, on removing pressurefrom the air, and an egress on increasing the compressing force. This reception of heat on the one hand, and loss of heat on the other, must cause the effective repulsion apparently to vary in a much lower inverse ratio of the distance, than it would, did the air always possess the same quantity of heat ; and from this canse Mr. Borns's experiments, and the doctrine I have laid down, contain nothing contradictory.

In like manner, in the case of a body gravitating towards a planot, the force varies inversely as the square of the distance from the ceatre. But, by varying the quantity of matter in the planet, in some

[^125]direct ratio of the distance, its attraction might be made to vary in any less ratio than the inverse square.

The reader will perceive, that the ratio of the attraction of the planet, in the one case, and the doctrine I have laid down, of the ratio of the repulsion in the other, were both disturbed by the absolute forces varying. In the former case, by the quantity of matter in the planet, in the latter by the quantity of heat in the air subjected to experiment being constantly changed.

And moreover, I may observe, it would appear from later experiments than Mr. Borme's, as is well known, that the elasticity of the air varies in a somewhat greater ratio, than the density, and therefore that the effective repulsion varies in a higher inverse ratio, than inversely as the distance.

The following quotation from an author in Dr. Ress's Cyclopædia* will strongly corroborate the views I have taken of the constitution of gases. After some former remarks he observes : "Thus also in high degrees of rarefaction, the elasticity is decreased rather more than in exact proportion to the weight or density of the air ; whence it may be concluded, that there is a limit to its rarefaction, or expansion, so that it camnot be expanded to infinity."

This observation, which is founded on actual experiments of philosophers (and which appears to me a just one) is exactly conformable to the doctrine I have laid down. This doctrine therefore (that the force of repulsion, from heat, varies in a greater inverse ratio of the distance than the attraction) which must be admitted to explain the situation of of atoms, in other states of bodies also, I think, elucidates clearly the nature of gaseous elasticity.

Fourthly.-To the solution of solids in liquids.
In applying this law to the solution of a solid in a liquid, it is proper to take into consideration all the forces, which can operate either for, or against the combination.

In a saline, or any other solution, of a solid in a liquid, there are at least, five forces, which must greatly affect the solution. Two of these operate in favor of the solution, and three against it ; and in proportion as the former forces exceed the latter so will the combination be the more intimate.

When a salt is immersed in water, it is true, that the cohesion and greater specific gravity of the salt are opposed to the affinity between the water and salt, but these (which as far as I am aware are alone

- Article Air.
mentioned by Berthollet and Dr. Murbay) are not the only forces which affect the solution. There are two others, which perhaps have quite as much influence on the extent of the combination; namely, the repulsive force, operating between the atoms of the salt, and the repulsive force between these atoms, and those of water* ${ }^{*}$. It is this last force, which prevents the most perfect combination from ensuing. It has however, been shewn, under a former head, that if this force, (viz. the repulsive force operating between the solid and liquid) varied in the same ratio as their attraction, it certainly could not prevent the atoms of the former, from being brought into absolute contact, with those of the latter.
But, admitting this repulsive force to vary in a higher inverse ratio of the distance, than the attraction, the nature of the solution may be clearly explained in the following manner.

It is plain, that the forces opposed to the solution, are the cohesion, the greater specific gravity of the solid, and that repulsive force which must operate between its atoms, and those of the water. That the forces favoring the solution, are the repulsive force operating between the atoms of the salt itself, and their affinity for those of the water. If when the salt is immersed in the water, the two latter forces anited, are more powerful than the three former united, the water must begin to act on the salt. As the atoms of salt separate from each other, the repulsive force operating between them, which is one of the forces frvoring the solution, at last loses its effect, owing to its varying in a greater inverse ratio of the distance than the cohesive attraction of the salt, and therefore becoming weaker than the cohesive attraction.

Again, as the atoms of salt and water approach each other, the repulsive force operating between these two bodies, though formerly much inferior to their affinity, owing to its varying in a higher ratio. becomes at last, at a certain point, equal to the affinity. And coald the atoms of the salt be brought still nearer to those of the water, the repuleion for the same reason would grow superior to the affinity. It is manifest then, as the atoms of salt and water cannot approech pearer to each other than the point, at which the two powers are equal, that the atoms must rest at this distance from each other : for there the two forces form a stable equilibriam.

And, since the atoms of liquids are endowed with greater atmoapheres of heat, than those of solids, this superior repulsive force in them may

[^126]cause the point of stable equilibrium, between the atoms of the solid and the fluid, to exist at a greater distance, than between the atoms of two solids when in combination, and bence the latter combinations are generally much more intimate than the former.

The solution of solids in liquids and the weak resulting combination, are therefore satisfactorily explained by this doctrine ; which considers the force of repulsion from heat as varying in a greater inverse ratio than the attraction.

Fifthly.-To the solution of liquids in gases and in the atmosphere.
Under a former head, I have endeavoured to prove, that the hygrometric vapor of the atmosphere must exist in that state, partly by its own elasticity, and partly by an attraction exerted on it by the air. But it was also proved, that if the repulsion of atoms varies in the same ratio, as the rutio of attraction, the atoms of water would come into actual contact with those of the air ; which cannot be the case, as hygrometric vapor is in the very weakest state of combination with the air. The solution of vapors in gases, without an intimate combination ensuing, may however, I think, be readily explained by the present doctrine.

Let a liquid A be placed under a column of dry air B, which is pressing on it with the usual force of the atmosphere. It is plain that the layer of air nearest the liquid must press on the latter with the whole force of the atmosphere which it supports. But the particles of air are far more distant from each other than those of water; probably ten times as far. Let us suppose this to be their relative distance. Every tenth particle only of the liquid will be pressed on perpendicularly by the lower stratum of air ; and the condensation of the circumambient heat of this stratum will be so much greater perpendicularly under each particle of air, than obliquely between them, that it will re-act more upon the water directly under those particles, and press it into dimples, as in the figure. The ridges between these dimples will be pressed on laterally by the elastic medium of each aerial particle, but with little force downwards.

All the aerial particles above this lowest stratum must be at a greater distance from those of the water, than the point at which the forces operating between them and the water, are equal. And, being at a greater distance than this point, they must attract the water with more force than they repel it, according to the present postulate. If then the inited effective attractions of all atoms of air above the lowest stratum, together with the tendency to expand in the water itself, be superior to the gravity of the atoms of water situated in the several ridges, the
latter must rise into vapor, and so aleo must those which sapply their place. And the atoms of water, as they rise, will necessarily become intermingled with those of the air, and will be detained among them by their attraction for them. But, since the repulsion varies in a greater inverse ratio of the distance than the attraction it will form a stable equilibrium with it, at a certain point, within which it will prevent the atoms of water from approaching those of the air ; that is, prevent an intimate combination from ensuing.

Thus is explained the fact, that an attraction between the air and water may favor the transition of the latter into vapor, and yet not bring the atoms of water into intimate combination with those of the air, a fact, which I do not think can be explained by any other doctrine.

Sixthly.-To the constitution of mised gaves.
The minute investigation into the varions theories proposed to explain the nature of a gaseous mixture, which I have endeavoured to pursue, has shewn, that each of them is liable to one or more insaperable objections.

It appears to me that this phenomenon also, may be explained by the application of the present doctrine.

Having first stated the theorem, I shall endeavour to demonstrate it.
If a cylindrical vessel, of any given length, be filled with bydrogen gas, and inverted (so as to fit closely) over a similar vessel filled with carbonic acid gas ; part of the former gas, although of far less specific gravity than the latter, will descend, and part of the latter will ascend, until the atoms of hydrogen gas, are perfectly mixed with thoee of carbonic acid gas, and, when mixed, they will not enter into combination.

This may be demonstrated in the following manner.
Since the repulsive force, operating from the atoms of the one gas towards those of the other, varies in a greater inverse ratio of the diatance, than their attraction, it must form with this force, at a certain point, a stable equilibrium. Since when the hydrogen gas is pleced on the carbonic acid gas, the lowermost atoms, of the former, preas upon the upper stratum, of the latter, these contiguous strata, of the two gases, must be brought within the point of equilibrium, between their attraction and mutual elasticity; and must therefore have an effective repulsion for each other.

But, excepting the contiguous strata, all the atoms of the one fluid must be farther from those of the other, than the point of stable equilibrium, and must therefore, exert an effective attraction for them.

If then their mutual effective attraction be saperior to their difference of gravity, atoms of hydrogen gas must descend, and of carbonic acid ascend until the mixture is complete. When mixed however, no atom of the former can approach nearer to one of the latter gas, than the distance at which the forces, operating between them, form a stable equilibrium : for within that distance an effective repulsion exists. This distance, owing to the great quantity of heat round gaseous atoms, will be so considerable, that the atoms of the two fluids cannot produce on each other those changes, attendant on combination. From which, the gases must be considered, as merely having their atoms detained approximate to each other, by their mutual attraction.

In like manner, may the constitution of the atmosphere be elucidated ;-its consisting of gases in a state of mixture, though of different specific gravities, and yet not entering into intimate combination with each other.

Conclusion.

The inquiry into the law of the repulsive force, with which heat endows atoms, namely, of that compound repulsion resalting from the opposed action of the two ultimate powers of heat, themselves, which it has been my endeavour to pursue with such minuteness, as the length of this essay would permit, has, I trust shewn, that this power mast vary in a higher inverse ratio of the distance, than the attraction.

By way of illastration, I have imagined this ratio to be the inverse oube, that of attraction being the inverse square of the distance; but I would by no means be anderstood as intending to enforce this as the actual ratio. Since (as has been above remarked) the actual ratio of this compound repalsion, it is probable, differs in bodies according to the force of their attraotion for the particles of heat, it will perhaps never be possible to ascertain it exactly in any individual case. But the limit, which has been laid down, is of the highest importance, since (as I trust) I have deduced from it a simple doctrine, which accounts for the stable residence of atoms at various distances from each other, constituting in nature, solids and liquids, combinations of solids with liquids, liquids with aerial flaids, and mixtores of aerial fluids with each other; and without which none of these phenomena can be accounted for, but they may even be demonstrated impossible.

IV.-Iron Suspension Bridge over the Beosi River, near Saigar, Central India. Pl. XVI.

We take peculiar pleasure in bringing to the notice of our readers the completion of this work of art, because it has been constructed entirely out of the resources of the country, and being the first attempt at such an adaptation of native material and native workmanship, more than ordinary credit is due to the skilful engineer who planned and executed it, and who moreover, from his long residence in India, could have acquired only a theoretical acquaintance with the system of auspension bridges introduced within these few years, and now so rapidly spreading, in Europe.

The bridge was erected at the suggestion of T. H. Maddocr, Esq. agent to the Governor General in the Sagar and Nerbada territories, upon the plans and under the sole superintendence of Major Duscas Prescrave, mint and assaymaster at Ságar.

Engineers in Europe, accustomed to find every thing provided to their wants, can have little idea of the personal labour which devolvea upon their brethren of the craft in this country, where to the duties of architect and draughtsman are not only added those of bailder and overseer, but the whole of the subordinate trades of the brick-maker, masion, carpenter, and iron-manufacturer; in a climate too where a triting exertion produces exhaustion; and incations exposure, fever or death : and where the tools mast be made and the hands that employ them instructed ab initio. We will not aay that the native mistrees and labourers are not capable of learning or of working well, especially in upper Hindustan; the bridge before us is a sufficient refatation of that common and indolent remark: but all will agree that a pecaliar talent is requisite to manage, instruct, and drill them ; and this faculty is poseessed by Major Parsoanve in an extraordinary degree. The secret of his influence may be easily traced;-he is a workman himself : he wields the hammer; makes and works the lathe; surveys the ground ; searches the mines; smelts the ore; and has all the skill of contriving with the simplest means*, for which the people of this country are themselves so conspicuous.

The Ságar bridge may indeed be called an experiment to try the resources of the country ;-to see whether the iron could be manufactured into bars of a quality fit for bridges;-and whether these bridges could be made by native workmen who had never wrought or

[^127]even seen iron of the dimensions required. The question has been satisfactorily answered ; and even in point of economy, notwithstanding the numberless extra expences incident to a first undertaking, and the distance, eleven miles, of the work from the yard at Ságar, the bridge has been pronounced cheaper than those in Calcutta made with English materials : while of its design and execution no higher encomium can be given than the assurance of the visiting engineer, Major Imvine, that he had seen nothing superior to it in Europe. The Governor General is stated to have expressed equal satisfaction after inapection, and only to have regretted that so noble a bridge should be wasted upon so remote a locality!

We have with permission taken a reduced copy of the elevation and plan, lithographed by M. Tassin, to accompany a private Memoir of the Beosi bridge. The latter authentic source supplies us with the following particulars of the work.

The foundation was laid in April, 1828, and the roadway opened to the public in June, 1830.

The iron of which it is composed is entirely the produce of the Sagar district. When the bridge was projected, it was still in the state of ore in the mines, whence it was extracted, smelted and made into irregular small luinps, in the common native fashion. The working of these crude impure masses into good bars of the requisite dimensions was a matter of very great labour and difficulty.

The bridge is 200 feet in span between the points of suspension.
The piers, resting on the solid rock, six feet under the low level of of the river, are 42 feet high to the roadway; being elevated two feet above the ordinary surface of the country: they have a base of 32 feet by $22 \frac{1}{2}$, decreasing upwards in front one in five, and on the sides one in eight feet ; which gives on the road a superficies of 21 by 14 feet for each pier. On the sides are wing walls or abutments, running back into the bank 26 feet.

The pillars, or rather arches, of suspension have a base of 21 by 12 feet, admitting a roadway of 9 feet broad. The arches are 15 feet high, and are faced with accurately wrought stone. The points of suspension are elevated 22 feet $4 \frac{1}{2}$ inches from the road : the pillars have a total height of 33 feet, and the whole masonry from the rock, 68 feet. The piers and abutments contain 82,488 cubic feet of masonry; the arched standards and bridge parapets, 8900 : in all 91,388 cubic feet.

The platform measures 200 feet in length by 12 feet broad, and is calculated to weigh, with the chains, $52 \frac{3}{4}$ tons. Supposing the bridge crowded with men, at 69 lbs. per superficial foot all over the platforma
the whole weight would be 120 tons, whence it is calculated that the tension to be sustained at each point of suspension would be 85.632 tons.
The suspending chains are 12 in number, arranged in pairs, three pair on either side, two feet above one another. They pass over rollers one foot in diameter, and are securely moored in masonry 16 feet below the surface of the road. The back chains are 101 feet long, rising at an angle of 27 degrees. The angle of the catenarian at the roller is 16° with the horizon : the versed sine at the centre of the carve is 14 feet 3 inches.
The twelve main chains are of round bar iron, one and half inch diameter, bolted together in pains. They are from 15 to 15.5 feet long, and so arranged that the vertical rods may fall from the joints of each chain alternately in parallel lines five feet apart. The deecending chains are square bars measuring $1 \frac{1}{\frac{1}{3}}$ inch on the side : their lower ends pass through 24 conically wrought stones, below which they are capped and keyed. (Figs. 1 and 2.)

The connecting links of the chains, and indeed all the bolt holes in the bars, and the drops, are bored ont of the solid iron, and broeched to fit the bolts accurately. (Figs. 5, 6.) None were punched at the forge. The bolts are $1 \frac{1}{2}$ inch in diameter, and are secured by rings, or washers and keys. Two adjusting links with iron wedges are fitted to each chain, close to the masonry landward, to regalate its curve and dip. (Figs. 7, 9.)

The method of constructing the rollers is thus described in the memoir :
"The irom rollers 12 in number weigh about one cwt. each. They are mot solid, but are composed each of about 28 separate pieces of wrought iron, viz. a centre tube or box for the axle over which thick rings are driven; and an exterior drum between which and the inner ringed tube, flattened bars, as apokes, are driven. The ceatres were broached out clean and true, and cylindrical axles 3.1 inch in diameter were turned to fit; the ends of these axles rest on broed thick iron bearings. mionnted on very strong and solid frames of timber well bolted, clamped amd blocted together, covered with pitch cement and secured in the masonry of the pillars." : (Pigs 7, 8.)

The platform was made in a different mode from those of our Calcutta bridges, as will be understood by the following explanation:
" From the short links set between the centre plates of the shackles (of the main chains), are suspended alternately from each tier, 74 vertical round rods one inch in diameter connected to a short link (Fig. 6) by a one-inch round bolt pasaiag through it and the socket at the upper end of the bar ; at their lower emds the rods have eyes, through which doablod loops of iron pass $(3,4)$ for antaining the flat bars or girders, set on their edges and proceeding from one ond to, the other on both sides of the bridge.

" The flat bars, four inches broad by $\frac{\pi}{2}$ inch thick and in lengths of fifteen feet, are joined together at their ends by nicely turned bolts passing through bored holes two inches in diameter; they are adjusted in their height by double wedges, resting on holders that connect the sides of the loops together. The girders are also adjustable in their lengths, the bars that enter the masonry have their ende made broader than the rest of the bars, in which are long openings 2 inches broad to receive wedges. (Fig.' 10, 11.)
" Eight timbers in an upright position are set in the masonry of the pillars, having upright grooves or spaces cut through them, and faced with thick plates of iron; through two of these beams each end bar passes, and may be wedged on either side of the timber towards the land as occasion may require; thus is the whole length of girder drawn more or less to either end of the bridge, and also rendered exceedingly tight and steady. The grooves in the timbers towards the river, being about four inches longer than the breadth of the bars, peomit them to adapt themselves to their proper directions when drawn lengthwise by the wedges acting against the landward beams; by these means the bars have sufficient play to adapt themselves to the motion of the platform, and all jerks at the pillars are obviated.
"Thirty-seven double joists twelve feet long are, (having their ends notched below for the purpose,, laid on the girders : their centres five feet apart correspond exactly with the vertical rods that pass through them; the joists are composed each of two cheeks a foot in depth and three inches thick, separated at intervals by four blocks of wood of the same height and thickness; all firmly put together with bolts, screws and nuts : two cleats are nailed to each end of the joist on their' under sides, whose eads fit flat against the girder and keep all steady.
"Planks sisteen feet in length running longitudinally, each plank atretching rove three spaces, and regularly disposed as to their joints, are spiked down on the joists : in a direction across these and upon them other planks are spiked down, their lengths being the same as the breath of the platform. The planks are allimbedded in a composition of resin boiled in linseed oil, which in laying on is mixed with ashes. The lower planks are three, and the upper ones two and half inches thick: they are only six inches broad to prevent warping, and have two strong square-headed spikes passing through them near their edges, at every crossing of the upper over the lower planks: their points are clinched below the platform, to accomplish which. 16,370 spikes, weighing a ton and a half, were used; thus the platform has been rendered extremely strong and firm.
"The better to secare the sides of the platform and the ends of the timbers from the weather, a cornice or moulding of wood is nailed along the outside.
"The hand-rail is truseed, and consists of iron pillars or stanchions; diagonal. braces of iron; and a stout wooden rail running from end to end of the platform : the whole put together with screws aud nuts, and adjusting screws for setting up or tightening the diagonal braces whenever required. (Fig. 10.)
"The rise in the platform is (as before stated, nine inches, but the curve of the hand-rail is only three inches, to effect which the stanchions that support the rail are of varying lengths. The rail being four feet six inches above the platform at its connection with the masonry, but only four feet in the centre of the bridge."

The following are the weights of the chains, rods, and materials of . the platform:
Trove Wiod
8.5
6 double main chains, joints and bolts
74 vertical rods, with joints, bolts, \&c 1.385
Mat bars and bolts 1.726
37 donble joists, blocks, cleats, \&c. 6.190
Bolts, nuts, screws, stanchion plates, fiat rings, \&c. \&c.
from beams. 0.383
Planking 1.124 cubic feet, sal wood, 27.000
Iron spikes, 16.370 for planking, 1.467
Iron railing trussed, screws, nuts, \&c. 1.314
Wood for the hand rail, 52 eubic feet, 1.479
376 feet of cornice to the platform 1.531
14.77536 .20050 .976
Composition of resin and oil,.: 1.745
Total weight hnng between the pillars, tons. 52.720
V.-Additional Note on the Climate of Nagpir. By J. Prinsep, Sec. As. Soc. \&c.

In the May number of the Journal were published the resalts of Dr. Grddzs' Meteorological Observations made in 1831-32 at Kamptt, in the neighbourhood of Nagpúr, which, as observed by the anthor, were in some degree deficient for the want of a barometer ; the sympiesometer which took the place of that instrument shews by the registers a constant deterioration from the increase of the column of air*, which renders its indication of comparative inutility in accurate calculations. I am now fortunately able to supply the deficiency, of barometrical data, from the copious registers kept by Dr. Wrise at Nagpar, between the years 1820 and 1830, (with some intermissions,) of which that gentleman was so kind as to permit me to take copies ere he proceeded to Europe.
Dr. Wris's barometer was filled by himself without boiling. A note in his diary in 1820 states, that it stood 0.235 lower that some other tube (Dr. Vorsey's?) with which it was compared. In February 1822, the tube was cleaned twice, and fresh mercury added: in May of the same year it was again cleaned. On each of these occasions, the beight of the mercurial column was elevated more than a tenth of an

- This is a fault in the sympiesometer which might perhaps be remedied by making the oil-cistern bigher, so that the oil should on an average stand on the same level in the two legs of the inverted syphon. In an instrument in my poseession after one year, in 1822, the index point had fallen 0.3 inch below the barometer ; in 1823, 0.5 inch; in 1825,0.8; and now, in 1833, I find it 1.38 inches : Dr. Geddes, according to his register, must have followed. the same rave of deterioration : the level in mfne is now nearly even with the reserroir.
inch for the time, proving that air or moisture had previously insinuated itself into the vacuum. In November, 1824, a note occurs, at Bombey :" add . 200 to make barometer agree with one afterwards used and found to be more correct." The change of instrument was made in January, 1826: the new tube was again cleaned and repaired in June and in November* : it broke in May, 1829, and was replaced by one standing full .200 lower. These circumstances were pointed out by Dr. Wylis, as depriving his tables of that measure of exactitude required for deducing the altitude of Nagpúr barometrically; but with theprecaution of augmenting the whole of the indications up to September, 1823, by two-tenths of an inch, and proceeding in the same manner with May-September of 1826, and with new barometer of June, 1829 ; all of which alterations are borne out by notes on the diary ; the results will be found to agree very well inter se, and to be fully sufficient for the determination of the annual and diarnal oscillations, whichit is my object to deduce for as many points as possible on the Indian continent.

The following tables present an abstract of the monthly means dedaced from Dr. Wrin's daily observations: they have been reduced to the temperature of 32° Farh.

Five months of 1820 are omitted for want of space, as the year was incomplete ; but the entries were used in the calculations of the monthly means in the tables which follow.

Table I.-Meteorological Observations at Nagpúr, by Dr. Wrise. Barometer reduced to 32° Farh.

	$\mid 9 \text { А. м. } 5 \text { р. м. }$		1822		$\begin{array}{ll} 188 \\ 9 \text { А. м. } \end{array}$	$\begin{aligned} & 23 \\ & 5 \text { P. M. } \end{aligned}$	$\begin{gathered} 1826 \\ \text { NOON. } \end{gathered}$	$\begin{gathered} 1827 \\ \text { NOON. } \end{gathered}$	$\left\|\begin{array}{c} 1828 \\ \text { NOON. } \end{array}\right\|$	$\begin{gathered} 1829 \\ \text { NOON. } \end{gathered}$
January,	28.906	28.783	28.839	28.722	29.026	28.927	28.880		28.867	28.807
February	29.031	. 914	. 866	. 725	28.980	. 886	. 780		. 752	. 796
March,	. 102	. 989	. 756	. 642	. 862	. 779		28.759	. 716	. 733
April,	. 038	. 895	. 698	. 587	. 763	. 655		. 666	. 622	. 615
May,	28.842	. 729	. 710	. 646	. 695	. 610	. 612		. 562	...
June,men	. 695	. 611	. 667	. 593	. 682	. 568	. 481	. 402	. 427	390
July,	. 563	. 492	. 643	. 543	. 630	. 514	. 455	. 401	. 437	. 458
Angust,	. 465	. 412	. 646	. 560	. 693	. 610	. 507	. 478	. 512	. 508
8ept.	. 558	. 472	. 706	. 613	. 803	. 680	. 547	. 515	. 515	.556+
October,	. 733	. 634	. 828	. 724			. 724	. 711	. 688	. $675+$
Nov.	. 805	. 760	. 970	. 859			. 844	. 811	. 841	.845 \dagger
Dec.	. 889	. 770	29.012]	. 922					. 847	.847t

+0.200 has been added to these five monthe as supposed index error of a now tube theo nsed.

[^128]Table II.-Thermometer in doors, attached to the Barometer.

	$9 \text { А. м. } 5 \text { Р. м. }$		1822		1823		$\begin{aligned} & 1826 \\ & \text { NOON. } \end{aligned}$	$\begin{array}{\|c\|} \hline 1827 \\ \text { NOON. } \end{array}$	$\begin{array}{\|c\|} 1828 \\ 5008 . \end{array}$	$\begin{aligned} & 1829 \\ & 270015 . \end{aligned}$
January,	72.9	78.7	71.3	76.3	74.7	78.0	74		71	72
February	76.0	82.3	75.0	82.4	77.0	82.0	78	-	76	72.5
March,	81.0	84.0	82.8	88.2	80.3	84.5		83	81.5	83
April, am	87.7	90.7	86.0	88.3	88.0	91.0		84	83	85.5
May, mom	87.8	91.0	91.5	93.2	88.8	88.6	82.5		84	
June,mem	89.0	91.3	87.0	90.1	88.5	89.4	88.7	89	86	
July, anm	81.9	84.7	83.1	84.9	84.2	86.2		85	83	81.5
August, ${ }^{\text {a }}$	80.9	83.5	82.6	84.0	82.9	84.3		81	83	81
Sept.	81.0	83.4	82.0	83.2	83.0	83.7		82	82	82
October,	77.7	83.5	83.0	86.0			83.5	81	82
Nov.	75.5	79.9	76.8	81.3				76	76	75.5
Dec.	66.7	74.0	72.8	76.6				73	71	72.5
Means.an	79.8	84.0	81.1	84.5			8		79.8	78.7

Tanue III.-Fall of Rain at Nagpír, rogistered by Dr. Wrus.

Month.	$\left\|\begin{array}{l} \text { (Lloyd) } \\ 1814-15 \end{array}\right\|$	1826	1827	1828	1829	1830	1831	1838
Jamuary,	\cdots	2.30	0.40	0.19	-	\cdots	-	
Pebruary,	-	..	0.50	1.21	0.76		-	2.38
March,	..	-	3.84	0.71	2.49	1.57	.	
April,	..		1.01	0.06	0.06	0.68	-.	.
May,		1.10	0.21	1.65	-.	1.35		
June,	0.23	22.23	6.25	8.37	8.07	8.54	13.78	8.01
July,...	7.08	12.00	14.93	9.33	15.94	7.10	722	14.49
August,	14.72	18.50	7.51	9.07	7.89	7.00	14.88	3.46
September,	7.36	8.13	16.32	9.40	6.32	4.78	11.98	7.77
October,	2.97	0.04	0.00	6.46	8.22	1.98	7.24	...
November,	0.45	1.31	2.89	0.26		. .	2.27	.
December,	0.13	..	0.50	-	8.24	
Annual, Total,......	32.81	65.61	53.99	46.61	50.25	33.00	65.31	37.14
In the Monsoon,....	32.36	62.00	45.22	44.18	46.44	30.75	54.80	33.73

$$
\text { Average of eight years, } 48.10 \text { inches. }
$$

From these data we may proceed to calculate the annual and diarnal ranges, according to the form adoptod in my former tables in the first volume of this Journal, page 23. The Latitude of Nagpúr is about $21^{\circ} 10^{\prime} \mathrm{N}$. and the Longitade $79^{\circ} 15^{\prime}$ E., the Barometer therefore should have a smaller rise and fall, during the year, than that of Calcatta, but greater than that of Madras, and so it turns out. There should also be a corresponding modification in the annual range of temperature, and in the diurnal change of heat and pressure : but I must leave any general deductions until I have accumulated other tables, to place in comparison with those alresdy collected. A very accurate annual series has been kept at Cuttack by Captain B. Buarre, which I trust will shortly appear in the Journal.

Average Range of the Barometer at Nagpir, reduced to 32° Farh.

Month.	For the years 1820-23.		Mean.	Tor the years1826 to 1829,at about1 P. M.	Monthly difference from annual mean.	Mean DiurnalBarome tric Tide, 1820-23.	
	9 A. M.	5 P. M.					
	inch.	inch.	inch.	inch.	inch.	inch.	
January, . .	28.926	. 810	28.868	28.851	$+.162$. 116	E.
February, .-	. 959	. 845	. 902	. 776	$+.142$. 114	var.
March, ..	. 906	. 803	. 854	. 736	+. 098	. 103	var.
April, 833	. 712	. 772	. 634	$+.008$. 121	Wy.
May, 749	. 662	. 705	. 587	-. 051	. 077	W.
June, 637	. 539	. 588	. 425	-. 191	. 098	\mathbf{W}.
July, 576	. 486	. 531	. 438	-. 213	. 090	W.
August, . .	. 587	. 507	. 547	. 501	-. 173	. 080	\mathbf{W}.
September,	. 674	. 575	. 625	. 533	$-.118$. 099	W.
October, ..	. 796	. 683	. 739	. 699	$+.022$.113	Ny.
November,	. 887	. 809	. 848	. 835	$+.144$. 078	NE.
December,	. 950	. 846	. 898	. 847	+. 175	. 104	var.
Means,	28.790	28.689	28.739	28.657	Range . 388	. 100	

In lien of taking the thermometric means from Dr. Wring's Tables, which are only entered for the hours at which the barometer was registered, the following extracts from a Journal kept by Captain Lloyd, for which also we are indebted to Dr. Wrlin, will better serve to furnish the range of the daily temperature.

Thermometric Range at Nagpar, by Captain Lloyd.

Month.	1809.			1814-15.			Monthlydifferencefromannualmean.	Mean diurnal range.
	max.	min.	mean.	max.	min.	mean.		
	-	-	\bullet	-	-	\bullet	\bullet	-
January, ..	78	69	68	83,8	57,5	71,0	-11,4	17,1
February, ..	87	72	75	87,1	63,3	73,9	-6,5	19,4
March, ..	98	64	83	98,9	69,0	85,2	+ 3,1	31,9
April,.. ..	100	77	89	102,5	81,3	93,0	+10,5	21,6
May,	101	79	90	104,4	91,6	98,4	-13,3	18,4
June,	91	76	84	103,6	85,6	90,3	+6,2	16,0
July,	88	74	79	86,9	78,4	82,5	- 0,2	10,8
August, ..	86	70	79	88,9	77,3	82,7	- 0,1	13,8
September,	86	75	79	91,9	78,2	84,3	+0,7	11,8
October, ..	88	64	79	89,3	74,4	83,1	+0,1	19,4
November,	86	54	73	87,8	60,9	75,3	-6,8	24,4
December,	85	57	72	84,9	60,6	72,6	-8,6	26,1
Mean,	89.4	69.3	79.2	92,5	73,5	82,7	Range 24,6\|	19,2

The constant difference between the numbers of the two years leads me to attribate it to an index error of one of the thermometers. Probably the second instrument stands too high, for the other more nearly agrees with those of Drs. Wylis and Geddes. A want of prior comparieon with a standard instrument thus often destroys confidence and robs of half its value the labour of years. Such an error however does not
interfere with the results derived from this table, namely, the monthly and diurnal range:-it only affects the mean annual temperature, which, with all the data before us, cannot positively be determined, although the numerous observations of different hours and with different instruments may neutralize many irregularities: thus we have the mean annual temperature,

> At Sunrise, in the open air.. M9,5 Minimum temperatnre, $\mathbf{6 9 , 3}$ by Captain Lloyd.

From the mean of the maxima and minima, and from the pair of observations at 9 A. M. and 8 P. m., it may be assumed with tolerable confidence that the mean temperature of Nagpúr does not differ much from 80° Farh. which is nearly two degrees higher than that of Calcutta, and $1 \frac{1}{2}$ lower than that of Madras.

> VI.-Proceedings of the Asiatic Society.
> Wednesday Evening, 30th October, 1833.

The Honorable Sir Charles Theophilus Metoalpe, Bt. V. P. in the Chair.

- The Proceedings of the last meeting were read.

Read, a letter from Colonel Cabement, Military Secretary, stating that the Government will have much pleasure in transmitting to the Honorable the Court of Directors the Report on the Experimental Boring, and in recommending a compliance with the Society's application for such a supply of apparatus as will enable them to continue it in an efficient manner.

Read, a letter from G. A. Bushix, Esq. Sec. Gen. Dep. communicating the permission of Government for the dispatch of 100 copies of the 18 th volume of the Researches by the first ships of the season, free of charge for freight.

Read, a letter from W. Twining, Esq. Secretary to the Medical and Physical Society, expressing their regret at being unable to pay a monthly contribution for the use of the rooms occupied by their Library and Museum, and repeating the acknowledgment of the President and Members for the liberality which has afforded them that accommodation.

Read, a letter from J. C. Morris, Esq. Secretary Mad. Lit. Soc. requesting the loan of a volume of the Mackenzie MS. Translations of Inseriptions in the South of India. Resolved, that the request be immediately complied with.

Read, a letter from the Rev. Dr. Bummow, forwarding the printed prospectus of a plan for an expedition into Central Africa, and requesting the encouragement and assistance of the Physical Class of the As. Soc.

- Resolved, that the funds of the Society are not in a state to allow a contribution towards the objects of the African expedition, but that the aid of individuals be invited by circulation of the prospectus amongst the members*.

Library.

The following books were presented:
Third part of the sixteenth volume of the Transactions of the Linnean Society, together with a list of its members, for 1832-by the Society.
Transactions of the American Philosophical Society, part 2nd, vol. 4th, new series-by the Society.
Memoirs of the Astronomical Society of London, vol. 5th-by the Society.
Report of the First and Second Meetings of the British Association for the adrancement of Science-by the Yorkshire Philosophical Society.
Proceedings of the Natural History Society of the Mauritius, for June, 1833-by the Sociely.
Proceedings of the Geological Society of London, No. 28-by the Society.
Madras Journal of Literature and Science-by the Madras Literary Society. Journal Asiatique, Nos. 58, 62, and 63-by the Asiatic Society of Paris.
Thirteenth and fourteenth volumes of the Transactions of the Batavian Societyby the Society.
Second Annual Report of the Council of the Naval and Military Library and Museum-by Mesers. Bagshaw and Co. for the Council.
Von Hamirr's History of the Ottoman Empire, 9th volume, and some loose tracte-by the Author.
Jahrbucber der Literature, vols. 57, 58, 59, and 60-by Councellor Von Hammer. Marcoz, Astronomie Solaire Simplifiee-by H. T. Colebrooke, Esq.
De Tasay, Memoire sur le Systeme Metrique des Arabes-by the Author, .
Leipziger Literature Zeitang, Nos. 206, 207, 208, and 209-by the Editor.
D. H. Fitton on the Progress of Geology in England-by the Author.

Ditto's Geological Sketch of the Vicinity of Hastings-by the Author.
A short system of Polite Learning, compiled and translated by Maha Raja Kali Kisser Bahadur-by the Translator.
Select Extracts from Lord Chestrerfield's Advice to his Son, translated into Bengalee, by Radianath Dey-by the Translator.
Stocausler's Fifteen Months' Pilgrimage through untrodden tracta of Khuzistan and Persia-by the Author.

The following books were received from the Book-sellers:
Lardner's Cabinet Cyclopedia-British Admirals, lst vol. Iron and Steel, 2nd vol. Christian Church, lat vol.
Library of Useful Knowledge-Waddington's History of the Church. Spain and Portugal.

- Printed on the cover of the present number.

3 в 2

- Lfiell's Principles of Geology, 3rd vol.

Theatrum Pontificiale, 5 vols.-purehased by the Sociely.
Memoires Concernant les Chinois, 14 vols.-presented by the Seerelary.
Road, a letter from Mr. A. Bous', Foreign Sec. of the Gealogical Sooicty of France, offering an exchange of their publications against the Journal and Trensactions of the As. Soc. Resolvod, that the exchange be made with pleasure, through the Society's Agent in London.

Road, also letters from Professor Von Hammer, the Secretaries of the Philadelphian and Batavian Societies, \&c. relative to the works detailed above.

> Antiquities, Statistics, \&c.

Read, a letter from Mr. TUfnel, Sec. of the Right Honorable the Governor of Ceylon, presenting copies of some inscriptions in the Nágarí character, collected by Captain Forbes of the 78th Highlanders, agent in the Matele district.

Thousands of inscriptions, in the same character, are stated to be found in the island : but we have not yet any clue to the relative value of these letters in the modern Nagari alphabet. They are evidently identical with those of the Kanouj coins* and with the inscriptions referred by Mr. Stirline to the Buddhistes, or Jyns; which their occurrence in Ceylon certainly tends to confirm.

Read, a letter from E. Stirning, Esq. submitting a tabular statement of the price of grain at Alligurh, from our first possession of the country, to 1832.

A statistical report on the population of the town and district of Múr. shedabad, drawn up by Mr. H. V. Hatiozn, was submitted by Mr. J.R. Colvin.
[We shall give an abatract of these statements in our next.]
Read, a note from Mr. J. H. Stocqueler, presenting some coins, collected during his travels in Europe.

A Fac Simile of an Arabic Inscription, cut in an escarpment of the rock at the Fort of Chanderi, was presented by Dr. J. TytLer, in the name of Lieut. Maddonald ; from whose letter, the following extract was read:
" I have discorered an ancient inscription at Chanderf, near which I am now encamped. This place now belongs to Scindin, who took it from the former Raja, 20 years ago. The Fort of Chanderi, which consists of a sandstone wall, flanked by circular towers, built upon a steep hill, was in former days considered impregnable. Colonel Baptista, of Scindia's service, succeeded after a five months siege in starving out the Bundela garrison, and it is now occupied by Marhatta troops. To my inquiries into the ancient history of the place, I could obtain no satisfictory information. The ignorant Marbattas and Bundelas could only name one fumors Raja, Sisupal, who flourished in the days of Hindu supremacy, and founded this place. It was afterwards rendered famous by being the residence of Alemeris for a short period. The ruins of mosques, sarais, madrissas, and baolies, mahals and zenanas, indicate its former magnificence under the Musulman sovereignty. There are many ancient inscriptions, but I selected the accompanying, which I found upon a famous ghat or passage which has been cut with stupendous labour

[^129]through a sold rock 100 feet high. This ghat which leads from Chanderi through a sandstone ridge into the adjacent country is in itself a lasting monument of the gigantic undertakings of the Musulman sovereigns, but to the modern inhabitants even the name of the monarch who accomplished this great excaration is unknown. I hope therefore that this inseription will rescue it from oblivion.
"The inhabitants of this country view our trigonometrical operations with suspicion and dread. They cannot comprehend the object of burning lights upon the summits of distart hills, and they, can only atribute it to some black art, or jack, by which we wish to take possession of their country. "The weather is getting hot, the thermometer ranging between 88° at sunrise, and 108° at $2 \mathrm{p} . \mathrm{M}$. in mag tent.

18th May, 1833, Casmp near Chanderi.

The inscription, after insertion of the second Sura of the Keran, called Ayet-nl-Kwrsf, sets forth that the lofty gate of Gumti and Keroli, near the tank, were erected by Juman Khán, son of Sher Khan, by order of the Sultan-us-Salatis Grias-dd-din, on the 14th Jumad-us.Sani A. f. 700 (A. d. 1301).

Physical.
Lettersfrom Lieut. Burt, Engineer, of Allahabad, dated 26th August, and from Lieut. Newbolt, of Malacca, 11th July,were read, intimating that they had dispatched shells and geological specimens, which have not yet reached their destination.

Specimens of coal, lignite, pyrites, \&c. from Kyook Phyoo, were presented in the name of Lieut. Foney.
[A note on the subject of Lieut. Foler's discoveries will appear in our next.]
Specimens of the fossil shells discovered by Dr. H. H. Spry, Corresponding Member, Ph. Cl. in digging a well near Ságar.

These are the specimens alluded to in a notice published in the July number of the Journal (page 376), announcing the discovery of fossil shells, 17 feet below the surface. Dr. Spay's account has not been yet received, it may suffice therefore to state that the shells are of one species, all left-handed, and precisely the same as those discovered by Dr. SpiLsbury, silicified in indurated clay, near Jabalpur, and described in the Proceedings of the Society for April, (p. 205) ; these however are in their natural state, imbedded in a loose cellular wacken, the white granular appearance of which is derived from silex in a white crumbling state, lining the numerous cells of the matrix as is often observed in the geodes of zeolite and heliotrope. Both above and below the shell stratum are beds of wacken, a basaltic clay, becoming harder below, and more earthy above; the surface being the common black cotton soil, abounding throughout the trap district. The same shell deposit will probably be found to extend over a constderable field.
On turning to Dr. Voyeex's description of the shell stratum in the Gámilgarh hills, a perfect identity is observable in the thickness and nature of the superincumbent and subjacent beds of wacken and basalt : the shells however are doscribed by him as conus or voluta, but as they were much broken and compressed, they were probably not easily recognized, and may have been after all identical with the present shells. They bear some resemblance to the common enpoullerie of the tanks and jheels of Upper India, described by Mr. Benson, Gleaninge, i. p. 265. The fosail shell however has some specific distisctions, in its more,
oval form, and the constant reversion of the whorls. Should it turn out to be an ampullaria, it will be a proof of fresh water lakes, co-existent with the emission of the Upper Sagar trap, and perhaps with the fossil bone deposit, and as both by Vorser's testimony and by that of Dr. Spry the shell bed bears all the appearance of a regular stratum-it will serve as a mark of distinction between the older and more recent volcanic emissions of that extensive field.

Further specimens of fossil bones and of shell breccia, and the fossil jaw of an elephant; also specimens of the rock on which the bones were dis covered, near Jabalpúr, by Dr. Spirsbury. [A note and illnstrative section will be given in our next.]

A stuffed eagle from Nipal, and a pole-cat, presented by Captain Roxburge.

Two specimens of the neet of the Tailor bird-by S. P. Stacy, Esq-
A report from the Curator was submitted on the subject of a collection of insects and shells, which had been purchased in anticipation of the Society's sanction, for the Museum, at an expence of Rupees 100. The collection was made in the Silhet and Kasya hills, and contains several new species, particularly one of a paludina, first described by Mr. Benson, in the first number of the Journal. A paper on the subject of this shell, by Dr. J. T. Pearson, was read, and the purchase of the collection was sanctioned.

The thanks of the Society were voted for the several contributions of the evening.
MADRAS LITERAET BOCIETY AND AUXILIARY OF TEE ROTAL ABIATIC BOCIETT. Thursday, 8th August, 1833.
The Right Honorable Sir F. Adan, K. C. B. Present. Honorable Sir R. Palmer, President, in the Chair.

An able and interesting paper on the rise and early history of the Syrian Christians on the Malabar Coast, by the Venerable the Archdeacon, was read to the meeting by the learned author, to whom the thanks of the Society were unanimously voted. It was further resolved, that the paper in question be adopted by the Society and be set aside for publication.
It was then proposed by Lient. Col. Coombs and seconded by Lient. Col. Culler.
That it is desirable with reference to several interesting memoirs and papers which have already been submitted to the Society, and to others which may hereafter be received, to adopt means for giving them earlier publicity than the necessarily distant and slow publication of the Society's transactions will admit; and, that independently of papers read before the Society, and of notices of their meetings and proceedings, the publication under the auspices of the Society of a monthly or quarterly journal, similar to the Asiatic Journal of Calcutta, would, by affording a suitable vehicle for occasional essays and papers connected with objects of oriental literature and science be in strict furtherance of the professed object of the Society, and likely to prore if adequately supported and encouraged, eminently and extremely useful.

The foregoing resolation baving been discussed, was agreed to, and it was resolred to refer the same to the Committee of Papers in the Asiatic Department, to arrange the details and adopt the necessary measures for carrying the plan inte effect. Several works were presented and thanks voted for the same.

VII.-Analysis of Boors.

Secenteenth volume of Asiatic Resgarches, or Transactions of the Society instituted in Bengal for inquiring into the History, the Antiquities, the Arts and Sciences and Literature of Asia. Calcutta, 1832.
This volume is prefaced with an address from the Society to its late Secretary Mr. H. H. Wilson, upon the occasion of his departure to Europe, which will be found printed at length in the Journal, vol. i. p. 563.
I. The first paper is a Statistical Report on the Bhotia Mehale of Kemaon, by C. W. Traill, Ksq. Commissioner. It forms a supplement to the more elaborate report by the same officer on the district of Kemaon, printed in the sixteenth volume of the Asiatic Researches, 1828.

The Bhot Mehals, forming in extent one-third of the Kemaon province, are bounded at the north by the table-land of Tibet, on the south they extend to the base of the Himalaya range, and are irregularly defined, piercing through the barrier of the snowy range at the passes of the five principal rivers, Mana and Niti, on the feeders of the Ganges ; Juwar, Darma, and Byanse, on those of the Sarda or Gogra.

These limited valleys, or gorges, are the only productive and inhabitable parts of Bhot, the rest consisting of snow and barren rock. They are elevated 6000 feet above the sea, while the peaks around them tower to 20 and 25,000 feet. The Bhotias insist that the zone of snow is continually extending, and cutting off passes from one valley to another, which were formerly passable at least for a few days in the year. The only accessible roads now follow the direction of the streams, and owing to avalanches (háin gul) and slips (paira) require constant toil for their preservation. The Nitt is the most practicable pass, but at many points ponies and cattle are forced to be raised or lowered by means of slings passed round their bodies :
There are but 59 villages and 1325 houses, and about 10,000 inhabitants in this' monntainous district, of whom nine-tenths are Bhotias or Tibetans.
Por half the year the ground is covered with snow, and an interval of four months without a fall of snow, forms an uncommonly favorable summer!
Phapar and Ugal, two varieties of buck-wheat, Uä Jao and Jao, beardless and common barley, are the principal agricultural products of the province. The Phaper seem indigenous, as it is found wild on all high mountains. Wheat and Marsa, a species of Amaranthus, yield an uncertain crop.
"Turnips and leaks are the only vegetables raised in Bhot ! but many useful roots and herbs are spontaneously produced, among these are, the wild garlic, celery, rhubarb, frankincense (mari or balchar), laljari, chora, bhotkes, and kathi, objects of export to Hindustan. The rhubarb is somewhat inferior in its color and properties to the Turkey, and the Bhotias do not take it inwardly, though they apply the powder to wounds and bruises : it is also used as an ingredient in the formation of a red dye, in conjunction with Manjith (very abundant here) and potash."

Among the fraits, Mr. Traill enumerates the gooseberry, currant, raspberry, atrawberry, and pear. Walnuts and hazlenuts are common, but small; apricots and peaches do not thrive. Oaks, pines, the celebrated Deodar, and the Suryi or Arbor vite, with trunks of 20 and 25 feet in circumference, are common; to them succeed the Rhododendron, the king pine, the yew, the Narpati, or white Rhododendron, (seed as snuff,) Bindhara or juniper, and above all, the Bhoj (bhuria), or birch on' the rery verge of perpetual snow*.

[^130]Thedomestic animalsare the common hill black cattle, and the Burdgati or Yak of Tartary ; the Jbbu and Garju are prolific mules between these two, very serviceable for carriage : sheep and goats, used also for burden ; stout ponies, called Gumbs, dogs, (the Buanou, tamed,) and cats. The wild animals are the Berji or tawny bear; the Bheral, wild sheep; Kastwi, musk deer; the Bhic, a small brown marmot; the Kuker, ferret, and rate with short tails.
The birds peculiar to Bhot are the falcon and hawk, the Himorodil (bind of snow), ptarmigan ; Mákao, wild pigeon, and Kyang, or chough, with scariet bill and legs. The Bhawar or wild bee builds its nest on the southera aspect of the Hiratlaya.
Of minerals, Mr. Traill mentions iron, sulphur, and yellow orpiment. The fomal bones called Bijli har are chiefly found at the crest of the Niti pass, full 17,000 fret high. Hot springs are numerous, and there is reason to suspect that a volcaso exists on the Nanda Deot peak.
We have not space to follow the author into the history and manners of the people who inhabit this secluded tract : they derive their origin from Tibet but shew an equal admixture of Hindú in their institutions. It would hare been intereating to have added a vocabulary of words in the unwritten Darma dialect spoken by the aborigines of the country.
Situated between the Tibetan and Gorkba powers, the Bhots have had to pay for the protection of both : and being the key of commercial intercourse between Tartary and Hindustan, the revenue jama, raised from this limited population, on the introduction of the British Government, in 1872, Sambat, amounted to so large a sum as Rupees 11,565. By an enlightened pelicy, the transit duties were soon after all abolished, and though the direct receipts were thus reduced to one-half, the increase of trade must have amply compensated for the loss.

The principal exports from Bhotia to Tibet or $\boldsymbol{H T}$ madks (snowland) consists of grain, calico, hardware, broadcloth, gár, sugar, and timber. The imports are salt, the natural produce of lakes in Hiwndes, 15,000 maunds : tincal or beras, aleo the natural produce of a lake; in this article there was much speculation for the British market, and the import increased from 1500 to $\mathbf{2 0 , 0 0 0}$ maunds in 1818-19, a quantity far exceeding the demand in Eugland. The supply has since fallen to 7 or $\mathbf{8 0 0 0} \mathrm{mds}$. The other imports are wool, shawl-wool, gold dust, and a few trifing articles. As the imports from 1816 to 1821 much exceeded the exports, a large amount of Furukhabad rupees found their way to Hiundes, of which they have become the favorite currency.

Mr. Traill's able report terminates with a few remarks on the province of Hiwndes, of which a full account has already been given in the Journal in Mr. A. Csoma's Geographical Notice of Tibet, (vol. i. p. 124.)
II.-The next paper is an Essay on the mode of performing the arithnetical operation of the extraction of roots, as practised by the Arabs, and given in the Ayown-ool-Hisab, by Jokn Tytler. At first sight this paper appears rather lengthy, but its subject is one which it is difficult to compress so as to render intelligible, and indeed without a diagram it is by no means easy to render it intelligible at all.

The Binomial formula of any power $(a+b) m$ is $m^{n}+n a^{n-1} b+\frac{n-n-1}{2}$ $a^{n-9} b^{2} \& c$. bh This may be considered as consisting of two termes ceal $n a^{n-1} b+\frac{n \cdot n-1}{2} a^{n-2} b^{2} \ldots b^{n}$. Supposing a siren number to coming
of more than n figures, and consequently to be of the form $e \times 10 n+r$ then if w^{n} be the nearest approximate $n^{t h}$ power to e and if $e \times 10^{n}-w^{n} \times 10^{n}=0$ and $w^{n} \times 10^{n}$ be supposed to expound an and $v+r$ to expound $n a^{n-1} b+\frac{n \cdot n-1}{2}$ $a^{n-2} b^{2} \ldots \ldots b^{n}$, the complete nth root of $e \times 10^{n}+r$ will be found by finding an approximate nth power toe, and then seeking such a number as when substitnted for b in nann-1 $b+\frac{n . n-1}{2} a^{n-2} b^{2} \ldots$ bn will render the sum of this expression and the product of the nearest nth power already found into 10 n , less or not greater than exion $+r$ or $(a+b)^{n}$. And this operation is to be repeated according to the number of figures in $(a+b) n$.
Our books of arithmetic contain nothing farther than the above statement, and leave the mode of finding the second number of the root, and of its successive involutions and multiplications into its proper co-efficients, entirely to the student. The Arabian arithmeticians, with a good deal of ingenuity certainly, (whether well or ill directed is another question,) have invented a table or diagram in which, by a sort of mechanical process, the sought number b by the bare process of maltiplication into one figure, and addition to the number above it, is successively involved to all its powers, multiplied into all its co-efficients, and the sum of the whole found.

The Arabians give to their diagram the quaint name of Shukul-i-Mumburee, or Pulpit, or, as Mr. Trrise more grandly translates it, Anabathroidal diagram. The figure consists of ascending steps like those of the stairs of a Mohammadan pulpit. The etymologies of by far the greater part of our technical terms are not more rational.
The Arabian operation, in fact, is a very careful mode of finding the result of $n^{n-1} b+\frac{n \cdot n-1}{2} a^{n-2} b \ldots b^{n}$ so as not to repeat any of the steps or per-
form the same calculation twice over. With our present improved methode, it is seldom that the arithmetical extraction of roots of high powers is performed; but were it often required, we should soon find the necessity of attention to this matter, and of some system in arranging our operations, so as to avoid doing the same thing over and over again.

Such mechanical contrivances have been employed by the greatest Mathematicians: it will be sufficient to instance the celebrated square, almost on the principles of a magic square, invented by Sir I. Newton, for solving equations by means of converging series. A mind curious in tracing analogies, might discorer in the Arabic anabathroidal diagram, some traces of that reasoning which mast have led to the discovery of the wonderful calculating machine of Mr. Babbage.

To give an idea of the Arabian method, we shall here extract the approximate 6 th root of $166,571,800$, which is the two first steps of the example given by Mr. Trifira. In the original diagram longitudinal lines are drawn between each two figures: for those we have substituted dots, and the several steps of the operation are numbered I. (which is at the bottom) II. III. \&c. To abbreviate, let 10 be demoted by $\phi, 166$ by $e, 571800$ by $r, 2$ the approximate 6 th root of 166 by a and 3 by b, and the effect of the several operations will be as marked in the following diagram.

The only parts that require explanation are those steps of the operation marked with an asterisk. In these it is to be remembered, that if there be a given now of figures as 8811963, and there be added to, or subtracted from it, another row, so that
the units of the second may be nader the figure in the $n^{\text {th }}$ place of the first, the tens of the second under the $(n+1)^{\text {th }}$ place of the first, the handreds under place $n+2$ \&cc. this is in reality adding or subtracting the product of the second row by 10^{n-1}. Thus 8811963

The course of the other operations, by which the co-efficients of the Binomial Theorem are formed by successive additions of the neveral orders of figurate num. bers, will be obvious to any one who takes the trouble of tracing them in the order of the diagram : for the mode of repeating the whole operation, so as to find roots of many figures, we must refer to the original paper: a little consideration however of the diagram already given will render that obrious also.

The method here detailed gives no more than the integral figures of the root, and the Arabs being nnacquainted with decimal fractions, could go no farther. To remedy this, they employ a formula for finding a fraction, to be added to the integral part of the root, so as to give a nearer approximation.

Their formula is this; Le: m be the approximate nth root of M and $M-m^{n}=r$ then $\left[m+\frac{r}{(m+1)^{n}-m^{n}}\right]^{n}$ will be less than M and consequently $m+\frac{r}{(m+1)^{n}}=-m^{n}$ is a nearer approximate nth root of M, as may be easily proved. In this case r and $(m+1)^{n}-m^{n}$ are found by the last revolution of operations in the Anabathroidal Diagram.
This formula however is imperfect, and when applied to high powers, produces great errors : in the square it never can be greater than $\frac{1}{4}$, but in seeking, for example, the 6 th root of 396 , the error is more than 152 . This imperfection the Arabians appear to have been anxious to remedy : their method is this; if in the above formula $n=2$, that is, if the root sought be the square root, then $m+\frac{r}{(m+1)^{n-m} n}$ becomes $m+\frac{r}{2 m+1}$ and the difference between the square of this and M may approximate to \boldsymbol{t}. To remedy this, the Arabian arithmeticians instead of $m+\frac{r}{2 m+1}$ assume the formula $m+\frac{2 r}{4 m+1}$ and then $M-\left(m+\frac{2 r}{4 m+1}\right)^{2}$ that is $m+r-\left(m+\frac{2^{r}}{4 m+1}\right)^{2}=\frac{(4 m+1) r-4 r^{2}}{(4 m+1)^{2}}$. Now this expression is either positive or negative. If positive, Mr. Tytler shews, it never can exceed ${ }_{1}^{18}$; ; if negative, then since a negative deficiency is an excess, this shows that the assumed root is greater than the truth, and in this case the excess of its square above M will increase according to the value of m, and will approximate to $\frac{1}{2}$.

These results the author easily produces by the application of fluxions. The pozzle is, to understand by what reasoning the Arabians without any means of 3 c 2
this kind, hit upon a convenient formula such as $m+\frac{2 r}{4 m+1}$. Though the formula, when found, appears simple, yet the difficulty of actually finding it, with their limited means, must have been very great. It was like the Druids elevating the immense blocks of Stonehenge without mechanics. Most probably it was discovered by long and laborious tentation.

The author then discusses the effects of assuming as the approximate aquare root the formula $m+\frac{r s}{2 m z+1}$ in which z is indefinite; but this, as foreign to the Arabs, we omit, and shall sum up the whole in his words-
" We may hence form some judgment how mach the old arithmeticians mest have been perplexed and retarded by the labour of long multiplication. We, who enjoy the benefits of the great discovery of Logarithmn, can now scarcely form an estimate of the difficulties with which they had to conteud from this want, and the facilities which we enjoy from their use. While, therefore, the Arabian method of extraction may inepire as with more gratitude to Lord Napier, we must not too hastily condemn it as uselemaly laborions, till we can show that, without a knowledge of his discovery, we could have more happily succeeded in the facilitating and abbreviation of calculation. Should, after all these considerations, the intention of the Arabian operation be thought of little value, and the labour employed to accomplish it misused, yet the artful contrivances by which it is attained, and the skilfal adaptation for thin parpose of the simple priaciple of the variation of the signification of symbole from the variation of their situation, mant, I think, in justice, always canse the Pulpit Diagram to be considered a deserving momument of Arabic ingenaity."

The Author concludes his essay-
"With an acknowledgment of my obligations to my very intelligent friend Dewan Kanh Jxx of Patna; by him I was furnished with the extract of the Ayoum-ool-Hisab. His treatise of Arithmetic formerly mentioned*, and his oral explanations enabled me to compreheud the obscure and studied brevity of the Arabian Anthor ; and from the eame sources I derived those observations on the fractional part of the root which form the basis of the concluding paragraphs of the present Euscay."

The treatise of Arithmetic here alluded to, and named by its anthor, the Khiza-nut-ool-Ilm, is described in vol. xiii. of the Researches, p. 466. It is a rery large work, consisting of three parts : first, an account of Arabian Mathematical Science; next, of that of the Hindus, and lastly, as much of the European as the author was acquainted with. The whole, we are happy to say, is in the course of printing by the Committee of Public Instruction, and will, when complete, form an invaluable store of information respecting Oriental Mathematics.

The European part of the Khizanut-ool-Ilm consists of two sections: first, a complete translation by the Dewan of Bonnycastle's Algebra; secondly, an extract consisting of a collection of Geometrical Problems from the papers of the celebrated Turuzzool Hosain Khaun of Delhi. Thir person during his life, was considered, we believe, the best Mohammadan mathematician in India, and he appears to have employed his time in translating European mathematical works into Arabic ; after his death, which took place some years ago, Government, we are told, made strong efforts to obtain his MSS. but in consequence of legal dispates between his relations these were unsuccessful, and the fate of the papers is probably not known. It is much to be wished that they could be procured.

[^131]

The above facts, the pains taken by Dewan Kanh Jes, in translating from English, which he understood very imperfectly, and in which (as he acknowledges) he was greatly assisted by.the kindness of Henry Dovelas, Esq. of Patna, and his extracts from the papers of the Delhi mathematician, are strong proofs, notwithstanding the present fashionable doctrines, of the value set by Natives on translations from English works, when well chosen and judiciously execated.
Tupuzzool Hosain Khaun's choice of Arabic for the rehicle of his translations is also a proof that intelligent Natives do not see the advantages of proscribing that language so clearly as we.
[To be Continued.]
II.-Madras Journal of Literature and Science, published under the auspices of
the Madras Literary Society and Ausiliary Royal Asiatic Society, edited by
the Secretary, No. 1, October 1833, price to Subscribers 3 Rs. per quarter.
We cannot but feel highly complimented by the appearance of a new periodical at Madras, professedly founded on the model of our own journal, and imitating our arrangements even to the style of the title page, the price, the number of pages, and the gratuitous conduct of the editorial department. We look upon it not as a rival but as a powerful anxiliary, and we hail it as a guarantee of the revival of the efforts of the Madras Literary Society. The publication of Researches in an occasional quarto volume at distant periods has been adduced as a bar rather than an incentive to contributions of a learned nature, while the limited sale of such works makes the printing charge fall heavy on a small Society : this has been partially felt in Calcutta ; and it has led at Bombay, as at Madras, to the absorption of the institutions there into branches of the Royal Association at home. Under the new system however of giving rapid publication, free of cost, to short interesting and ephemeral papers (in which the Bombay Geographical Society may also easily join by a similar journal for the west of India), the independence and orientality of each might still be assured; while by a combination of the means and labours of the three Indian Societies, a volume of Researches might simultaneously be kept in hand at Calcutta for their more erudite and lengthened communications. We have not room to notice the contents of the Madras Journal at present, but we shall not scruple to extract matter that will be interesting to our own readers. We sincerely regret the untimely end of Lieut.-Colonel Coombs, whom we perceive to have been one of the chief promoters of its establishment.

VIII.-Miscellaneous.

Circular Instructione from the Geological Society, for the Collection of Geological specimens, with a plate.
[We beg the attention of our Indian geologists to these simple instructions; to which we have only to add that numbers should be put on the stones, where possible, as paper labels are soon destroyed by insects in this country.]

1. The Geological Society begs to impress upon the minds of all collectors, that the chief objects of their research should be apecimens of all those rocks, marls, or claya, which contain shells, plants, or any sort of petrifaction.
2. The petrifactions should, if possible, be kept united with portions of the rock, sand, or clay, in which they are found; it being more desirable that the mass should
be examined carefully when brought to England, than that aay ecparation of the shells should be attempted at the time of their collection. This injunction, however, does not apply to those cases in which the shells fall readily from their surrousding matrix; bat, in this event, great care must be taken of the petrifactions, by rolling them in paper, or some soft material.
3. If several varieties of stone are seen in the same cliff or quarry, and particuIarly if they contain any petrifactions, specimens of each should be taken, and numbered according to their order of succession; marking the uppermost No. 1, and thence descending with Nos. 2, 3, \&c., making as correct an estimate as time will permit of the thickness of the beds. None of these specimens need be more than 3 in . square, and one and a half or two thick. (fig. 1.)
4. If the rocks are stratified, that is, divided into beds, state whether they are horizontal, inclined, or twisted. If inclined, observe pretty nearly at what angle, and to what point of the compass they dip; if twisted, a sketch, however slight, is desirable.-N.B. The true dip can seldom be ascertained without examining the beds on more sides than one. (fig. 2.)
5. One kind of rock is occasionally seen to cross and cut through the beds of another. In such a case, observe whether the beds are in the same plane on each side of the intruding rock ; if not, mark the extent of the disturbance, and also if there be any difference in the nature of the stone of which the beds are composed, at those points where they touch the intruding rock. Take specimens from the junction, and make a sketch of it. (fig. 3.)
6. Where there are wells, get a list of the beds sunk through in digging them; specifying the thickness of each stratum in its order, from the surface downwards.
7. In volcanic districts, procure a list of the volcanoes now or recently in action, and of those which are extinct ; stating their position, their distance from the sea or any great lake ; the extent, nature, and, if possible, the age, of particular streams of lava, or the relative age of different streams : also whether the lava currents conform to the valleys, or are seen at different heights above the present rivers; and also if any gravel beds be discorerable beneath the streams of lava. (fig. 4.)
8. Note the names of all places known to contain coal, bitumen, salt, alabeater, metallic ores, or any valuable minerals, specifying their extent, and the nature of the rocks in which they occur; but do not bring away large quantities of iron ore, spar, salt, \&c.
9. In cases of coal-pits, specimens of the coal itself and of the beds passed through to obtain it (especially when plants have been found) will be valuable. State whether limestone, iron ore, or springs of bitumen are found near the cool; and if the limestone contains shells, collect abundance of them.
10. Make particular inquiries whether, in digging gravel-pits, or beds of surface clay, mud, and sand, the workmen are in the habit of finding any bones of quadrupeds; and obtain as many of them as possible, selecting particularly teeth and vertebre.
11. Search also for bones in cracks of rock, and in caverns. In the latter, the lowest pits or hollows are most likely to contain bones; and if the solid roct be covered with a crust of spar or marl, break through it, and dig out any bones, horns, or pebbles from beneath. (fig. 6.)
12. Observe if the surface of the country be strewed over with large blocks of atone; remark whether these blocks are angular or rounded, and whether they are
of the same or a different nature from the stratum on which they are laid. If the latter, endeavour to trace them to their native bed. Note the different heights at which gravel is found, and whether or not it is composed of the same rocks as the adjoining country.
13. Nautical collectors are requested to separate and preserve any shells or corals which may be brought up, either with the lead or the anchor; noting the depth and the locality.
14. On coasts where there is a considerable ebb tide, and where the shore consists of rocks or clay containing fossils, some of the best of these petrifactions may be looked for, by breaking up with a pick-axe the shelving beds exposed at low water.
15. In making sections, or memorandums, distinguish well opon the coast, between masses which have simply slipped and fallen away, and the real cliff itself.
16. When drift wood is met with at sea, collect pieces of it : note the longitude and latitude, the distance from the nearest land, and the direction of the current by which it has been borne. Examine well the state of the floating mass, and see whether any roots or leares be attached to it.
17. Every specimen should be labelled on the spot, or as soon after collection as possible, and then rolled in strong paper, or any soft material, to protect its edges.
18. A heary hammer to break off the specimens from the rock, and a smaller one to trim them into shape, are indispensable. If the larger hammer hare a pick at one end, it will be found very useful in digging up and flaking off those thin shelly beds which usually contain the best preserved shells, \&c. A chisel or two are also desirable.
19. The recommendation expressed in the instruction No. 1, may be repeated : -That it should be a general maxim with geological collectors to direct their principal attention to the procuring of fossil organic remains, both animal and vegetable. These are always of value when brought from distant countries; especially when their localities are carefully marked; but when the rocks contain no petrifactions, very small specimens are sufficient.

> 2.-Mirrors of Fusible Alloy.

Berzelius has found that by the union of nineteen parts of lead and twenty-nine of tin, fusiblealloy is produced, which affords, on cooling in thin plates, very bright surfaces. A convex lens dipped several times into the melted alloy, yielded from the surface dipped, a concave mirror of great lustre. This, mounted upon plaster, was preserved for some time in the air untarnished. Dust destroys these mirrors, which will not bear wiping.-Traité de Chimie.
3.-Liverpool and Manchester Railway.

It appears from the account of the Company for the half year ending the 31st December last, that notwithstanding a diminution of nearly 74,000 in the number of passengers during July and August, (supposed to have been caused by the cholera), the loss on this account had, in a cousiderable degree, been made up by the greater quantity of merchandize conveyed, and a redaction in the general expenses of management. The total number of passengers during the half year, was 182,823 -the receipts $\mathbf{£ 4 3 , 4 2 0}$. The merchandize convesed amounted to 86,642 tonsreceipts $\notin 37,781$. The expenses, including $\mathcal{E 1 2 , 6 4 6}$ for repairs of engines, amounted to $\mathfrak{£ 4 8 , 2 7 8}$, leaving a clear profit of $\mathfrak{£ 3 7}, 781$, which enables the Company to make a dividend, for the half year, of four guineas per share.-Mech. Mag.

The Ciossal Idols, or Buik, of Bamian.

JOURNAL

I.-On the Colossal Idols of Bamián. 'By Lieut. Alexander Burnes; Bombay Army.
On the 23rd, we reached Bamiutñ;-which is celebrated for its idols and excavations. These caver are to be seen in all parts of the valley for about eight miles, and they still form the residence of the greater part of the population. They are called. "Stimices" by the people. A detached hill in the middle of the valley is "quite honey-combed with them, and brings to our recollectionitbe Troglodytes of Alexandsa's historians: it is called the city of Ghulghila, and consists of a continued succession of caves in every direction, which are said to have been the work of a king named Juilal.: The hill of Bamián is formed of hardened clay and pebbles, which renders its excavation a matter of little difficulty, but the great extent to which this has been carried excites attention. Caves are fóund on both sides of the valley; but the 'greater' number are on the northern side, where we found the idols : altogether they form an immense city. Labourers are frequently hired to dig in the ruins, and their labours are rewarded by rings, reliques, coins, \&c. They generally bear Cufic inscriptions, and are of a later date than the age of Mohammbd. These excavated caves or houses have no pretensions to architectural omament, being no more than squared holes in the hill : some of them are finished in the shape of a dome, and have a carved frieze below the point from which the cupola springe. The inhabitants tell many remarkable' tales of the caves of 'Bamiañ, one in particular, that a mother lost her child among them, and recovered it after a lapse of 12 years! The tale need not bee believed, bat it will convey an idea of the extent of the works. There are excavations on all sides of the idols, and in the larger one half a regiment' might find quarters.

Bamián is sabject to Cúbul, and would appear to be a place of high antiquity ; it is perhaps the city which Alexander founded at the base of Paropamisus before entering Bactria. The country indeed from C \mathbf{C} bul to Balkh is yet styled 'Bakhtar-zamin,' or the Bakhtar conntry. The name of Bamiain is said to be derived from its elevation, ' Bám,' signifying balcony, and the affix 'ian,' country. It may be so called from the caves rising over one another in the rock.

There are no reliques of Asiatic antiquity which have more roused the curiosity of the learned than the colossal idols of Bamián. It is fortunately in my power to present a drawing of these images. They consist of two figures, a male and a female; the one named Salsal, the other Suar Mana. The figures are cut in alto relievo in the face of the hill, and represent two colossal images. The male is the largest of the two, and about 120 feet high. It occupies a front of 70 feet, and the niche in whieh it is excavated extends about that depth into the hill. This idol is matilated, both legs having been fractured by cannon, and the countenance above the mouth is destroyed. The lips are very large, the ears long and pendent, and there appears to have been a tiara on the head. The figure is covered by a mantle, which hangs over it in all parts, and seems to have been formed of a kind of plaster, and the image has been studded in various places with wooden pins to aesist in fixing it. The figure itself is without symmetry, and there is no alogance in the drapery. The hands which held out the mantle have beea both broken.
The female figure is more perfect than the male, and has boen drensed in the same manner. It is cut out of the sanas hill, at the distance of 200 yards, but is not half the size. One could not discover that her ladyship was not a brother or a son of the twin coloseus, bat for the information of the natives. The drawing which is attached will convey better notions of these idals than a more elaborate description. The square and arched apertures which appear in the plate represent the entrance of the different caves or excavations, and through these there is a road which leads up to the summit of both the images. In the lower caves the caravans to and from Cóbul generally halt, and the apper ones are used as granaries by the community.

I have now to note the most remarkable curiosity in the idols of Bamian. The niches of both have been at one time plastered and ormamented with paintings of human figures, which have now disappeared from all parts but that immediately over the heads of the idala. Here the colours are as vivid and the paintings as distinct as in the Efypp-
tian tombs. There is little variety in the design of these figures, which represent the bust of a woman with a knot of hair on the head and a plaid half over the breast, the whole surrounded by a halo, and the head again by another halo. In one part I could trace a group of three female figures following each other. The execution of the work is bad, and by no means superior to the pictures which the Chinese make in imitation of an European artist.

The traditions of the people regarding the idols of Bamian are vague and ansatisfactory. It is stated that they were excavated about the Christian era by a tribe of kaffirs (infidels), to represent a king named Salsal and his wife, who ruled in a distant country, and was worshipped for his greatness. The Hindús assert them to have been excavated by the Pandús, and that they are mentioned in the great epic poem of the Mahabhairat. Certain it is that the Hindus on passing these idols at this day hold up their hands in adoration, though they do not make offerings, which may have fallen into disuse since the rise of Islam. I am aware that a conjecture attributes these images to the Buddhists, and the long ears of the great figure make it probable enough. I do not trace any resemblance to the colossal figures in the caves of Salsette near Bombay, but the shape of the head is not unlike that of the great trifaced idol of Elephanta. At Manikeala, in the Panjab, near the celebrated 'Tope,' I found a glass or cornelian antique which exactly resembles this head. In the paintings over the idols I discover a close resemblance to the images of the Jain temples in Western India, in mount Abú, and at Girvan and Palitana in Katywar. I judge the figures to be female, but they are very rade, though the colours in which they are sketched are bright and beautifal. There is nothing in the images of Bamian to evince any great advancement in the arts, or what the most common people might not have executed with success. They cannot certainly be referred to the Greek invasion, nor are they mentioned by any of the historians of Alexandrb's expedition. I find in the history of Timourlane, that both the idols and excavations of Bamiám are mentioned by Serer'y od Din, his historian. The idols are described to be so high that none of the arohere could strike the head. They are called Lab and Manab, two celebrated idols which are mentioned in the Koran; and the writer also alludes to the road which led up to them from the interior of the hill. There are no inscriptions at Bamian to guide na in thair history, and the whole of the later traditions are so mixed up with Als, the son-in-law of Mubamubd, who we well know never eame into this part of Asia, that they are most unsatisfactory. It is by no
means improbable that we owe the idols of Bamidn to the caprice of some person of rank, who resided in this cave-digging neighboarhood. and sought for an immortality in the colossal images which we have now described.

II.-Account of the Earthquake at Kathmandí. By A. Campbell, Esq. Assistant Surgeon, attached to the Residency.

On the 26 th of August last, about 6 o'clock P. M. a smart shock of earthquake was experienced throughout the valley, and the neighbouring hills, westward in the valley of Nayakot and Dúny Byas; eastward at Panouti, Baneppa, Dulkele, and Pholam Chok; and southward at Chitlong, Chisagarhy, Etounda, and Bissoulea. The shock was preceded by a rumbling noise from the eastward. The motion of the earth was undulatory, as of a large raft floating on the ocean, and the direction of the swell was from north-east towards southwest. The shock lasted about 1 minute. At $10-45^{*}$ P. m. of the same day another shock of equal duration and of the same character occurred, and at $10-58$, a third and most violent one commenced : at first it was a gentle motion of the earth, accompanied by a slight rambling noise; soon however it increased to a fearful degree, the earth heaved as a ship at sea, the trees waved from their roots, and houses moved to and fro far from the perpendicular. Horses and other cattle, terrified, broke from their stalls, and it was difficult to walk without staggering as a landsman does on ship-board. This shock lasted for about three minutes in its fullest force. And the following is as correct an estimate as can be ascertained (without official documents) of the damage done by it to life and property throughout the great valley and neighbouring districts of Nipal. It is believed that the two first shocks were harmless \dagger.

[^132]
Number of Lives lost and Buildings destroyed．

Places．	宽	$\begin{aligned} & \text { Bं } \\ & \text { 若 } \\ & 0 \\ & 0 \end{aligned}$	发	Temples and other Buildings．
British Residency grounds，．．．．．．．	none	none		One．
City of Kathmandu，	60	38	400	Two pillars，built by the minister，each up－ wards of 100 feet high ：the large Temple of
South of Capital．				Jagarnath，built by Rán Bahadur，after seven
Patan，．．．	6	25		years labour，and about a dozen temples，de－
Sano gaon，	none	0		stroyed．The modern－built garden bouses of
Harra Siddhi	0	0		several members of the minister＇s family have
Teshu gaon	0	0		been rendered untenantable ；one of them，a
Selli gaon，	0	0		handsome and ornamental edifice，has come to
Pagah，	0	0		the ground．
Kuknah，	0	0	130	
Baghmatí，	0	0	80	A crack in the ground of 20 feet in length
Phurphing，	0	0	8	was observed at this village on the morning
Chappa gaon，	0	0	35	of the 27th；the entire number of houses in it
Peang，．．．	0	0	8	was 206，more than a third of the whole were
Taibu，．．	0	0	18	destroyed，and about 100 men have been much
Bara gaon，	0	0	35	damaged．The injury sustained here is pro－
Bali，．．	0	1	3	portionally greater than in any other part not
Pahon，	0	0	3	to the east of Kathmandu．
Sasanelly	0	0	2	
Labu，	0	0	25	
Sana，．．．．．．．．．	0	0	7	
Hills about Sasanel－ 15，．．．．．．．．．．．．．．	0	0	20	
East of Kathmandú in the valley．				At the eastern extremity of Deo Patan is the Temple of Paspatnath，containing Pus－
Deo Patan，．	3	0		puti Jee，the patron deity of the Brahminical
Handi gaon，	0	0	20	inhabitants of Nipal．The building escaped
Nay Dés	4	0	20	unhurt to the great joy of the rulers and
Bareh＊，	5	0	20	people of the land，who attribute the cir－
Temi，	0	0	150	cumstance solely to the interference of the
Gou Karan，．．．．．	0	0	8	blind goddess，in behalf of their favourite god，rather than to the stout deposition of brick and mortar．
Changu，．．．．．．．．	0	0	20	A fine old temple destroyed．
Sankhú，．．．．．．．．	20	5	45	A handsome Temple of Mahadeo，situated on a hill above Sankha，is reduced nearly to ruins．
	200	104	2000	The total number of houses in Bhat gaon is reckoned by Mr．Hodeson at 4，700，$\frac{4}{}$ th of
East of Kathmandú beyond the valley， but in the immediate neighbourhood．				the town is said to be destroyed， 2,000 is the average of many accounts，six or eight fine temples destroyed，and a statue of Rajah Ran－ Jit Mall，one of the Newar Princes of the
Sangu，．．	2	0	8	Bhat gaon division of the valley．
Baneppa，	10	0	20	
Nala gaon，	6	0	11	
Panoutí，．．．．．．．	18	0	19	Six persons were killed under the ruins of
Dulkele，．．．．．．．．．．	10	0		one house in this village，their remains were found where they had gone to sleep．
Phulam Chok，．	60	0	300	A fine temple destroyed here．

[^133]

The above shewn that the earthquake was much more severe to the north and east of the valley than here; and that even within the valley it was much more violent to the east of Kathmandia than at the capital itself, or other places to the west of it. The town of Bhat scan is not more than eight miles in a straight line from Kathmandur, and even there its violence must have greatly exceeded what it was at the latter place. To account for the immense disproportion in the loss of life and property at both places, something may be allowed for the more frail state of the buildings at Bhat gaon ; but this is not sufficient, and this circumstance mast be considered as inexplicable as most others attending this fearful phenomenon. The brahmans of Nipal say (and it is believed with truth) that the occurrence of a more violent earthquake than this is recorded in their histories. It was about 600 years ago, and then the citien of Mangak, Patan, and innumerable towns were utterly destroyed and thousands of their inhabitants killed* : the modern capital Kathmandu did not then exist.

III.-Census of the Population of the City and District of Murshedabad, taken in 1829.

To the five or six accurate estimates which we possess of the population of the cities of India, we are happy to be able now to add one of Murshedabad, both city and district, which we owe to the private or ex-official industry of Mr. H. V. Hathorn, while magistrate of that zillah in 1829. The detailed statements accompanying this officer's letter to the Government will be published without doubt in the Transactions of the Asiatic Society, to which body they have besn tranaferred : we proceed however, as on former occasions, to offer an abridged analysis of the tables, that the readers of the Journal may be in possession of all the accurate statistical knowledge of India furnished from anthentic data. How easy would it be for every officer in charge

[^134]of a town or a zillah to employ a few of the leisure hours of his police in framing reports of a similar nature.

Mr. Hathorn describes his mode of proceeding as follows :

- The work was done under my personal superintendence, through the medium of the Darogas, who were furnished with blank forms, accompanied with particular instructions as to the mode to be adoptod in estimating the establishment of natives of rank and respectability, in order to be as accurate as possible in point of numbers, and at the same time to avoid giving offence by requiring a detailed statement of their dependants of both sexes." " I regret that my sudden departure from Murshedabad, in 1829, and my absence in England, for a period of three years, on account of health, has prevented me from revising and submitting these papers at an earlier period."

Population of the City of Murshedabad.

Population of the District of Mirshedabad.

Names of Thannas.	Number ofvillages in each.		houses Hindu.	Total.		Inhabi- ts. Hindus.	Total.
Gokaru,	149	2666	7724	10390	12771	38045	50816
Gowas,	87	8395	5427	13822	46716	27653	74369
Khára,	114	3702	3413	7115	17863	16070	33933
Sulatabad, ..	158	5612	6904	12516	25368	30836	56204
Stati,	128	302 F	1795	4816	28499	6163	34662
Harharpára,	86	3862	7290	11152	16282	36827	53109
Govindpur, ..	121	1988	6166	8154	12305	27159	39464
Sharsherganj,	87	8395	5427	13822	40416	27023	67439
Kalyánganj, .	113	868	4626	5494	4444	21865	26309
Nowadah, ..	33	1782	2732	4514	10460	12311	22771
Jalinghi	73	3944	3619	7563	19197	20598	39795
Chendaga ..	70	613	2302	2915	2820	10102	12922
Ranitalío, ..	157	5780	6733	12513	34649	34768	69417
Bhadrihat, ..	129	1269	3904	5173	5890	15500	21390
Banwa,	104	5080	10739	15819	16441	48012	64453
Mirzapar, ..	168	2862	10682	13544	14576	51615	66191
Dewansaray,	141	4483	4634	9117	21831	22375	44206
Bhartpur, ..	152	6131	3541	9672	26198	18302	44500
Total of the district, ..	2070	70453	97658	168111	356726	465224	821950
	ngers or no	n-residen					534
							822484
	Proportion of sexes, Musulmans,				Males.	Females.	
					188036	168696	
	Hindus,				241710	223514	
					429746	392210	
	Total of the Town and District, Houses,					208229	
				Inh	habitants,	969447	
	Ratio of inhabitants per house, 4.73						

IV.-List of Birds, collected in the Jungles of Borabhím and Dholbhuim. By Lieut. S. R. Tickell, 31st Regt. N. I. N! ${ }^{\text {i. }}$

1. Falco Latiami. Colvy Falcon? Latham. Male. From head to tip of tail 18 inches, breadth of wings 40 inches; eyes orange yellow. bill and cere bluish, top of head in front grey, sinciput pale orangebrown; feathers streaked dark and produced into a long horizontal crest, the end feathers of which are black, tipped with white; face and auriculars ashy; back of neck and top of back, pale rusty; feathers centered dark-grey brown; whole of back, scapulars, primaries, and part of tertials, dark cloaded rich brown ; coverts of winga pale rusty, clouded grey-brown, and blotched with white spots; some of the tertiala
the same, greater coverts reddish ash-brown ; tail dark greyish brown, barred broadly with dark brown, and tipped obscurely white (as are the tertials), under parts white ; streak of black down centre of throat, neck white tinged rasty, broad bars of rusty on breast and belly, spots of the same on thighs; legs clothed with short white feathers to the feet, which are of a horny color ; exposed part of the tarsi reticulated, claws black and solid. The head is broad, eyes protrading, crest erectile, bill with scarcely any notch, legs short and stout, body mascular and compact.

This subject was killed at Sisdah, in Borabhém, in dense bambu jungle, occupying the interval between two ranges of hills. It was one of a pair; the other, probably the female, appeared larger and showed more white on the wing. They perched high on the summits of tall decayed trees, and uttered wild plaintive screams. (The only specimen seen.)
2.-(Honey Buzzard ?) Length 19 inches, spread of wings 44. Female. Eyes yellow, bill blue, lores green, top of head, nape, and sides of chin, (at base of the bill,) white, streaked brown; whole upper parts uniform clear ambre-brown, brightest on wings, dunnish on back. upper tail coverts pale rusty and whitish grey. Tail a hoary gull grey, primaries do. but darker and bluer: some of the outer ones nearly black, 3rd quill longest ; ander part a clear reddish brown, lega yellow. (Tarsi reticulated.) Killed at Kosmak, in Borabhám, in thick grass jungle, perching on the ground. Stomach contained lizards. It was in company with the annexed.
3. *Falco Herbecola. Kohee Falcon, T. Female. Length 18 inches, breadth 39. Aspect keen, body light and elegant, tail and wings long, tarsi elongated ; bill blue, tipped black, eyes dark, lores and legs yellow ; eyebrows, forehead, patch under the eye, and an indistinct ring round the neck, whitish; whole upper parts pale brown. margined as in our female Kestrel (F. Tinnuncolus), greater coverts dark lead brown, primaries brownish hoary grey, banded dark brown ; upper tail coverts white, with reddish brown crescent-shaped marks ; tail, two middle feathers full hoary grey, two next do. melting into rusty towards their shafts, outer ones pale rusty greyish white, the whole broadly bunded with sepia; upper half of outside tail-feathers banded rusty and white : all the feathers tipped white. Breast, belly, vent, \&c. striped brown and fawny white as in female Kestrel.

[^135]This and the foregoing species appeared tolerably common in those immense tracts of grass jungle which extend with little intermission from near the Kossai river, to the base of the Lakisinnf hills, in Su trakehanf. They perch on the ground, or on the small babúl trees which are interspersed among the jungle, occasionally soaring with a low steady flight over the top of the grass, in quest of prey. They are called by the Hindus inhabiting those regions, "Shahin" and " Kohi," and are much prized by the Coles for their hawking qualifications. The stomach of the present subject contained greater part of a Myna.
4. Falco Nisosimilis. Jungle Sparrow-Havk, T. Size and shape of English sparrow-hawk, upper parts and head a dun-brown ; upper tail coverts pale obscure brown; tail as back, with four cloudy bands, tipped lighter; quills as back, eyebrows and forehead white; feathers tipped dark, auriculars, cheeks, and throat white with short brown stripes. Breast, belly, and thighs white, with transverse brown streaks, vent white. Thigh feathers each a little lower than knee, legs and toes long and slender as in sparrow-hawk. Bill and cere pale bluish, lore with dirty white bristles. Eyes pale gold, lege yellow, (tarsi scutellated) : wings reach to the middle of tail, 4th and 5th quills longest. Eyes operculated by the brow as in F. Nisus. Male. Stomach contained lizards. Killed at Marcha, in Borabhúm. Frequents topes and cultivation.
5. Strix Dumbticola. Jungle Horned Owl, T. Male. From head to end of tail 1 feet 9 inches, spread of wings 4 feet 4 . Eyes deep gold, bill black, legs horny, and bare ; claws black : whole upper parts, face, and crest pale brown ; feathers centred darker, wings do. mottled with grey and blotched occasionally white ; primaries and tail palebrown, barred darker. Breast, belly, thighs and vent tawny-white, barred transversely with rusty and striped longitudinally dark brown.

Frequents the thickest jungle, in deep retired dells, between high rocks or scarped hills, perching low and passing the midday in the centre of some impervious thicket. It is however partially diurnal, and easily flushed in the brightest day, when it flies heavily over the underwood to a short distance, and drops headlong into the first convenient bush. Towards twilight, it emerges from its concealment, and may be observed seated with great majesty on the summit of some granite boulder, on the side of a hill overlooking the surrounding jungle. Its voice is hoarse and hollow, and connected with the gloomy acene and hour in which it is heard, the repulsive laugh in which it occasionally vents its notes "Haw, Haw, Haw, Ho l" cannot fail
to strike a fanciful listener with unpleasing associations. I met with two of this species near Sísdah in Borabhúm, probably a solitary pair, and have placed it as a new addition to the Strix family, as it differs essentially from any yet described by Pinnant, Lathax, or Hardwicer, as found in India.
6. Strix Candidus, Jungle Ovol. T. Male. From head to tail 16 inches, spread of wings 3 feet 4. Eyes black, bill and legs horny, tarsi denuded : whole upper parts shaded with dark and light brown, as in the short-eared owl, the feathers indiscriminately sprinkled with clear white spots ; primaries and tail tawny-brown, broadly barred darker, radial feathers of face, breast, belly and vent pure white. This species frequents the long grass jungle, and passes its life almost entirely on the ground, seldom perching on the lowest trees. When flushed, it rises heavily, and drops again into the grass, as suddenly as if shot. It is silent and solitary, the youngkeep in company some time after attaining their full growth. The jungle owl is found throughout Bengal and the upper provinces in tracts of long grass, to which it appears wholly confined. Male and female scarcely differ.
7. Strix Radiata. Little barred Onol, T. (St. Castanoptera? Horse. Java.) Male. Length $7 \frac{1}{2}$ inches, breadth 18 ; 4th quill longest. Bill greenish horn. Eyes gold, feet and claws horny, slightly feathered to the claws. Face, head, and upper parts pale amber-brown, clearest on head, greyest on scapulars and back, the whole barred with dull sepia; greater wing coverts black, the outer webs of the feather white mixed with rusty, edges of wing chesnut, barred brown; alula spuria and primaries do. barred black ; edges of scapulars have greyish white patches. Tail dark coppery brown, barred pale rusty; breast as black but paler, the brown changing to griseous white towards the belly and thighs ; the whole under parts barred dingy sepia. Very common in the thickly-wooded parts of the Jungle Mehals, selecting the largest trees for its abode, from whence it keeps up its clamorous cries the greater part of the day. It is active, frolicksome, and diarnal, and feeds on insects.
8. Strix Luaubris. Brown Wood Owl, T. Male. In length 12 inches, breadth 2 feet 2. Eyes gold, bill and legs horny, tarsi and toes feathered, whole upper parts dull uniform brown. Beneath whitish, barred rusty ; primaries and tail, leaden brown, barred broadly darker. Inhabits the retired parts of the thickest jungle, coming towards the edges and open parts at night. It is completely nocturnal, and in a calm moon-light night, its incessant cries are heard to a great distance, resembling strongly those of a strangling cat. The only specimen seen was killed at Dampára, in Dholbhám.
9. Lanius Silens. Silent Shrike, T. 9 inches from tip of bill to tip of tail, of which tail 4. Wings spread $14 \frac{1}{3}$ inches, 3 rd quill longest ; eyes hazle, bill and legs black, plumage iron-grey, quills darkest; upper mandible slightly notched. Young bird is marked on the under parts with indistinct transverse bars. Common. Frequenting topes and large trees.
10. Iros Virescens ? Temminck. Male. Size of a starling. Eyes blood-red, feet and bill dark, body plump, olive-green, palest on head, where it is slightly greyish, tinged with yellow on upper tail coverts, quills and their coverts do. edged brighter green; tail as back, long, square ; vent and under tail coverts, chin and base of lower mandible pale clear yellow; over the eye, and a spot on base of upper mandible, extending below the eye to the auriculars, obscure white; lower parts whitish tinged pale yellow; breast dashed with grey, bill deeply notched.

Killed in woody and barren country, at Bamireah, near Midna. pur : appeared shy, silent and solitary, and partakes of the nature of the fly-catchers and thrushes. It flew and settled about the lower parts of bushes and thickets. Stomach contained berries and seeds.
11. Drongo Carrulrscens. Fork-tailed Shrike, Latham ? Male. Shape and size of the smaller " King Crow." Head gross, bill hooked, not notched ; eyes orange-red, bill and feet black, tail deeply forked, as long as the body; whole of upper parts dull metallic-black, deepest on head, brownest on quills ; chin, throat, and breast iron-grey, below sternum white. Female does not differ. Frequents high timber, and is tolerably common. Note a wild mellow whistle, pleasingly and fancifully modulated. Insectivorous.
12. Lanius Grisius. Grey Wood Shrike, T. Male. Length $6 \frac{1}{s}$ inches, ashy-brown above, dull-white beneath; bill, eyes, and legs dark; mandible hooked, not notched ; two centre feathers of tail as back, two next black, outer ones white; dark brown patch through the eyes, a white one above them, obscure brown mark from under mandible; breast tinged dusky reddish ash. Shy, solitary, rather rare, frequents sanl jungle, has a jarring note.
13. Vanga Flaviventris. Yellow Bulbul, T. (Lamius Melanocephalus 9 Gml. Turdoides Atriceps. Tem. ?) Male. Length 7 inches. Eyes pale yellow, bill black, legs dark horn. Head and a slender erectile crest glossy-black, rest of plumage olive-green above, clear olive-yellow beneath; belly and vent bright yellow, quills and tail dusty. Frequented the beautiful hanging-woods of Dampára, in Dholbhúm, where alone I met with them. Manners sprightly, hurrying from tree to tree, with a short repeated song, like the common bulbul.
14. Ceiniger Splendings, T. (Irena Puella,? Horsf. Edolius 9 of Natterer.) The bill totally dissimilar to the Drongo, with which Irena and Eddolius are grouped. It is long, hooked equally in both mandibles, nostrils denuded, and more like the bill of the Chough than any other bird. The chief peculiarity of the bird is a crest, composed of long recumbent hairs, which ride from the head and fall back on the shonlders. The tail is long, slightly forked; the ends of the outer feathers turned up, in the shape of 2 scoop. In other respects it resembles the Drongo. The plumage is deep black, reflecting purple and blue in various lights ; the wings are a deep glassy-green. These birds are tolerably numerous, but confined in locality. Theg frequent the large timber, which luxuriates in the lower portions and richer soil of the jungles, on the banks of nullas, tanks, \&c. : the cotton tree, when in blossom, is a favorite resort, where they may be seen in small parties frolicking about. The voice is very changeable and in constant exertion, from a beautiful song, to whistling, chattering, and creaking, like a rusty wheel. The notes at times resemble the higher strains of an organ, and heard in the wild and lovely scenes where this bird is found, appear singularly striking and plaintive.
15. Muscicapa Tyrannides. Shrike-like Fly-catcher, T. Male. Length 4 inches. Eyes orange-hazle, bill and feet black. Bill flat broad, long, straight, hooked, not notched. Head, nape of neck, back, wings and tail, black ; rump, wing coverts, and line along tertials, and a broad streak along auriculars, from base of bill, white. Breast and belly pale silvery grey. Onter tail-feather white. Killed at Sísdah in Borabhóm. Rare, frequents high timber, has a slight song.
16. Muscicapa Princrpp, Cuvier; M. Miniita. Temmink. Rare. Indiscriminately spread through the jungles. Sometimes solitary, at others, flying in small parties. (Figured in Gould's Century of Birds.)
17. M. Hracintha, Temmink. Size of a Robin. Male. Upper parts, wings, and tail ashy Antwerp-blue ; between the eye and beak a dark space. Chin and breast buff-color, rest white. The colors are paler, but distributed not unlike those of the American blue Robin. Rare, silent, frequenting high trees : killed at Lika in Borabhúm.
18. Mubcicapa Occipitalis. Common in all parts of the jungles.
19. M. Cesrdlia. Common.
20. M. Maculata. Pied Fly-catcher. Linn. Marked the same as the subject mentioned in Bewick. Rare.
21. M. Perigarinus. Parus? Figured in Gould. Common in the jungles. In manners closely resembling our long-tailed titmouse. The males nnite in flocks apart from the males at the close of the cold season.
22. Motacilla Sylvatica, T. Rare, shy, foued in low, barren saud jungle; Hack, with white wing covers, small.
23. M. Luzonia. Numerous, frequenting high timber near nullas, ac. well known in Bengal as Indian Robin.
24. Turdus Maciourds, Vaillant? Shahmour Warbler. 91 in inches long, of which tail 5 ; plames glossy-black, tail cuneiform ; outer feathers tipped white. Upper tail coverts white, lower part of breast and belly deep chesnut, eyes and belly black, legs fleshy horn. The Shahmour is well known and justly prized in India for its song, which inits native jangles is heard in a degree of perfection, to which the notes, when encaged, can bear little comparison. It is spread throughout the jungles, and haunts the deepest glades and hollows, keeping in the centre of thickets. In the grey mornings and evenings the notes are heard through the valleys, ceasing with twilight. The song of the Shahmour is fully equal in compass, power, depth and modulation to that of the Nightingale. The strains sweep with a gush of sweetness through the enchanting solitudes which this bird makes its favourite resort, at times when the other inhabitants of the forests are silent in rest. And in onison with the surrounding scenery, in which nature seems to have lavished every fantastic invention of beauty, the effect produced on the mind and ear can alone be appreciated by those who have witnessed the magnificence of a tropical forest.
25. (Motacilla Subcica, Blue-throated Warbler. Linn ?) (Sylvia Cyanecula, Meyer ?) Male. Size and shape of Redstart, whole upper parts dark olive-brown, feathers of the crown centered darker, with a white patch over the eyes as in Whinchat. Eyes, bill, and legs dark horn, throat cobalt. The space from thence to the sternum is divided into transverse portions of color. Uppermost a band of chesnutbrown, then one of cobalt-blae, then white, and lastly chesnut again; below this all white; on the centre of the neck, adjoining the blue and chesnat of the throat, are two. confluent patches of white and dark brown. A single specimen of this elegant species was seen and killed at Bamirah near Midnapur, in wild bushy country.
26. Motacllla Calliopr. Ruby-throat Warbler, Pallas. (Turdus, apud Latham and Gml.: Accentor, apud Temminck.) Male. Length 6 inches, plumage above olive-brown, beneath dull whitish. Band above and below eyes white, intermediate space black, feathers of throat slightly scaly (stiff and strongly scutellated) ; light scarlet with silvery edges ; bill and legs horn, eyes dark. Rare, solitary, silent. Haunts thickets and underwood. Found at Dampara in Dholbhám, and at Jehanabad, west of Hoogly.
27. M. Robicapilla. Rusty-crowned Warbler, T. Female. 5 inches, eyes reddish hazle; bill and legs pale horn, crown of head rusty; feathers of nostrils, over the eyes, auriculars and sides of neck, pale yellowish green; upper parts olive, throat and breast pale yellow, shafted black. Found in the thick underwood, hollows, ravines, \&c. Lively and agile, with a frequent piping note and occasional chatter.
28. M. Cantator, Chiming Wren, T. 4 inches. Male. Eyes hazle, upper mandible dark, lower pale orange ; legs pale horn, crown black, with a longitudinal central yellow stripe; black stripe through eye and a yellow one over it; throat bright yellow, extending towards breast, lower parts lint-white, vent yellow ; plumage above, clear olivegreen. Frequents trees in the thickest parts of the jungle. Has a loud and incessant note, " pio, pio, pio, pio." Bill rather gross, as in Winchat, not flattened, not hooked as in Regulus, slightly notched : nostrils large, oblong, almost pervious.
29. Stlifia Longicaudata. Long-tailed Warbler. Gml. (Malarme of Veillot.) Male. $5 \frac{1}{8}$ inches, of which tail $2 \frac{1}{\frac{1}{3}, \text { bill and eyes dark, legs }}$ orange-horn color. Upper parts a pale dull brown, on face ashy. Under parts satin-white; quills and coverts pale clear brown; tail ashy brown, tipped obscurely black and then whitish; wings mach rounded and short; first quill almost spurious, 5th and 6th longest ; tail caneiform. All the plumage waving and flimsy in texture, scarcely any tail coverts. Common. Has a sprightly intermittent song, perching for a time on the summit of a bush and then seeking thickest underwood. Frequents barren saul jungle.
30. Motacilla Offinis. Olive Willow Wren, T. (Willow Wrem 9) $5 \frac{1}{\mathrm{~g}}$ inches. Male. Upper parts dark olivaceous ashy-brown. Beneath, brownish yellow ochre. Clear yellow streak over eye. Upper mandible dark, lower pale horn : legs horn, eyes hazle. Killed in hightimbered jungle, on the banks of a stream.
31. M. Dumbticola. Thicket Warbler, T. Male. Nearly 6 inches long, eyes reddish hazle, bill as former subject, legs pale fleshy horn; crown dingy rust, face and over eyes dirty whitish brown, auriculars darker. Whole of the plumage dull olive-brown, as in the thrush; tail slightly rounded, whole under parts white, streaked with the color of back, throat white. Female and male alike. Frequents the thickest foliage, at the top of high trees, and is rarely seen. Has a monotonous note, consisting of three sounds, which is heard incessantly during the morning.
32. M. Fulicata. Sooty Warbler, Cuvier. (Bill in no way allied to the groupe in which Cuvier has placed it.) Male. Size of a
mbin. Upper parts dull dark brown; under parts, inclading the eye, burnished blsck ; greater wing coverts white, next greater as back, but with a glons of steel ; tail black, vent and centre of belly chesnat; quills of wings a deep claret-brown. Frequents low bushy jungle, and has the manners of the stone chat. The bill however is cylindrical, long, thin, partially curved, not unlike that of the house wren. Bill, legs, and eyes dark.
33. M. Subviridis, T. Male. Allied to the M. Zeilonica of Horsf. Bill and legs pale oluish horn, eyes hazle ; plumage above olive-green, below olive-yellow; wings black, edged yellow, greater coverts tipped white, tail dark olive-green. Common in thick bambú or saul jungle, on hills.
34. Turdus Lividus. Leaden Thrush, T. Head and neck pale orange brown. Rest of plumage blue grey. Size of a redwing. Female rather larger and duller in plumage. Shy, silent, solitary. Frequenting thickets in rocky jungles. Killed at Lattapora, in Borabhúm. Rare.
35. T. Unicolor, T. Size of preceding. Female. Eyes dark, bill and legs yellow horn, plumage a dirty grey, mixed on the back with olive, tinged on the head with brown. Wings and tail brownish; coverts of tail iron-grey ; breast Isabella grey, belly white. Silent. Frequents large trees. Rare. Killed at Bansíghar in Borabhúm.
36. Oniolus M'Cosiin, T. Male. Length 9 inches. Bill, feet, and eyes black. Top of head black, each feather edged yellow; forehead yellow, throat and front of neck white, streaked black. Rest of body yellow ; coverts all centered black, quills brownish black, fringed pale grey-yellow ; tail centered olive, tinge of olive on back. Frequents the highest trees in open jungle cultivation, \&c. Singa beautifully. (The only specimen seen.)
37. Nsctsbinia Slhbria, T. (Cynniris Gouldii 9) Male. Length 4 inches. Crown burnished copper, with green reflections. Neck, back, and breast, a deep blood carmine color. A stripe on each side the throat, from the under mandible brilliant violet; lower part of back yellow; tail coverts bright green, tail violet and green, blended with metallic lustre ; quills dusky brown, belly and vent dusky ; eyes, bill, and legs dark. This rare and elegant subject was procured near Seheria in Borabhúm, fitting about the low willow bushes in the dried bed of a stream. It has no song, but a shrill chirp.
38. N. Minima, T. Male. Length 3 inches, plumage ashy olive, paler beneath ; wings and tail brown. Common in saul jungle.
39. Chloropbis Cebmarynchos. Hook-billed Chloropsis, Jardin. Appears to be completely out of its place in Cuvier's arrangement. .But
the description is scanty and ambiguous, and may possibly not refer to the present subject. Male. Length $7 \frac{1}{2}$ inches. Bill as in warblers, but hooked throughout, (much, as in Certhia.) Toes, three before, one behind ; plumage parrot-green, palest beneath; throat, part of cheek, and forehead black; a lilac spot by lower mandible, spot of bright blue on humerus; bill black, eyes hazle, legs pale bluish horn. It has a beautiful song, and is common in the jungles, flying about in small parties. It is an excellent mocker, and imitates the notes of almost every small small bird of the country. (Frequently sold in cages at Calcutta and Monghír.)
40. Emberiza Stlpatica. Bush Bunting, T. Very common throughout India.
41. Loxia Bicolor. Gobergosee Grosbeak. T. Male. Length 41 inches. Bill dark bluish, eyes hazle, legs dark; breast, belly, and part of opper tail coverts white; rest of plumage dense brown; tail black, cuneiform. Flies in small flocks, with a low piping note, frequenting sugar fields. low bushes. Fructivorous.
42. Fringmla Aeilis. Piping Finch, T. Four inches long; plamage ashy-olive, with grey and greener portions; below dull white tail partially tipped white; legs black, bill bluish, eyes orange. Perched on summits of trees. Appeared lively and agile, with a sharp clear whistle. Not uncommon.
43. Embiriza Olivacba. Kirwa Bunting, T. Male. Rather larger than a sparrow. Olive-brown above, obsoure white bencath; feathers of head and neck centered darker; greater coverts dark brown, tipped white; tertials do. edged olive and tipped grey ; primaries and tail dark-brown edged olive-green; eyes hazle, bill bluish, legs flesh. In flocks, on open cultivated land.
44. Fringilla Flavicollis. Chilliama Finch, T. Male. Size of a sparrow, slighter, with longer bill and wings ; the same color as the hen sparrow. Lesser coverts chesnut, throat white, a patch of yellow immediately below, in front of neck.
45. Picus Guttacristatus. Pearl-crested Woodpecker, T. (P. Amantius, Horsf. Java ?) Female. Length $10 \frac{1}{2}$ inches, bill $1 \frac{4}{5}$; eyes amber yellow, bill blackish horn, legs pale blue, forehead dusty brown; crest large, full, black, with round white spots; neck white, with broad longitudinal black stripes, one through eye, two narrower from maxillary angle, confluent below auriculars, another down centre of neck; front of neck, breast and belly, marbled black and white; tail and quills black; back and upper tail coverts pale bright scarlet, with subterjacent white'bare ; rest of upper parts and coverts deep olive-gold color.

Common. Frequenting the largest timber, cotton trees, \&c. Noisy, agile.
46. P. Bencalensis, Horsf. Differing meroly from the foregoing in having the crest red and the tail coverts the same as the back. Is too well known in Bengal to reqaire description.
47. P. Aurockistatus, T. Plumage and size gcarcely differ from that of the P. Medins of Bewick. The crest is of a golden-buff colon, with the extremity scarlet ; lower parts brown and white; belly scarlet. The male is $\frac{1}{3}$ larger than the female. The latter has the entire crest golden-buff. Pretty common in thick jungles. Has a squeaking monotonous note.
48. Sifta Fiontalis. Swainson. S. Velata, Temminck. Orthorynchus Frontalis, Horsf. Java. Does not differ from the description given in Cuvier. Rare. The single specimen seen wes procured at Kankarjarí, near Dampára in Dholbhúm. It fies and climbs about the underwood with great rapidity, and is found in the thickest parts of saul jungle.
49. Bucrros Malabaricus. Malabat Horabill 9 Male. Length of bill 7 inches ; of excrescence 8 ; from maxillary angle to end of tail 2 feet 8 , of which, tail 1 foot 1 ; from tip to tip of wings, 3 feet 2. Bill pale yellow, excrescence or horn black, with a broad lateral irreguler line of yellow, occupying nearly the whole of it ; pale, livid-fleshy patch on the base of lower mandible; eyelids ciliated, eyes scarlet; feet iron-grey, tarsi strong, thick, short, and scatellated; from sternum downwards, and all the feathers of the tail (except the two centre ones) white ; rest of plumage shining metallic black.

These birds were very common in all the more open and large timbered spaces in the jungles, frequenting in preference the píepal trees, the berry of which forms their principal food. The young continue with the parent birds for many months, after leaving the nest ; hence these hornbills are generally met traversing the forest in flocks of eight or ten. They are shy and wary, and the voice loud, clanging, and harsh. The horn is not developed till after the first year, the nestlings having the bill plain and without any trace of excrescence. These birds are never met with in the high rocky lands, nor in the barren tracts of caul jungle, bat abound in the rich meadows composing the valley of the Subonrika, where the country in many parts has the appearance of a well-cultured English park.
50. B. Ginglanve. Gingi Hornbill. Very common in the same haunte as the foregoing, and well known throughoat India.
61. Bucco Linrata. Heckled Berbet, T. Male. Length 9 incheo; abape and manners of B. Lathami, (the well known green species.) Bill
and base space round eyes orange; eyes grey, feet horn; head and neck as far as breast, and back, brown with light shafts; the feathers narrow and pointed; rest bright green, pale on belly.
52. Trogon Duvaucklir. Duvaucel's Cwrucwi, Vaillant. This most elegant sabject is described in Cuvier. The solitary specimen seen was killed near Dampara, Dholbhúm. It frequents the thickest jungle at the bottom of ravines and dried rocky nalas, flying from tree to tree, with a wild querulous note, like the mewing of a cat. It parsues and catches insects on the wing, like the Muscicape : the stomach of the present specimen was crammed with them. The bright and glowing colors of this bird seem little suited to the gloomy depths which are its resort. Those abodes of everlasting shade, where the meridian sun barely penetrates, overhanging arches of vegetation, and which are inhabited by andisturbed flocks of bats, owls, and night-jars, afford a striking exception to the general rules of nature, which hat clothed in sombre garb3 "the birds that shun the light," by harbouring so beautiful a tenant as the Cwrucui.
53. Caprimulaus Albonotatus. Dampára Night-jar, T. Male and female alike, larger than the common English night-jar, which it closely resembles ; the plumage is greyer however, and it is distingaished by a large patch of white on the neck, two or three on the tertials, and on the outer feathers of the tail. It is extremely common in the jungles, keeping in thickets daring the day, and coming out as evening sets in, to the open parts, grass plains, and khéts, which it skims over with a low silent flight. When on the wing it emits a low chirp, something like a sparrow. It has another and very peculiar note, when seated on the top of some decayed tree, and which on a calm night may be heard for a mile, sounding as if some one was striking a plank with a hammer deliberately.
54. Hirundo Coronata. Dhudka Swallow, T. (H. Cristata of Le Vaillant ?) Male. Length 8 inches, 1 ft . 1 across the wings ; cheeks and base of lower mandible cheenut ; from eye to bill, black space; head adorned with a pointed, erectile crest, of a bluish clear grey, as are the upper parts ; breast and belly do. paler ; wings and tail glossy black with green reflections; eyes, legs, and bill dark. The female has a smaller crest, and instead of the chesnut mark on the face, a black patch, bordered below with a white line. They fly in large flocks, bat are partially met with hovering over the marshy spaces in the jungles. The note resembles the monotonons "kia, kia" of the parrot. They disappear in those regions by the end of March, bot I never could trace the direction of their fight.
55. Coldiaba Silfatica. Great Jungle-Pigeon, T. Length 13 inches. Fyes orange, feet rose-color, bill horny, bluish over the nostrils; head, breast, belly, a pale violaceous grey, with vinous tints; apper parts, wings, and tail, brilliant changeable-green, with purple and coppery reflections. Common in some parts. Preferring the open and large-timbered tracts. Wild and difficult of approach. They go generally in small parties of four or five. The voice is deep, and resembles: groans. Sexes alike.
56. C. Agricola. Foxy-Pigeon, T. Male. Length 11 inches; eyes orange; bill and feet lake; head, neck, and breast reddish vinous brown; forehead and belly ashy blue; back, coverts, and quills vinous chesnut, each feather centred dark brown ; upper tail coverts iron-blue grey ; tail dark-clouded brown, patch of black; white-edged feathers on each side the neck. Met with in open cultivated parts. Shy and difficult of approach.
57. C. Javanica. Java Turtle? Male. Length 8 inches; tarsi elongated as in the ground-tartle, nevertheless perches; tail short, rounded, fourth quill of primaries longest; crown, pale ashy-lilac, which extends along the back of the neck to the back; white patch over eyes, enclosing forehead; rest of head, neck, breast, and belly vinous-grey, with a rosy blush; some of the feathers of the back black, edged green; lower down a broad bar of brown, edged black and white above and below ; upper tail coverts blue-grey, primaries dusky-brown; the rest of wings a deep brilliant green, flashing gold in various lights; tail black, outer feathers white with black tip; bill red, tipped black, eyes black, legs flesh-color. This most elegant and diminutive species haunts the most impervious parts of the jungle, and is seldom seen except in the cool of evening, when it repairs to the open parts of streams and meadows. Two specimens alone seen in the Jungle Mehals, one of which, the female, differed merely in having the green of the wings tarnished with copper.
58. The Stone or Norfolk Plover of Bewick, abounds in every open tract in the jangles, coming out to feed at night.
59. Rallos Javanicus, T. (Gallimula Javanica, Horsf, Java.) Male. Size and shape of the Parra ænea ; the claws however as in Gallinula. Eyes blood-red ; bill pale green, with orange-colored ridge; nostrils pervious; whole upper parts, quills, and tail plain black, with greenish reflections on the coverts ; belly, vent, under tail-coverts, dusky-red; inside of thighs dirty white, outside cheanut and dark-grey, lege duoky. A solitary specimen seen at Tumcharararo, in Borabhúm. Had the same haunts and manners as the common Parra of Bengal.
60. Parra Abata. T. Male. Size and shape of P. meea. Eyes dark hazle; bill greenish horn, upper mandible darker, nostrils pervious; a flap of detached skin on the forehead, crown deep bay or dark chesnut; eyebrows light, face white ; from the back of the head, along the nape of the neck, glossy purple-black, changing to lake and coppery purple towards back; throat and narrow strip in front, extending to middle of aeck, white ; rest of neck and breast pale buff; belly and vent white ; back cupreous olive-green; apper tail coverts and tail a burnt copperish lake; primary and secondary quills black; tertials as back, partly fringed white; greater coverts black, smaller coverts and scapulars as back ; outer side of thighs, black aud white radiated ; inner white, flanks black. Pretty common, in small marshy pools, overgrown with juogle.

A great variety of birds in addition to these, met with in the Jangle Mehals, might be added to the list already enumerated; bat as they are indigenous to the whole or various parts of Hindustan, and have been described by former collectors, their insertion here would be a uselese repetition. Ornithological research, which has made such extensive progress into the heart of America, Africa, and the comparatively unknown regions of Australia, has as yet had little insight into the productions of this country. especially in those parts which have not been more immediately located by Europeans. Many of the most rare and beautifal birds, inhabiting the Himalaya mountains and the adjoining forest in the Teraye, have been brought into notice by the talents and spirited researches of one or two gentlemen ; bat even supposing their exertions would make us eventually acquainted with every species found in those immense tracts, there yet would be left a wide blank in our acquisitions, so long as the extensive, unknown, and unvisited portions of the Jangleterry districts remained shat out from the inquiries of the nataralist. These regions, placed in a sensibly warmer latitude than the Nipal forest;-differing in soil, in altitude, in vegetable productions;-presenting ever to the eye an altered. a peculiar, appearance of scenery ;-rendered in parts uninhabitable even to the half-humanized denizens of the jungles, from the influence of pestiferous exhalations, issuing more or less throughout the year from abysses, overgrown by rank vegetation, where the light of day seldom enters, and the cadaverous weeds, fixed in a stagnant atmosphere, never wave in the refreshing breeze; -afiond asylums to the rarer and wilder animals of the forests, which few or no haman footsteps have invaded. The Trogon or Curucui (No. 52). hitherto msserted as belonging alone to the interior of Africa, has boen found here. The Hippopotamus, also exclusivoly consigned to Africe,

has been met with in the portion of jungle which extends into the Bhil country*. The Gour, a apecies of bull, which by its deseription (as taken from a youthg one) must be the noblest in appearance of all known animals, ranges the hilly portions of the jangles, defyiag parsuit. A snake, which by the teatimony (exaggerated doabtleas) of the natives, must equal in dimensions the pythons of ansiquity, inhabits the low marihy recesses of the jungle. A: Aying aquirrel, hitherto undescribed, is tolerably common; and lastly, from a casual glance I once caught of an animal, in the thick and ligh woods bordering the Gurum nala, near the valley of the Subenrika, it would be the corroboration of an ansions surmise, were, attor researches to establish the fact, that the Orang Otang is an inhabitant of these forests.

> V.-Note on the Fossil Bones discovered near Jabalpur. By J. Prinsep, Sec.'As. Soc.
> [Read at the Meeting. of the 30th Oetober.]

The last despatch from our zealous and disinterested contribator Doctor Spilsbury puts it in our power to speak with some degree of precision of the nature of the fossil remains discovered by Captain Slesman; and followed up by himself, in the neighbourhood of Jabal-pur-a field, it mast be remembered, that had been passed over by Captain Frankin and other geologists without any suspicion of the existence of such treasures.

The despatch I allude to consists of a classified series of specimens of the strata wherein the bones were found imbedded, with references to a rough vertical section of the country. (PI. xx. fig. 2.)

We observe that the low plains covered with jungle, at the foot of the hills in question, consist of sandstone lying upon granite, which protrudes in several places, as at AAA. towards the town.

Above the sandstone lies a conformable stratum of compact silicious limestone, which on solution in acids proves to be composed of grains of clear silex, united together by carbonate of lime, here and there tinged with chlorite, or holding nodule3 of that mineral imbedded; at other places, passing into pure quartz, and jasper conglomerate : no stratification is perceptible in the limestone, which seems rather to bear the character of a tufaceous deposit. At one place, $\mathbf{E} c$, an oval

[^136]concretion is enclosed, which resembles a seed or almond :-it is filled with green earth.

Towards the southernmost hill this rock contains bones imbedded in its substance, and having that pink colour observed in the first specimen sent to the Society; they are accompanied with water-worn pebbles and chlorite.

Half way up the same rock, of which Dr. Spilsbury represents a clear section to be open to view from Q to P, a platform ($Q P$) exists, varying in breadth from five to twelve yards. This Mr. Liell would explain to indicate (as the rock above and below is of the same quality) the existence of an ancient coast, worn away by the gradual action of water before the level of the latter was depressed : another partial ledge occurs on the surface of the silicious limestone, marking an anterior water line, when only the superincumbent beds were exposed to the corroding action of the sea or lake. It was upon this ledge in the zouthernmost hill that the first bones were discovered, imbedded in a gravel or alluvial conglomerate.

The uppermost rock is a floetz trap, or horizontal bed of compact volcanic basalt, which must have been spread over the whole surface long before the denudating causes began to prevail, though poeterior to the existence of the animals whose bones are imbedded in the subjacent rock at $\mathrm{L} b$; unless indeed it should turn out that the breccia containing them occurs only in exterior patches, formed of their detritus, and containing also portions of the basalt, which one or two of the specimens whose labels are lost seems to render probable.

Of the nature of the bones found imbedded at $L b$, and of the period in the history of the globe to which they belong, the imperfect broken state of the fragments precludes us from pronouncing any opinion. Fortunately, however, Dr. Spilsbury's discoveries did not stop here; as he correctly observes himself in one of his letters, one discovery has gradually led to another, and he has become a geologist in spite of himself, by the force of accidental circumstances, and the intense interest which such discoveries are calculated to awaken in the mind of man. " A notice is inserted as a hint in the Journal, that fossil bones may be met with near Jabalpur:-"I am put on the qui vive-set out for the hills and bring in a collection of specimens:-my people perceive my curiosity, and bring me in any thing uncommon they meet with :-I go to Brimhan Ghat, whither the Enropean residents have constantly resorted for years past, and the moment my mahout sees a huge bone, he brings it to me, and it is discovered to be an elephant's jaw-bone in a perfect state of preser-
vation." A Fakír it seems had occasion to pull down and rebuild his hut, near the banks of the Nerbudda, when in the foundation these carious reliques were found and thrown aside. "So again," says Dr. S. " some four months ago, a little boy tells me of a wonderful skeleton, said by the natives to be that of a giant, describing the fingers as a foot long: a patel has a kneepan that serves for a scale to weigh 3 or 4 seers of cotton in;-' is not this,' says the boy, 'as wonderful as your jawbone?' to this I readily assented, determined at any rate to sift the rumour. It was stated to be in Captain Garstin's district in the Omar Nadi, abont two kos (9 miles) from Narsinhpur (Garawara). I applied to Captain Garetin, who, owing to the rains, was only two or three days ago able to send me in a specimen. I suspect it will turn out to be a fossil elephant, but I shall be better able to speak on the subject when I have visited the spot on my way to Narsinhpar a few days hence."

Thus are our eyes at once opening to an unexpected and most interesting object of geological research. Upon the first inspection of the fragments the question naturally arises, to what animal do they belong, and to what species ? as it may be remembered that all the fossil mammalia discovered in the tertiary deposits of Europe and America, and even those brought away by Mr. Craurord from Ava, have been pronounced to belong to extinct species by the most competent authority, and generally on the unequivocal testimony of skeletons, nearly complete, if not perfect. It would be rather hazardous therefore to pronounce npon the single half jaw-bone* before us, that the Jabalpur fossil elephant was an exception to the general rule; yet, upon comparing the specimen, side by side, with a recent skeleton in the Society's museum, it is impossible to discover any such distinction as should constitute a difference of species : it is in all respects of the Asiatic type of elephant, and can be confidently distinguished from the elephas primigenius of Cuvigr, so common in Germany and throughout Asiatic Russia, which has itself been pronounced " more different from the Indian species than the ass is from the hurse, or the chacal from the wolf and fox."-Pidgeon's Fossil Remains, 59.

I hope that the accompanying drawing will enable more experienced geologists to decide the question of the identity of the specimen with the existing species of elephant; for although it may thus lose in antiquity, it may perhaps gain in value, as an intervening link between the inhabitants of our planet in two geological periods now separated by so strong a barrier of dissimilar organization.

[^137]While committing the foregoing notice to press, I have received the following account from Doctor Spilabuiy, confirming the expectation alluded to in his former private communication. J. \mathbf{P}^{*} dcoount of the Fossil bones discovered in the bod of the Onar Nads, nearr Narsinhpuir or Garavara, in the Valley of the Nerbadda. By G. G. Spilabury, Surgeon to the Nerbudda Commission, gr.
Some months ago a native report reached me, that in a nala of the Narsinhpuir district the skeleton of a giant was to be seen, the fingers of which were said to be three feet long, and that a kneepan served asa weight of five seers to the patel of the village. On hearing this I applied to Mr. Ganotns, the magistrate of the district, requesting him to inquire into the truth of the story : that gentleman immediately with his nccustomed kindness sent out and procured some specimens, which he forwarded to me at Jabalpur. Finding they were foesil bones, I made arrangements for risiting the spot in person, and beg to forward the accompanying specimens and plan of the place.
At the spot marked A a, (Pl. XXI. fig. 1.) the water had worn away much of the stone, at the under side of which I could perceive a large bone. By the aid of villagers, and digging all round, I was able to upset this stone, under which imbedded lay a thigh-bone five feet three inches long", quite perfect from the round head to the condyles, and altogether a most magnificent specimen : in turning over the stone, however, it was split into two pieces, and the bone fractured about two feet from the condyles. A is the general rock found in the bed of the river,- \mathbf{B} portion from that in the tream-b c, spots where large fragments of bones (one apparently the condylea of a similar thigh-bone) were lying. In the dry bed of the nalla are strewed nodules of which the accompanying is a specimen, and generally about that size. I send a small tooth (fig. 3) which I picked up between A a and the fossil imbedded in the cliff. The tradition of the village is, that the head of this animal was washed down the river some sixty or seveaty years ago. I obtained one large tooth from the Thakúr of Omarin ; this, together with five apecimens, I hope at a future opportunity to submit to the matico of the Society.

Description of Plate XX. illustrative of the Jabalpur foocits.

Fig 1. Represents a superficial view of the two fragmente of the foem bone, placed as forming parts of the same lower jawbone of the alephants, Which on comparison with the plate in Cuvier or Gqipmisas will be found not to differ materially from the type of the Asiatic specien. The central oan, necting part is represented too broad. The surface of the bone is in manay places, and especially in the cavities, covered with small granitic gravel, comented with lime. On dissolving a portion of the bone in acid, a fibrous akeleton remains of silicious matter, which has occupied by infiltration the place of the animal matter: the ivory of the tooth dissolves without residue. The dimensions of the tooth as shewn on the plate are, in langth 11%

[^138]inches: breadth, $3 \frac{1}{2} \mathrm{in}$: grinding surface $8 \frac{1}{2}$, by 3 in. : girth of the jawbone, 94 inches, and probable length from K, the apex of the chin, to thesocket, 86 inchea.

Fig \&. Represents a geolegical section of the insulated hills to the east of the line joining the cantonments and the town, distant $1 \frac{1}{2}$ milee The letters refer to the specimens sent down by Doctor Spiesienry.
A. Granitic hills to the north, extending to the town, where they dip, and rise again near Garrah ; white quartz and felspar, dark grey mica.
B. Smaller grained granite, decomposing.
C. Granitic sandstone, friable, fine grained.
D. (From a watercourse), ferruginous sandstone, shewing the action of fire. Between D and E, veins of quartz protrude.

The loose sandstone is stated to form the whole surface of the plain, covered with low jungle at the foot of the hills, intersected with ravines. In it, half way between the residency and the city, was found the apecimen of silicified wood, formerly presented.

At I and K seams or beds of fine potter's clay are found: at \mathbf{J} the sand. stone is quartsy, ferruginous, and friable.

EE is a compact silicious limestone, containing crystals of calcareous spar, shell impressions (?) and amygdaloidal concretions filled with chlorite, which have the appearance of fossil seeds. At Ec Ed it incloses quartz pebbles, and fragments of bone mixed up with green earth, and apparently incorpo_ rated with the substance of the rock: in some places the limestone passes into quarts. On solution in acid, it leaves a fine clean sharp angular quarts sand.

Captain Fmanrcuns desoribes a calcareous conglomerate near Jabalpur an composed of rounded fragments of wacken, basalt, sandstone, quartz, and fine sand, cemented by calcareous matter, and resembling calcareous sandstone. Its stratification is always horisontal, and it occurs in the beds of most rivers whose sources are in trap countries: he supposes it to be formed from the detritus of sandstone and overlying rocks, reposing on primitive rocks, and covered with 30 feet of alluvium; but it is doubtful whether his account includes the present rock, which seems to extend for a great distance in each direction underlying the basaltic trap.

From \mathbf{Q} to \mathbf{P} occurs the ledge in this rock before noticed, marking the former position of a coast. At O, a small water course between other hills, is a conglomerate containing pebbles of red jasper, basalt, felspar, \&cc. united with silicious cement. At H a similar variety obcurs, and veins of brown silex are frequent in the limestone.

Above the ledge L is a continuation of the same limestone, which to: wards $L a$ becomes a bone breccia, and at $L b$ is much broken and mised, from the protrusion of a basaltic vein at M. S is the platform oovered with a kind of graval, on which Captain Slemenar first discovered the fosil bones: it was evidently part of the lacustrine bed previous to the denudation of the lower valleys and the present Nerbadda plain.
G is atratuth of compact basalt, conformably atratified and overlying the limentone on the thribe hills, whence it may be concluded to have been
once continuous over the whole space. The sketch does not pretend to accuracy, but the height of the hill to the righit is stated in round terms to be 150 feet. It would be a profitable employment for a geologist to atrike a complete section across from the trap hills 8. E. of Jabalpur to the sandstone range of Pataria, and another from Tendukaira to the hills sonth of Narsinhpir, sounding through the alluvium of the valley of the Nerbedde, and so putting us in poseession of the true features of this field, now becoming every day more important from the discovery of its coal, foesil wood, shells, and animals.

Description of Plate XXI. the locality of the Narsinhpur Foseil Bones.
Fig' 1, the rection of the bank laid bare by the gradual action of the Omas Nadf exhibits; first, an inclined plane, C D, marking the limit of the rise and fall of the stream, about 12 feet. Above this the bank is exposed for 95 or 30 feet in height between two ravines, which, and the surface, are covered with thick jungle. The upper part of the bank is composed of a light soil, mixed with kankar, and a number of globular kankar nodules are found in the bed of the stream, containing silicious nuclei.

A A, the rock in which the bones are imbedded, is a gravelly concrete, formed of rounded pebbles, grains of quartz, jasper, and basalt, united into a hard rock, with calcareous cement : it seems to agree with Captain Franklin's rock, which may thus prove very fertile in organic remains, while it must also be of great extent in the valley of the Nerbedda.

Fig. \&, the plan of the locality requires no explanation.
Fig. 3, is the fossil tooth alluded to in Dr. Spilesury's nete. This tooth, according to Mr. Pearson, is the third molar of the left side of the lower jaw of a horse, and it agrees with other foesil bones of horses in being a little smaller perhaps than the present species, but it is imposible to judge from a single bone. Fossil remains of horses are common enough along with those of the elephant, elasmotherium, hag, \&ra

An elephant 14 feet in height will, according to Cuvies, have a thighbone 5 feet in length. It is doubtful whether any Indian elephant has been seen of that height.
P.
VI.-Report on a Collection of Objects of Natural History. By the
Cwrator of the Museum of: the Asiatic Society.
[Read 30th Oetober, 1833.]

A valuable collection of objects of natural history having been offered for sale for Rs. 200, it was thought advisable to purchase them for the Society's musean, with the intention of disposing of the numerous duplicates to private collectors in exchange for other specimens.

Owing to the sad state in which the insects were brought, and the trouble of cleaning them, time has not been allowed to do more thm. put them on the table for the Society's inspection this evening, withe: out any attempt having been made at arrangement : the same reasons apply to the shells; and will, it is hoped, be a sufficient excuse forthe dromiscuous manner in which they are placed.

Socaliuy of the Narsintmper Fossu Bones.

Digitized by GOO Coltan

On the very cursory inspection, however,., which has been made, it appears that there are several new forms, both of the insects, and of the shells. Of the former, among the Coleoptera, the specimens of the families, of which Lucanas, Cerambya, and Curculionida are the types, are numerons; and some of the species very extraordinary and beautiful : of the Lamellicorn Beetles, there are but few, consisting chiefly of the Cetoniade and Dynastide : of the Serricornes, Buprestis and Elater are the only genera; whilst the collection is remarkable for the few specimens of that numerous family comprising the genus Carabus of Linnæus.

Of Orthoptera, the species are few; butamong them are two specimens, unfortunately both mutilated, of the celebrated leaf insect from Sylhet:

The Hemiptera are numerous, consisting chiefly of Pentatoma and its affinities.

Of the order Omoptera, the genus Cicada and its affinities have many specimens, some of which appear to be new.

The Lepidoptera are all more or less injured. Some of the butterflies, however, are very beautiful, and may be preserved until better specimens shall be procured. The same may be said of the moths : and there are some species of the genus Atlas, one of which is of large size being $9 \frac{8}{4}$ inches from tip to tip of the wings; and another, believed to be as yet unknown.

The collection of shells consists chiefly of the Phytiphagous section of the Trachelipodous Mollusca; some few belong to the Zoophagous section of the same order ; one genus comes under the class Conchifera, and one is placed in the section Hydrobranchire of the Gasteropoda. In all there are about 22 different genera; and at least 60 different species, comprehending between 6 and 7 thousand individual specimens.

Among these, some of the species of Caracolla, Cyclostoma, Melamia, and Paludina are especially remarkable. There is also one species entirely new, of a genus first described by Mr. Benson in the first number of the Journal of the Asiatic Society, for January 1833, under the name of Pterocyclos. It has been thought proper to change that name to Spiraculum, for reasons which are fully detailed in a paper the author has the honour of presenting to the Society to night.

In conclusion, it may be remaiked; that the collection is one sufficiently interesting and valuable, perhaps, to secure a vote of indemnity for purchasing it. It is probable that on inquiry it will be found to contain many new forms, particularly among the shells: for, not pos-. sessing the lind of beauty that makes them estimable to ordinary collectors, land and fresh water shells have rarely formed any consi-' derable part of cabinets made for shew or for sale, and are accordingly little known to, and much valued by, the naturalist.
VII.-Note on the Genus Spiraculum. By J. T. Pearson, Curator As. Soc. [Presented to the Asiatic Society, and read 30th October, 1833.] Class, Mollusca. Order, Trachelipoda. Section, Phytiphaga. Family, -_ Genus, Spiraculum.
Arimal-unknown.
Shell-discoidal, upper surface plano-convex, almost flat at the top, largely umbilicated; whorls cylindrical; mouth circular; lip thickened, refiected; last whorl a little bent downward toward the umbilicus; a shelly, projecting spiracle, or breathing-tube on the upper edge of the body whorl, where that whorl touches the preceding one.

Operculum horny; very thick; formed of several spiral lavers.
A species of this genus having been found by Mr. Benson, on the Rajmahal hills, he formed a new genus for its reception; and described both its generic and specific characters, so far as he knew them, in the first number of the Journal of the Asiatic Society. To this new genus he gave the name Pterocyclos, and that he was right in venturing to institute it can hardly be doubted, when its strongly marked characters are considered fully. But the discovery of another species, with additional generic characters, has rendered improper a name taken from the form of the aperture of a young specimen merely, or from a species, as it would appear, far removed from the typical one of the genus. Mr. Benson's name, therefore, has been altered to that of Spiraculum, and the genus, according to characters it is now known to possess, differs from all shells that have hitherto come to the notice of the naturalist. No land shell besides it, excepting the genus Cyclostoma, has a circular aperture ; and it is a curious fact, that, in the genus Haliotis only, is there any process at all analogons to the shelly tube which form so remarkable a feature in the generic character of Spiraculum.

For the use of this tube analogy must be resorted to in the absence of proof; and analogy justifies the supposition of its being intended for the purpose of protecting the breathing organs of the animal; while it admits of the free passage of air when the mouth of the shell is closed by the operculum. Why it should be so ; why this genus, which seems to be allied closely to the second division of the Colimects, near to Cyclostoma, should have such an apparatus, while Cyclostome hae nothing of the kind, though the operculum of the latter shats up the shell as completely as can that of the former, it is not easy to say. But it is equally difficult to account for the above-mentioned genua

Haliotis being farnished with tubes or spiracles well known as so many passages for a syphon; while Stomatella and Stomatia, which in other respects so mach resemble it, have none.

And yet a mere breathing hole would scarcely require to be protected by a tubular process. But there may be attached to the neck of the animal of Spiraculum, an apparatus similar to that described by Lamarce as possessed by the genus Valvata of his Péristomiens;-"un filet branchial et tentaculiforme au côté droit du cou, et quelque-fois une branchie en plumet et contractile, qu'il fait sailler hors de se cavite :" or a projecting syphon, such as carries on the respiration of the second section of the Trachelipoda. Thus there would be an animal breathing air yet furnished with the apparatus, or a modification of the apparatus of one inhabiting and breathing only water, and consequently occupying an intermediate place in the chain of affinity, and forming an inosculation between the tivo. If so Lanurctr might have adduced it, had it been known to him, as another fact, strongly confirmative of his celebrated idea of the gradual perfection of the animal form. His remarks on the subject are so apposite, that they deserye to be quoted entire. "A mesure que," saya Lamarci, " les animaux se repandirent partoat de proche en proche. il parait que ceux des trachelipodes fluviatiles que habitèrent les eaux qui ont pea de profondeur, comme celles des petites rivières des étangs, et des marais, que sont exposees à tarir, furent soupent réduits à virre dans une vase plus au moins desséchée. Ils se trouverent donc forcés à s'habituer a l'air, á le respirer. Or cette habitude ayant modifíe leurs branchies, comme celles des colimaces, est devenu pour eux une nécessité ; en sorte que quoique vivant dans l'eau ils sont maintenant obligés de venir de temps en temps à sa surface pour y respirer l'air libre." If any change of this kind ever did take place, it may perhaps be found at some future time, when physiological investigations are better understood than at present, that these animals are able to breathe both air and water ; and further, should the above conjecture as to the respiratory apparatus of Spiracalum prove to be correct, there will be another link of union between the second section of Colimaceés and the Péristomiens beside that of the Lymnéens.

Genus, Spiraculum. Species, Hispidum.
Specific Characters. Animal unknown.
Shell white, subdiaphonous, upper surface of the body whof alightly patched with rafons. Epidermis dark-brown, covered with short bristly hairs, which at the outer and under side of the whorl are placed thickly together, giving an appearance to the shell of ite being zoned with three narrow dark lines; whorla five, breathing tabe one line
in length, conical, compressed, pointing backward and inward ; mouth circular, lip thickened and reflected. Diameter one inch.

Operculum corneous, formed of several spiral layers, deeply capped at the outer surface, and plano-convex at the inner.
All the specimens of this collection have the mouth dilated at the upper margin into a surface more or less flat, or concave, or formed like a sinus. But in the above description it is assumed to be circular, because it is almost of that form in the more advanced specimens, from the dilatation having become a well-marked sinus, and in one or two nearly formed into a tube. In a smaller species also, in the collection, the tube is actually formed in this manner, being at first a dilatation, then a sinus, as fresh shelly matter is deposited, and finally a tube: and in proof of this, a series of specimens may be seen in the collection, in which are gradual changes from a slight dilatation of the upper margin of the aperture, to the perfect tabe and circular reflected lip.

2.-Spiraculum Parvum.

Shell white, subdiaphonons, zoned with a dark-brown line along the circumference of the whorl, striated above with brown zig-zag strix, and less distinctly so below. Shelly spiracle or breathing tabe situated near to the mouth. Mouth perfectly circular ; lip thickened and reflected, umbilicus largely dilated, upper surface plano-convex, , almost flat. Diameter $\frac{6}{10}$ of an inch.

Operculum unknown, sapposed to resemble that of S. Hispidmm.
Epidermis dark-brown.
3.-The shell described by Mr. Binson under the name of Pterocyclos rupestris.
It is thus ascertained that there are at least three species of this interesting genus, and it is hoped that the reasons detailed above are an excuse sufficient for changing the name bestowed upon it by Mr. Bznson ; at all events, it has been done from a sincere conviction of its necessity, and not from any spirit of innovation.

VIII.—On the Kukumb ka Tel, or Concrete Oil of the Wild Mangosteen.

 To the Editor of the Journal of the Asiatic Society.Sir,
The motto on the title page of your Journal induces me to sead you a few remarks on a substance which I have reason to think possesses some very peculiar properties, which entitle it to be made the subject of experimental investigation.

This substance is the Kukumb ka Tel of the natives of this part of the country, or the concrete oil of the wild mangosteen, a tree which is common in some parts of the Southern Konkan. I am not aware, whether any or what difference, further than may be induced by cultivation, exists between the above and the much-extolled mangosteen of the Straits. The fruit ripens in April and May ; is small, and of a flattened globular form. The rind or shell is about $\frac{1}{8}$ th of an inch in thickness, of a deep crimson colour, and intense acidity. Within this, but without adhering to it, is contained a pulpy mass, in which the seeds are imbedded. The oil is extracted from the seeds by boiling. They are first exposed for some days in the sun to dry, and then pounded and boiled in water : the oil collects on the surface, and on cooling concretes into a solid cake. When purified from extraneous matter, the product is of a rather brittle quality; of a pale yellowish hue, the shade inclining to green; exceedingly mild and bland to the taste, melting in the mouth like butter, and impressing a sensation of cold on the tongue, not unlike what is experienced on allowing a particle of nitre to dissolve on the tongue.

From several experiments on this substance with the thermometer I have been led to the conclusion that in passing from the concrete to a fluid state, and conversely from a fluid to the concrete form, it is guided by some peculiar law, in consequence of which it has two distinct temperatures, removed from each other by several degrees, at which it passes respectively from one state into the other. I need not here detail the numerous trials I made on it, as the general result was the same in all. My first object was to ascertain the temperature at which it congealed or passed into the concrete form. This from repeated trials I invariably found to be about 90°. In one instance, having brought the substance into a perfect state of fluidity, I placed it in an oven with a temperatare at first above 100°, but allowed gradually to descend. When the Thermometer, which was placed beside it, indicated 88°, I expected to have found it congealed; bat perceiving that it still retained its fluidity, I took it out and plnnged the bulb of the thermometer into it. The thermometer immediately rose to 94°, at which it continued for some minutes, (the external air at the time being 72°, and then gradually descended to 90°, at which it became stationary for some minates before the substance began to lose its fluidity and transparency : then without indicating any change of temperature, the process of congealing commenced at the sides of the vessel, the opaque cloud alowly creeping in towards the centre, and the thermometer all the vhile remaining at 09°.

The result of various trials satisfied me, that this substance could not be brought to congeal at a higher temperature than 90°; but in experimenting on it in the solid state, that temperature was found quite insufficient, by several degrees, again to liquify it. The following is a brief statement of the result of several trials to ascertain ita melting point. It was subjected to a gradually increasing temperature, commencing from 90°, with considerable intervals between every higher accession of temperature, to allow time for the effect which was capable of being produced on it. From 90 to 100°, the effect was merely to soften it : at 102°, it still preserved its cohesion, but the consistency was that of butter in warm weather : at 106 part began to separate in a semifluid state, transparent at the edge and opaque in the centre; and a few minute globules were separately observed in a perfectly fluid state. Every fresh accession of temperature had of course the effect of bringing it more and more towards a state of fluidity; but up to 116°, there was still observable a partial opacity, and it was only when the temperature had reached about 120°, that it could be said to have attained perfect fluidity and transparency*.

Another peculiarity in this substance is the irregular form its surface is thrown into in the act of concreting. Nor does it appear capable of being prevented by any management, or by conducting the process in the most gradual and gentle manner. But the effect may be considerably increased by exposing it in a fluid state to the sudden application of a cooling medium. Having a stratum of the fluid oil at $12 \mathbf{0}^{\circ}$, floating on water in a small cup, I suddenly exposed it to the chilling influence of a slight drizzling rain and sharp breeze, the temperature of the air being 70° : the rapid abstraction of heat soon caused the congealing process to commence, and the entire surface shot up into a series of prismatic or columnar masses, about $\frac{1}{8}$ th inch in height, and separated from each other by small intervals. This effect took place some time before the substance became perfectly opaque; and while in this state, it had the appearance of a crystallized body, in an intermediate state between opacity and transparency, of which we have a familiar instance in a piece of loaf-sugar dipped in water.

The concrete oil of the mangosteen might I apprehend be adrantageously introduced into pharmaceutical preparations. It is used by the natives as a healing application. I have noticed among its sensible properties, that it impresses a sensation of cold on the tongue; from which it would appear, that it powerfully absorbs heat, as several salts do in the act of dissolving. It is easy to conceive that this

[^139]property may often be of great service in wounds or sores, accompanied with inflammation, which it is desirable to abate.

The quantity of the concrete oil that may be obtained from the seeds may be taken at about one-tenth. From $\frac{1}{2} \mathrm{lb}$. avoirdupois or 3,500 grs. of the seeds, I obtained 360 grs . of the concrete oil in a moderately pure state. The above is somewhat more than 1-10th; and with better management, the product might perhaps be greater. It requires however long-continued boiling to extract it, and it is still more tedious to parify it from the fibrous matter of the seeds.

$$
\text { Western Ghauts, 25th September, } 1833 . \quad \text { N. N. L. }
$$

IX.-Note on the Coal discovered at Khyúk Phyú, in the Arracan District. [Read 30th October, 1833.]
Lieat. Folry has been most active in investigating the mineral resources of this almost impenetrable country, where swamps and jungles of the worst description render it hazardons to reside, while they hide for the most part the features by which a geologist is enabled to direct his researches.
The seam of coal discovered at Syneg Kyong, as shewn in Captain Margrave's sketch, Plate XIX. Fig. 3. is most conveniently situated for exportation, should it turn out abundant, and of good quality. The Oong Kyong* creek (reed-nala) falls into Khyúk Phyূ harbour, just beyond the anchorage of the ships, and the nala itself is deep enough for all small vessels. The following description of the place is extracted from a note by Captain Mararave.
"The hill towards the creek describes the segment of a circle, is very steep, and no more I think than 50 or $\mathbf{6 0}$ feet from the sea level; the soil is sand and clay, variously proportioned, of grey, yellow, and sometimes a reddish colour, resting apparently on coarse grey sandstone. It is isolated by the spring-tide, whose fall leaves exposed a flat level ledge of rock, (extending some 70 yards or more N. W. of the hill,) composed of grey sandstone with a brick-red tinge on the surface, particularly near the edges of the blocks and fissures. This sandstone seemed to me to disappear under the hill, for on the other side I found precisely similar atone in fragments, but not the same perfectly horizontal bed. The vein of coal runs about E. and W. (along the line DB) across the southern part of the ledge; at \mathbf{B} is the pit sunk by Lieut. Foley, 3 or 4 feet deep, on a former visit: at A and C are the smaller excavations whence came the best specimens of ore and coal. The vein is not straight, however, but rather serpentine, or

[^140]zig-zag from \mathbf{D} to \mathbf{B}, where it disappears, apparently passing under the hill. The seam is nearly vertical, from 80° to 85° dipping to the north. The order of the strata from the north was-1, the reddened grey sandstone; 2, a black or dark-grey sandshale, mixed with thin veins and grains of coal ; 3, the hard brittle shining jet coal, sometimes covered with a yellow argillaceous substance, with layers of the sandstone and fibrous bituminous shale ; then came the pure coal, succeeded below by the same mixed substance, and this followed by a hard grey sandstone. We followed the vein down as well as our imperfect means would permit, but lost it always I think at the depth of 2 or 3 feet. Including the soft layers it was generally from sixinches to a foot in thickness, and could be distinctly traced from D to B by the blackish grey appearance of the stone. My attention was most excited however by the abundance and apparent purity of the iron pyrites, which was extracted during such imperfect operations."

Lieut. Filsy subsequently extracted a considerable quantity of the Syneg Kyong coal, and of the curious silicified coal found here and elsewhere in contact with it*: some of the latter specimens are almost wholly converted into silex, and give an insight into the process of formation of the fossil wood so common in Arracan, Ava, and Assam. As to the denomination of the Khyúk Phya coal, whether it be what ased to be called a true coal or a more modern lignitet, it is of little importance now that all such formations are attributed to a similar origin, namely, the gradual deposition of vegetable matter along with the sedimentary sands, and mud of an ancient river or estuary. It is the extent and thickness of the bed which is of importance, and in this the Syneg Kyong coal seems to be deficient as far it has been hitherto explored. This circumstance and the quantity of pyrites may deprive it of a part of its value, although it is otherwise of a very rich and good quality, and well adopted for getting up boiler heat. The analysis of the larger specimens sent through Mr. H. Waltrr, Commissioner of Arracan, being more accurate than that noted at a former meeting, is here repeated.

Syneg Kyong coal.

100.0

Oogadong	Silicified lignite.
63.0	coalwith ditto 35.5
1.5	3.2
	1.3
100.0	0.0
	100.0

- This appears to be the case in a specimen marked No. 5, Pharingu coal, which is of the same nature as the silicified coal which accompanied Mr. WalTER's specimens of Saudowy lignite, and is stated by him to exist in such abundance there.
+ See page 606. of the present number.

Lieut. Foney describes the Oogadong and silicious or Phicrings beds of coal as follows :
2. The Oogadong coal (See. Pl. XIX.) occurs in what geologists would call the newest flæetz trap formation : it consists of pitch-coal, brown coal, and a slate coal; it is found in conjunction with iron pyrites beneath a stratum of sandstone, \&c. similar to that of Syneg Kyong. The vein appears to run from east to west, extending from the foot of a small bill towards the sea.
3. The Phuringú bed is apparently a continuation of the last, lying in the same direction, at the distance of two coss, though separated by the sea. It crops out from between layers of a fine greyish sandstone, in a small island, one of the " Balứngahs," or broken islands: the beds are nearly horizontal, dipping slightly towards Oogadorg.

Lieut. Folsy also alludes to the plentiful supply of coral lime along the coast, and in Ramree I3land, where there is a loose calcareous rock forming low hills in the direction of Moira, probably formed from the degradation of the coral.-There are mud volcanoes in Ramree as in Cheduba*, which spout out abundance of pyrites and kidney iron ore. A crater of this kind is pointed out at Oogadong, where scoriaceous matter, trap minerals, and basalt shew evidence of more active volcanic agenćy in times past. Petrified wood occurs also near Nagadong.

X.-Analysis of Books.

Transactions of the Batavian Society of Arts and Sciences, Vol. XIII.
The half of this volume is occupied by a subject, we may say, of interest to every individual in the world; Cholera Morbus. Important however as it may be in itself, it has now been the subject of so many volumes, treatises, and essays, that each singly conveys but little information that is new, and the greatest part of any one is a repetition of the others. Unfortunately also it cannot be said that all the labours of medical men have advanced our knowledge respecting this formidable disease much beyond what it was in the first year of its appearance. It would be difficult to name a subject in Pathology which medical men have ever so heartily and so strenuously united to investigate, and on which such a mass of intellect throughout every quarter of the world has directed its concentrated energy, and yet after sixteen years of unwearied observation, experiment, and research, we are obliged to confess that the canse of Cholera is unknown, its pathology inscrutable, and its treatment totally unsettled.

These reasons might be supposed sufficient to induce us to pass over very briefly the articles on Cholera in the present publication: as however among all the

- Nodular iron pyrites, the exterior of which has been deprived of its sulphur; and converted into red oxide of iron by heat.
opizions respecting it which have been published, those of the Dutch Physicians in the Eastern Archipelago are perhaps the least known, it may not be unintereating to give a brief analysis of them as they appear in these Transactions.
I. The first paper is by Dr. M. T. G. Moller, Physician to the Hospital at Witerrede. He sets out with an account of the several appearances of Cholera in the Eastern Islands: the first notice of it is in Bontius, Physician to the Dutch Settlement of Bataria, who published an account of the diseases of the Enst Indies in 1629, and among others of Cholera Morbus, which according to him was so violent, that "Cornelius Van Rayen, steward of the hospital of the sick, being in perfect health at six in the evening, was suddenly seized with the Cbolera, and expired in terrible agony and conrulsions, before twelve o'clock at night; the violence and rupidity of the disorder surmounting the force of every remedy." Bontius, Chap. vi.
On the news of the appearance of Cholera in Malacea in 1819, the Dutch Government of Java directed all ships coming from infected parts to undergo a strict quarantine. In spite of this, the disease broke out at Java in April, 1821, with such violence, that at Batavia, 156 deaths took place in one day, and by June it had visited every quarter of the island. The violence abated in December, by which time it is reckoned 110,000 persons fell victims to its rage.
This, it will be seen, is a very different account from that in the Lancet, the Editor of which is determined to maintain the contagious nature of the disease, and shapes according to that the history which hegives in the number for November 1831. He informs us that,
" ln 1823, coincident with the Burmese war, and the march of our troope from sick districts in British India, the Birman empire became affected. Coincident again with the general or particular periods of the arrival of individaal vessels or trading fiotillas, we find the malady in Acheen, the capital of Samatra ; at Bance, Java, and Borneo, in -the Philippine Inlande; at Amboyna, in the Mollaccas, and at length in Macno and Canton on the west const of China." -

Thus insinuating that it did not appearin Java before 1823, and omitting all meation of the quarantine.

The author then gives a summary acconnt of the course of the disease-" A few minutes after being attacked by Cholera, the following appearances are observable. The patient lies without motion, stretched out in one posture; the skin is blue or dirty brown, and sometimes marked with lividor purple apots, as is seen in frozen persons ; some times altogether dry, at others covered with cold sweat. It is cold, hard, and contracted, quite different from health, and conveys to the fingers, particularly when corered with sweat, a peculiar disagreeable sensation. The twrgor vitalis disappears, so that even corpulent persons appear to have become lean". The countenance falls in, and indicates great weakness ; the forehead is coverod with cold sweat; the eyes lie deep in their sockets, and are surrounded with a dark rigg. The half shut eyelid allows only a part of the cuaddy ejeball to be seen, but whenever it is fully opened, the exhausted eye looks out with a melancholy gaze. The blue lips remain half open, and allow exit to cold expiration; the chest heaves laboriously, the abdomen labours to maintain the respiration. It is however tolerably even, and neither tumid nor retracted ; the extremities are stiff, the akis of the half shut hands wrinkled as in persons who work much in water, but cold,

[^141]and the nails are blue. The patient appears almost quite indifferent to bis situation, and speaks unwillingly.
"Scarcely have these appearances been obserred than the scene changes. The half dead patient revires, the countenance assnmes a painful expression, the legs are drawn to the belly, the feet and toes crook themselves downwards, hard moveable k nobs are felt in the calves and thighs. These are the muscles drawn together by agonizing cramps. The arms are also often attacked by cramps, and the patient exhibits such strength that several persons are necessary to hold him. Oppressive sighing takes place; the cramps at length cease, but another painful phenomenon makes its appearance; the patient worn out by internal heat, cries out for cold water, swallows a quantity of it greedily, which scarcely gets to the stomach before it comes up again, generally followed by severe retchings; and in proportion as the stomach empties itself above, so the bowels empty themselves below in rapid succession of evacuations of a large quantity of thin rice-water liquid, which generally exhaust the patient, who now refuses to speak, except to cry for drink, or utter broken complaint of weakness, and groanings extorted by the spasms." Page 7.
The author then proceeds to a more minute and detailed account of the whole course of the disease, which he divides into three stages. The first, consisting of the preliminary symptoms till the appesrance of vomiting; the second, from that period till the commencement of the state of torpor and insensibility; the third, from thence to death. In all this it will be seen that not the least notice is taken of the state of re-action previous to death on which the European Physicians dwell at such length; nor indeed has it been noticed by any practitioner we believe in this country. Is this state peculiar to the Cholera of cold climates, and does it constitato a difference between the disease as it occurs there and in India ?
The reader must always remember that there is a certain degree of Poetry in Physic as in every thing else, and that a sick man constitutes in some respects a very. pieturesque object, particularly when dying of a horrible and incurable disease. Most Physicians (even the very soberest) are apt to indalge their poetical vein a little in describing the circumstances of such patients, and to make a striking picture out of the collection of their symptoms. Hence in reading accounts of Cholera, or indeed of any other fatal ailment, we must always substract a certain proportion of the terrible, and endeavour to judge of what the description would be, if written in plain prose.

Dr. Mollep then goes on to an account of the poet-mortem appearsuces, which are detailed with great minuteness; he divides them into sections, the axternal appearances, the cranium, the thorax, the heart, the lungs, the abdomen, the stomach, the duodenum and jejunum, the ileum, the mesentery, the colon, the liver, the gall-bladder, the spleen, the kidneys, the bladder, the abdominal ganglia: of these last the aathor observes, that " they have been frequently examined without exhibiting any thing unusual except an increase of redness, arising from the plethora of their blood vessels, the ganglions themselves seemed unaltered." P. 39 .

He then proceeds to the diagnosis, which we pass over, concluding that it can present little difficulty. The symptoms of Cholera are too formidable to le easily or frequently mistaken.

Then follow the causes of Cholera, in which however he merely confines himself to that disposition of body which renders an individual susceptible of the disease, and this in general he considers to be debility, or, to use his own words,
" It thise appears, that a weakened state of the body produces the chief predisposition to Cholera. By a weakened body, I understand a body in which the vital powers have descended below their just and necessary degree : a weak body is quite a different thing, that is, only in comparison with other stronger bodies; a smaller degree of vital power, which may however be just and complete for the bealth of that individual itself." P. 54*.

He observes with respect to Europeans, that the disease does not appear in thens on their first arrival in Java, but generally after they have been some time reaident, and the climate has begun to affect them. He then reviews the varions opinions respecting the exciting cause of the disease, and is dissatisfied with them ah. He himself offers nothing better than an altered state of the atmosphere.

After an investigation of the proximate cause the author sums up thus, " \mathbf{A} sudden and great debility of the nervous and vital powers, with increased excitement in the abdominal viscera, are the proximate causes of Cbolera." P. 64.
We fear this explanation casts but litule light on the disease. He then goes on to the prognosis, through all the minutix of which, we cannot follow him ; he seems to lay most stress on the state of the pulse.
"The first and chief symptom on which any hope of recovery can be founded is the pulse becoming stronger; it is of little consequence whether it be quicker or slower, harder or softer, if at the same time it exhibits more fulness ; nay a slight variation in the pulse is not upon the whole a bad sign, as it is generally accompanied by a diminution of uneasiness.' P. 71.

We now come to what is most interesting of all, the treatment; and this the aathor comprizes in four indications: first, the re-excitement and preservation of the nervous and vital powers; second, the restoration of the circulation and the natural state of the blood; third, the diminution of the excitement in the stomach and bowels ; fourth, the diminution of the disposition to spasm.
The means for all this the author divides into two classes, external and internal. In the first class he arranges (whether properly or not), the eracuation of blood by the lancet orleeches ; of the first he observes that it is chiefly useful to full-blooded, fresh-arrived Europeans, not yet become weak. Of the few patients cured under such circumstances, the greatest number have been bled. Leeches produce the same effects, but more slowhy; in advanced states of the disease, they remain for hours on the patient's skin without becoming fuller. He then discusses the perivantia, that is, all those means which, by exciting the akin, diminish the Internal irritation. He lays a good deal of stress on simple shampooing, and then on dry friction; he approves of the application of mustard paste+ to the breast and extremities : moxa can hardly be used ; but in two instances, the anthor mede a moxs of phosphoras, and burnt it on the spine, without any effect.

He then enters upon the external medicines; the well known list of stimulants, alcohol, ether, oleum menth. \&cc : even phosphorus, he says, was tried to the extent of four graine in 24 hours, to no parpose : opiam he declares to have had no visible

* It is a little odd that this should be the doctrive of the old Arabic Physiciens, in what they called Aslah-ool Anusijati lahoo, hy which they meant, not the best state of (health absolately, but the best state of health with reference to the constitation of a given individnal. See printed Edition of the Kanooncheh, 1827. P. 3.
\dagger Thin remedy is also highly, and we believe justly extofled by Dr: Twinura. Practioal Aocount of Epidemic Cbolera, 185s. P. 72.
effect on the disease: of calomel, he observes, that it was much more used formerly than now, and he ends with a list of the cholera mixtures published officially in the Batavia Courant. We select one or two of those least used with us.
(4) R. Infus, Valerian, $\boldsymbol{\xi}^{0}$.
(5) R. Calomel,
$9 i$
Ol. Cajapooti, 9i-ii.
Ether Sulph. acet..... $3 i i$
A spoonful every hour.

(6)

$$
\begin{aligned}
& \text { R. Ol. Phosphor, 3s. (} \mathbf{z i}_{i} \\
& \text { continet Phosphor ...gr. ii) }
\end{aligned}
$$

Pulv. Gum Arab. 3 i
Aq. Menth............... 3^{\square}
Vini Opii................ $3^{\mathbf{i}}$
M. f. emulsio
as the former.

Camphor. elect.. .. gr. viii
Opii par. gr. iv
Sacch. Alb. $3^{\mathbf{i}}$
divide in pulv. vi.
One to be taken every quarter of an hour.
(7) R. Aq. Menth............. $\boldsymbol{\xi}_{\text {iv }}$ Acet Morphii... gr. iv M. as the former.
(8) R. OI. Jatrophe,........... $3 i$

Pulv. Gum Arab.. 3^{i}
Aq. Menth. ziiii $^{\text {in }}$
M. every hour two spoonsful.
II. The length of our observations on this first article renders a detailed account of the succeeding on the same subject unnecessary, by H. Schiliet, Surgeon Major of the Royal Netherland Marine. He inquires into the name of the disease, its cause, (in which he is an opponent of contagion) its effects, its species, its diagnosis, its treatment, (and here he quotes largely from the works of our Indian Surgeons, Johngon, Corbyn, Boyle, Tytlar, \&c.) and then the post-mortem appearances. In these he chiefly notices the state of the brain, and gives a plate of that organ, its vessels loaded with blood, and the dura mater deeply stained with inflammation. He also gives a figure of a portion of the stomach and the jejunum. In an account of the prophylactics, he takes notice of the dispute respecting the effects of bad rice in exciting the disease. "It is well known, that Dr. Tyrler connected the food of the Hindoos with this disease, and on account of the bad qualities of the last rice crop, which is their daily food, he ascribed this epidemic sickness to that ; thereupon his well-known work saw the light, endearouring to ascribe the epidemic which has prevailed in different parts of the world, for many years, to the bad qualities of the rice, on which account he gives to the Indian cholera the name of morbus oryzeus; bad food is doubtless one of the chief predisposing causes of this disease, but certainly not the proximate cause." P. 178.
III. The next article is a diesertation on the origin of the Japaneoe, by Dr. Vonsissold. Like all other eastern nations, these people pretend to a divine origin and unfathomable antiquity. The race of gods, called Tewsen Setsid ai, had employed themselves, somewhat unsatisfactorily we should think, for millions of years in hovering over the land of Nippon : at length the seventh in succession to the celestial throne, by name Tsanagi Namik, with his wife, came to the resolation of descending from the clonds on Japan, and there maltiplying like men, they produced a race of demigods of limited but very long life, and dignified with polysyllabic names.

European antiquarians have given various interpretations of this fable, with which we need not trouble our readers. Four different opinions are entertained respecting the origin of the Japanese :-
A. That they are descendants of the Chinese.
B. Or of some of the Tartar tribes.
C. Or of a mixture of various Asiatic tribes.
D. Or they are aborigines.

Which last supposition cuts the knot at once.
The resemblance between the Chinese and Japanese is so strong, in phrsiognomy, religion, and manners, as as to have impressed all travellers with the idea of the latter people being a colony of the former.
The author omits other considerations, and enters into an inquiry respecting the oblique position of the eyes, supposed to be peculiar to the Chinese, and the nations consanguineous with them; but as he observes, nothing can be built on this till it be ascertained what are the Asiatic tribes to whom this conformation belongr, and whether any of those of North and South America partake in it. The skin of the Japanese is of all colours; in town many approach to the fairness of Europeans, in the country they are copper red or earthy cloured.

His next inquiry is into the resemblance of the Japanese and Chinese langose and writing. The Chinese say, the first appearance of the Japanese among them was A. D. 57, at which time, they were barbarians, without writing, government or morals, but they at the saine time assert, that Japan.was peopled by a colony of Chinese in the year 1195 before Christ ; if so, why did not this colony carry their writing and manners along with them ? The author allows that Japanese writing is borrowed from the Chinese, but still contends, that Japan must have been peopled by a nation using a different language from theirs.

The Japanese alphabet consists of 47 letters, which are originally Chinese characters, having the same sound; but the Japanese language, unlike that of the Chinese, is polysyllabic : hence, says the author, Japan must bave been peopled by some Asiatic tribe before the art of writing was spread through the northera parts of Asia.

The author next proceeds to the religion, and, "Though," says he, "I canaot prove that the religion of the old inhabitants of Japan might not have been the same with that of their Chinese contemporaries, yet I can maintain, that the religion prevailing among the Chinese and Japanese in the present day has not the least resemblance to that of the ancient Japanese." P. 220. To prove this, the author enters into a long investigation of the ancient and modern Chinese and Japanese godderies, which we have found it difficult to understand, and would find it more so to make intelligible to our readers; we shall therefore take it for granted that he has proved his point, and go on to the rest of the argument.

The author then considers the relationship between the Japances and the Tartar races, but we have not leisure to follow him through this research, particularly, as after examining the language and manners of the Japanese and the neighbouring kingdom of Corea, at great length he does not appear to come to a positive conclusion. He then asks if the Japanese are a mixed race, composed from various Asiatic clans ; and thongh the author is not very clear, we consider this the opinion to which, upon the whole, he is most inclined. He even considers that there is a strong relation between these tribes and the Peruvians, and gives some instances of verbal resemblances in their respective langaage, thus supporting the theory of Mr. Ranien on the origin of the Peruvians. He conclades, "I commit these fragments to the hands of the literati, earnestly entreating them to receive
with favour the nosegay I have gathered with so much care from the islands of this archipelago and the neighbouring continents, and to take them under their high and mighty protection." P. 275.
IV. The next paper by M. H. Halewfn is an account of the tribe called the Dayakkers of Borneo. They seem in a very low state of civilization, being totally ignorant of reading and writing, and have a number of very peculiar customs well worth noticing, did our space allow of it. We shall only notice one, which will serve as a complete refutation of those who are disposed to hold Oriental civilization in low estimation. "The Dayakkers are governed by their chiefs, who are entirely dependent on their subjects, and are chosen from the eldest of the people. If the chief acts arbitrarily, the people rebel against him and put another in his place." P. 291. This it must be confessed is the rery acme and beau ideal of government, sufficient surely to satisfy the most liberal reformer. How wonderful it is that so perfect a scheme should, in the midst of the march of European intellect, be renerved for such a remote and unnoticed part of the world as this. "There are," proceeds the author, " many debtors in Dayak : the custom is, that if the debt be not discharged in four months, it is doubled." P. 291. This is worse than Calcutta Sircars and Life Insurances yet.
V. The next article by Mr. Vander Jart is an aceount of the groupe of islands called the Kokos or Keeling Lsiands, of which a full and authentic account, derived from the Reports of Admiral Owen to the Government, was published in the Glennings or Science, for Oct 1830. The article terminates with an account of the interview between the author and Mr. Ross, also given in the Gleaninges.
VI. The last article in an account of the mowntains of Tinger, in Java, by H. T. Dosnis, Resident at Soorabay. The author examines their geographical situation, the dwellings of the inhabitants, their religions, their mode of prayer, their festivals, their ceremonies of birth, marriage, and funerals; all these seem borrowed from the Indian Brahmins, and are quite different from the Muhammedan Javanese. Above the head of Brabma, Visinu, and Siva, however, they acknowledge a supreme power, whom they call Prabo coro Incloson. One ortwo singular customs may be noticed-" widows are highly prized among them, and as soon as a woman has lost her husband she is sought after by almost all the bachelors; a young miss gets a husband with great difficulty." P. 330.' One might be tempted to ask how then are widows produced? The case is similar to Winifaid Jenkin's puzzle as to how sheep's heads could be found is Scotland unless there were sheep too. "When the Tingerians wish to exhilarate themselves, they drink tocak, i. e. fermented palm wine, mixed with water, which renders them immensely frolicksome; the smoking of opium and drinking of strong waters is unknown." Ibid. We know not whether the Temperance Societies would approve this distinction.

On the whole, the author is so delighted with the climate and manners of the Tingerians, that he breaks out into a Virgilian rapture, which not to do him injustice, we shall give both in the original and translation as a conclusion to our analysis. "Gelkkige bewoners van Tinger! hoe weining gevoelt gij mischien zetve het vo oregt hetwolk gij geniet !"
"Happy inhabitants of Tinger, how little perhaps do they feel the privilegee which they enjoy."
XI.-Miscellaneous.

1.-Regioter of the Temperature of Ghasipur. By the Rev. R. Evencest.

I am fully aware how imperfect these observations are, but in this country, where so little has been done, I publish them in the hope they may hereafter be of use to individuals engaged in the same pursuit. To obtain the mean of every hour in the 24, as was done at Leith, is begond the power of any one without assistance.-R.E.

Radiation.-I also made a few experiments on Radiation towarda the latter end of the year 1832. The Thermometer was covered with black wool, and hid on the grass. The following are the resolts:

I subjoin, for the sake of comparison, the height of a Thermometer suspended in the shade, during the above days.

2.-Note on the Salajit of Nipal.

To the Editor of the Journal of the Asiatic Society.

Dear Sir,-I have been much gratified and interested by reading Mr. Campbrle's paper on the native alum, or Salajit of Nipal. I think it is more than probable, that if an average sample of the various qualities were collected, and subjected to analysis, the general result would be what Mr. C. has advanced, viz. about 66 per cent. of sulphate of alumina. As I had only one quality to operate upon when I made my analysis, why it was "Hobson's choice" with me. Prom the information I could gather from Nipal merchants, I am led to believe, that Mr. C. is perfectly correct as to the quantity that may be collected.

But what I am now going to state, may set the matter beyond a doubt. I have seen the organic remains of an ammonite (Ammonites sacer of Sowrrey) imbedded in alum shale from the banks of the Gandak river in its early course. This perfectly agrees with specimens (now in my possession) which I formerly collected at the alum works on the Yorkshire Coast to the north of Whitby. This fact I think clearly proves the existence of alum shale strata in the secondary formations at the foot of the Himalya range, and that it may extend through the bills of Nipal. I alco concur with Mr. C. relative to the tedious and expensive processes attending the manufacture of alum at home ; so much so, that the return has scarcely equalled the outlay. A friend of mine knows this to his cost.

I have no doubt but European skill and capital will shortly tarn to some account these notices of a native, and valuable substance, which has not remained hidden, but has been at lenst unknown to the generality of enterprizing commerciod men.

In conclusion, should this meet the eye of Mr. Campable, I beg leave to thank that gentleman for his kind offer of assistance, and will feel obliged by his sending me samples, or specimens of the various kinds of Saldjit, expecially the black kind, a variety which I have not yet seen. Any expense in collecting, or conveyance to my address, (Singhea, Tirboot,) will be cheerfully paid.

I am, dear Sir, \&c.
10th Nov. 1833.

J. Stevenmox.

3.-Smmmary Sketch of the Geology of India.

[Extracted from the Rev. W. D. Conybeare's Report to the British Aswociation at Oxford,1802.]
In Southern Asia, many of the British residents have been far from inactive; among these we may specify the names of Franelin, Vorsiy, Heriert, Christie, Low, Hazdie, and Govan : but Calder's General Memoir on the Geology of India conveniently and ably brings together in one view the substance of the insulated observations of others.

From these sources we learn, that primitive formations, in which granitic rocks bear the principal proportion, occupy not only the great Himalayan northern chain, but also three-fourths of the entire peninsula, from the vale of the Ganges below Patna to Cape Comorin; although these rocks are frequently overlaid by a thin crust of laterite (a ferruginous clay, considered as associated with the trap formation). The transition formations have not been clearly distinguished; the secondary formations described are:-l. The carboniferous group. Coal has been said to occur extensively in the grits bounding the southern slope of the Himalaga; but it has been questioned, whether this formation is the older cosl, or only lignite associated with nagelflue, (as on the slope of the Alps;) it has been particularly described however where the river Tista issues from this chain (880 35' Long. E.), and there undoubtedly bears all the characters of the older formation; its strata are highly inclined, whereas the tertiary beds, and even most of the secondary in this part of India, are horizontal : but the only coal district regularly worked is that on the river Damada, about 100 miles N. W. of Calcutta; this extends on the banks of that river about 60 miles, and appears from its foesil lycopodia to be undoubtedly the older coal ; it reposes apparently on the surrounding primitive rocks, but it has been conjectured, that it may possibly extend across the delta of the Ganges to Silhet (almost 306 miles distant at the eastern extremity of Bengal) ; it seems doubtful however whether the Silhet coal be not really modern lignite, as tertiary rocks certainly prevail in that quarter. No carboniferous limestone bas been observed.
2. Next to the coal we have to notice a great sandstone formation, which is usually considered equivalent to our new red sandstone; this includes many variations of character, comprising, besides sandstone and conglomerates, shales often approximating to older slate; the diamond mines of Panna (in Bundelkhand) and of the Golconda district are situated in this formation, the matrix being a conglomerate bed with quartzose pebbles : rock salt and gypsum are found where this formation extends on the N. W. into the great basin of the Indus: the atratification is uniformly horizontal : no organic remains occur. Beginning at the Ganges
on the enst, this formation first shows itself, supporting basalt, on the Rajmabal hills; it again prevails throughout the interval between the confluences of the river S6n (Soane) and of the Jamna with the Ganges, and thence stretches across W. S. W. through the Bundelkhand district to the banks of the Nermada (Nerbudda), which flows into the Gulf of Cambay, as far as 79° Long. E. ; where it is overlaid by the eastern extremity of the great basaltic district of North-western India near Ságar : the red sandstene shews itself again emerging from beneath the north-western edge of this basaltic district, at Nimach, near the western sources of the Chambal (the great southern branch of the Jamna) and at Baug, in the ralley of the Nermada. In both places, as also along the central portion of the platform before described, stretching through Malwa, it is frequently covered with a thin crust of grey argillaceous limestone, supposed to represent our lias, but nearly destitate of organic remains, although a single gryphite is said to have been found. The general absence of organic remains in the secondary rocks of India is remarkable; but Mr. Vorsery mentions an argillaceous bed full of fossil shells (species not stated) beneath the trap of the Gawilgarh hills (between the confluences of the Tapti and Purna, in the Berar district:) the same lias-like beds occur with the red sandstone of the Golconda district. A primitive range, extending from near Delhi to the head of the Gulf of Cambay, separates the secondary rocks of Malwa from those of the great basin of the Indus; but on the western borders of this ridge through Ajmir, the red sandstone again shews itself, containing rocksalt and gypsum. The whole of this immense basin appears to have been hitherto geologically neglected, although it would probably best repay such an examination, for here if any where in India, we might most probably expect a fuller series of secondary rocks. Mr. Govan has observed at the very source of the Satlej, one of the chief tributaries of the Indus, amid the highest primitive peaks of Himalaya, a small basin of secondary limestone, containing ammonites and cardia.
3. Tertiary rocks at the foot of the first rise of the primitive rocks of the Himalaya, in the north west of Bengal, where the Brahmaputra issues from them at the pass of the Garrow hills; cerithia, turritell, remains of lobsters, sharks, crocodiles, \&c. are here found, and further east, nummulite limestone prevails at Silhet. The soil throughout Bengal is often occupied by deposits of clay, containing concretionary lumps of limestone, called kankar; this, which affords the principal supply of lime in India, is probably of very recent origin. It remains only to notice the great basaltic district of the north-west. This extends from Nagpur, in the very centre of India, to the western coasts between Goa and Bombay, occupies the whole of that const to its termination at the Gulf of Cambay, and thence penetrates northwards as far as the 24 th parallel of north latitude.

In the Burmese Empire we find primitive rocks in the chains above Ava, but tertiary beds, with the characteristic shells, in the valley of the Irrawady, near Prome; also remains of the mastodon, \&cc. in the diluvial gravel. West of this the whole chain of the Malayan peninsula is primitive, consisting principally of stanniferous granite.

I believe that the above, condensed as it is, willbe found the fullest general acconnt of the progress as yetmade in Indian geology, hitherto presented to the public.

JOURNAL

07

THEASIATICSOCIETY.

No. 24.-December, 1833.

1.-A short Account of the Charak Púja Ceremonies, and a Description of the Implements used. By Ram Comul Sén, Native Secretary, Asiatic Society.
[Read before the Aciatic Society, in 1829.]
MP.
In describing the instruments used in the Charak Sanyása presented by me for the Museum of the Asiatic Society, a short notice of the origin and practice of the ceremony uppears to be necessary to illastrate the subject.

The word Charak is derived from Chakra or Charaka, which means a circle, and is used to signify moving or swinging in a circular direction ; Charak Sanyása implies leaving off worldly business, living abstemiously, observing austerities, for the propitiation of Siva. It is a festival improperly termed by many Charak Púja, perhaps from the notion that every ceremony observed by the Hindus of Bengal, is a puja or religious worahip; and whether it be performed by a muchi or chandíla, is considered as Hinduism, and the whole body of the Hindus are charged with the absurdity of the act.

There are two kinds of Sanyasas, called Siva Sanydsa, and Dherma Sanyasa; the first is celebrated in the month of Chaitra, and the second in Baisikha; the people who practise these Sanyaisas are termed Sanyisis, and the priest who presides in the ceremony is called a Gajaneyá brabman : the Charak festival is also called Gajana, (Gd or Grama, village ; jana, people,) being observed by the villagers. There are several ranks amongst the Sanyásis, such an Múla or head; Dhula, or subordinate; Sain, or followers. The time occupied by the Charak Sanyása is a whole month, and that of the Dherma is a fortnight; during this time the Sanyasis live abstemiously, and observe various ceremonies to be noticed below.

This act is performed by the Sudra class only, and generally by the lowest castes and most dissipated characters; some of them consider it as an act of piety and religion, in commemoration of the austerities performed by Vana Raja, a king and Daitya, who by acts of self-torture and denial obtained the special favour of Maha'deva, and who first introduced the festival; but the greatest number engage in it as a lucrative exhibition, or from a desire to acquire a character for courage in the opinion of their friends. In some cases, the rite is compulsory : the parents make a vow to Siva, when involved in trouble and disasters, that their children shall perform Sanyásas, for a certain number of years, which the sons must fulfil.

The form and manner of Sanyasas varies : the original ceremonies consisted of,

1. Phala Sanyasa, playing with fruits.
2. Phula Sanyása, do. flowers.
3. Nila Sanyása, worshipping Nilavati, a goddess.
4. Jhula Sanyása, hanging, and
5. Charak, swinging. These have been multiplied, and additions have been introduced by the people according to their fancy.

The original rules have mostly fallen into disuse, and new ones have been substituted, as convenience required. The time of Saryaisa has been reduced from 30 days to $15,8,4$, and 2 , and in some cases only one day is taken. The ceremony which was called an act of piety, is converted into an occasion of dissipation, drinking, gambling, and acts of immorality.

The following are the ceremonies at present in practice :

1. Phala Bhainga and Kánta Sanyása, or falling upon the branches of prickly plants, spread on the ground, collecting them, as well as fruits, and living solely upon fruits : the Sanycisis go in company, and climb upon date and cocoanut trees, and collect fruits; when they come back to the place of Siva, with the fruits so collected, they throw and distribute the same; they also receive presents of fruits. Barren women resort to the place, on the occasion, and spread cloths, on which if by accident a fruit falls, they receive it with joy as an omen of their becoming pregnant through the favour of Siva; at the same season, the Múla Sanyasi with his deputy goes into a forest, a burial place, or on the bank of river, \&c. and there performs the worship of Yama (king of death), and presents, as offerings to the evil spirits, boiled rice and roasted fish.

Páta Sanyása.-Falling from a scaffold erected before Siva, upon a row of Batí or knives. It is called Háta Samáysa and Gháti

Sanyása, because the scaffold is erected in a market place, and on the bank of a river; afterwards when the Sanyásis return to the temple of Siva, they lie on their backs, upon the bare ground, in a row, close to each other, and the Gajanaya Brahman passes over them, treading upon their breasts.

Phúla Sanyása.-Collecting and playing with fuel; which they often procure by plandering gardens, and carrying off railings, loose doors, window frames, \&c. They then make a large bonfire in the evening, and jump and walk over the flame, and play with the burnt charcoal, throwing the same upon one another ; this is also called Aguna Sanyäsa.

Nila Sanyáa-is the worship of Nilata'ti, a wife of Siva: the Sanyásis visit Kálighát or temples of Sacti and Siva, where they pierce their sides, tongues, and the skins of their foreheads. This is called Bäna Phorí, and on the occasion they collect presents and gifts from the spectators, who far from encouraging these self-tortures, pay them something to get rid of the sight of their bleeding limbs.

Jhúla Sanydsa,-is climbing upon a scaffold, hanging with the head downward, and making a fire below. The fire is fed with the powder of Indian pitch.

Charak.-Eating Chehatu or bran, and swinging on the Charak Gách or post, erected for the purpose. Among these Sanyásis there are several other ceremonies of note, some of which must be noticed here : Khátuni, shaking and turning the head, rolling about the shrine of Siva, beating the forehead, sitting up all night, and singing Tarja, or songs addressed to Siva; sometimes, but not always, in his praise. Phüla ká dána, extracting or receiving the flowers laid upon the Linga, which they thiuk fall down at their solicitation; and prayers to the god, who is pleased to throw then down as a sign of affirmation or negation to the question made to him by the Mula Sanyasi, or the priest for himself or on behalf of his friends. If the flower does not come down after a certain time, it is then supposed that the god is not propitiated, and the Deyule, (proprietor,) Mandala, (agent,) the Müla, (head,) and other Sanyásis, and sometimes the priest himself, are tied up by the hands, and suspended to the verandah, all round the shrine of Siva, while the Sanyasis redouble their Khátüni before the idol, and the drummer beats his drum with all strength; the Sanyasis and others remain suspended from off the ground till the flowers fall. The flowers are at first laid upon one another, and then placed upon the top of the Linga, which is oiled, and is consequently slippery : water is thrown upon it by drops, which assists to wash off the flowers, and
when it is obstinate, some person on the part of the priest, contrives to knock it off with a stick unperceived.

Description of the Instruments used in the Charak. of which Specimens are deposited in the Museum and numbered accordinglg.

The Vetrasana is an instrument made of ratan, No. 1: it means a seat of ratan, it is the staff of the Sanydsi, a number of ratan folded in the middle and tied up together, leaving a few inches open in the lower part, in an oval form, the upper part is kept loose. Its use is various-it is a sacred ensign of anthority, which must be respected on particular occasions by the Sanyasis, who rattle it as their musical instrument, in their procession; it is made a broom for cleaning the place of Siva, where the use of common broom is forbidden during the Charak. It serves as a weapon, with which they fight, or beat down the bundle of thorns used in the Kanta Sanyasa upon which they fall; they use it in playing with the burnt charcoal in Phula Sanydsa; it is used as ropes laid under the pot or bag No. 2, in the Pat Sanyasa. When any dispute or difference arises between the priest and Sanyasis, or when the latter in their procession meet with another party, they lay down the Velrasana across the road and the entrance to the house of Siva, and the party against whom it is laid down must instantly stop; it is a sacred bar which they must not pass over without violating the law of Charak, and committing a sin which would disqualify them from becoming Sanytsis again. They are finally allowed to pass only in compliance with certain conditions; and certain questions relative to Siva, delivered in verses, called Tarje, must be likewise answered before the new comers are allowed to pass, and beat their drum, or do any business.
Sutasana, or a cord of twisted thread, No. 3; it is in two pieces, which they pass beneath the skin of the sides, arms and thighs; the ends are held by two Samydsis or assistants, whilst the man dances and passes to and fro. This purpose is also answered by log-line, No. 4, ratan, No. 5, split bambt, No. 6.
Dasnakhi, (No. 7,) two pieces of iron rod, about 2 feet long: one end is pointed, which is passed into the sides, and the other is fork-shaped with prongs, each of which is called nakha, or nails, or finger-nail ; the two pieces have often 10 nails, hence it is called dasa-nakhi or ten-fingered, but it is has often three prongs: the upper ends are flat, and laid upon one another, which serves a a bed for fire, or a lamp, made of cotion dipped in ghee; which is lighted, and upon this the powder of Indian pitch is from time to time thrown, so as to make a blaze, while the Sanybsi dances as he goes.

Bati, or knife, No. 8.-Eight in number, fixed apon two pieces of boards, in a leaning posture, placed upon a bag, No. 2, stuffod with straw. This bag is beld by four persons, aloft from the ground, and two Sanydsis join their Betasam No. 1, and lay the same across, to render to the bag additional strength, and the Sanytusis fall upon it from the scaffold, No. 9.

Visesaya, No. 10, or nails to the number of 120 ; one end is flat, the other is pointed and sharp, these are run into the skin of the forehead, upon both arma, and breast, in an ornamental form, close to each other, usually like the front or facing of a jacket. To the ends of the nails small beade or peas are attached or suspended like garlands banging upon the forehead, and small pieces of take are suspended by way of decoration.

66.5
8.5

Drc. 1833.] Specimens of Ornamental Forms of Persian Writing. 613

Banas, Nos. 11,12,13, or arrows, iron rods of various sizes and thickness, used according to the strength and courage of the Sanydsis, whose tongues and sidee are bored, and the rods are let in, which they often move about. When it is perforated, the tongue and the rod rest upon the lower jaw, or are beld between his teeth; if it be heavy, another person holds the ends.

Kupali, No. 14, is an iron rod or nail : the lower end is pointed, and is passed through the skin of the forehead, the man holding it close to his nose, or a bandage is tied round the head, to prevent it from falling; a small lamp is attached to its top, which he burns on the day of Nila.

Charak kánta, No. 15, or swinging hooks. :The Charakt, or one who swings, is often of the bearer caste, and cther people, not Sanyasis, volunteer for this act, through the effect of liquor.

The skin of the back being drawn out, a perforation is made with a lancet, No. 16, on each side of the back-bone, and the hooks, No. 15, are let in; the twine attached to the hooks is tied to the rope, suspended to the Charak Gacka, No. 17. If the skin of the Sanyasi is thin, or he is weak, a bandage of cloth is tied round his chest, to prevent the hooks from giving way, as when they break the SanyGsi falls, and is generally killed; the standers by also are sometimes severely hurt.

No. 18, 19, 20 and 21, Belkars, or lancets of various sizes and thickness: with these the skin is bored. These are not kept by the Sanydsis, but procured from certain kumdrs (blacksmiths), who attend the place where the Sanydsis meet, and receive a certain fee, which varies from 2 annas to 2 rupees for each subject. The lancets are of various sizes, and a number is always brought by the operator.

Nagapasa, No. 22, two long pieces of iron, with a snake head, hooded top; two of these are run into the neck and back of the bead, and brought down to the waist; each has two borings at least, one on the head skin and one on the back. The Sany asi who can submit to this torture is considered a great hero, and when two similar ones are put in, he cannot turn or bend his body without breaking the skin through which they are bored.

There is also a head piece, No. 23, made of iron put upon the head; it has 3 to 5 pieces fixed to it like the hoods of serpents.

Charak Gách, No. 17, or a post, commonly of saul wood, for swinging : it is from 29 to 30 feet long, fixed into the ground, the upper part has a notch, or socket, called Mocha, B ; in which a movable pivot is let in, called Khaktyl. On this, a cross piece made of bamblis 5 to 10 in number is tied up together, and placed across the Khakliyt; to both ends of the cross thick ropes are suspended, one of which is tied to the hook, No. 15, and on which the Charakt swings.

II.-Specimens of some Ornamental Forms of Persiaz Writing. By Mahá Rájá Káli Kishen Behadúr, of Calcutta.

The accompanying figures, representing some beautiful poetical inventions of the latest authors, are extracted and translated from a Persian book called "Mujmua-us-sanáyá," (or Collection of Arts,) com . piled by Nizám-dd-Di'n Ahmbd, son of Muhammed Sánif, in the year 1060, Hejri.

Fig. 1. (Plate xxi.) (Thaíqub, or anagram that retains the same meaning, even when it is read in various directions.

In this, the central (m) is the first letter of every hemistich. The reading will run equally well by beginning first from ρ towards B, thence continuing towards A, and from A returning to $;$ then back again from, to A; from A to C; and back again to p; further, from p to C; then from C to D; and finally from D back again to p.-Translation.

> "I am dead on your separation and have no soul in my body,
> For God's sake hear my sorrowful lamentation.
> I have no marrow in my bones, O love, be kind to me,
> Happy if I instantly die when separated from you."

Fig. 2. المشجر Ulmoshojur ; the arborescent form.
In this the Arabic letter m is round, differing from the shape of the Persian. μ, placed in the centre of the circle of which the branches form radii, is the beginning of each word ; and the stars $1,2,3,4$, mark the end of as many hemistichs; the reading of the first begins semicircularly from B to C.-Translation.
" I am fond of the curled locks of beauties, And I ams captivated by their moon-like faces.
I drink wine and am constantly a drunkard in the tavern,
And I give thanks to the God of the heavenly kingdom."
Figs. 3 and 4. المعed Ulmoaqqad, or the representation of knots.
From the central p commencing along either side at the letter E or F, and terminating where we set out, we shall arrive at the conclusion of two hemistichs.

The reading of either hemistich should be directed alternately from the right and the left hand, in order not to lose their respective sense and metre.-Translation.
" Be not intoxicated, and do not go to the intoxicated ones,
O thou possessed of moon-like face;
Do not display vanity like the brilliant moon.
Thou hast charmed hermits, kings, and angels,
Bewitched the beauties by thy moon-like face."
Figs. 5, 6, and 7. The beauty of the construction of these three figures is, that the reading may follow any order of the compartments without altering the sense.-Translation.
" The world with its riches is under your subjection,
O Love, it is tyranny that thou hast not afflicted my heart :
Alas, there is no faith in the world; alas, there is no faith in the world."
Fig. 8. المربع Ulmorabáa, or a quadrilateral figure containing four hemistichs, and these are read in both horizontal and perpendicular
directions, beginning either from any of the four upper compartments downwards, or from any of the four perpendicular compartments of B, D, sideways, fron right to left ; and the same verse will be found.
"I am inconstant affliction owing to the absence of that ravisher of my heart;
That ravisher of my heart whose love keeps me awake with affliction.
I am constantly in pain withont a companion and without a friend;
I am sick, I am awake, and without a friend and without a sympathizer."
Fig. 98 شعل ار Shakl-i Arrah, or saw-like form. The ابيات Abeatt distiche are read in the usual manner as follows:

III.-Description of an Indian Balance, called Tula. By the same. [Presented at the Meeting of the 31st July.]
This instrument is made out of common wood, but generally Súndrধ (Herritiera minor) is used.
It is employed by the Músulmán Kághazy, or paper-makers, for the parpose of weighing old and useless papers; it is also used for weighing cotton, as well as thread, by native weavers of both sexes.

The marks of division around the beam are the indications of different weights, as particularized in the accompanying drawing.

The larger string, named wazni-rassi (or the string for suspending weights), is introduced through a perforation at the end of the beam; and the little one, termed neti, is for holding by the fingers to ascertain the weight, by applying it on one or other of the marks above alluded to.

The accompanying plate (Plate xxii. fig 8) is one quarter the ordinary size of the instrument, but some are a little larger, and others smaller.

It is in principle similar to the Roman steel-yard, the fulcrum shifting instead of the weight.

[^142]The voluminous nature of these journals, which were presented by Captain Grrard to the Asiatic Society some years ago, has hitherto prevented their seeing the light. The very circumstance which constitutes their value as a record,-the minute detail for every hour of the day, continued with little interruption by an indefatigable observer, for a period of two years,-having in the end thwarted his views and his
reward, while they have deprived the scientific of a most valuable and will digested register of meteorological data. It would be impossible to devote space for their entire publication in the pages of this journal, but such an abstract as we have gleaned from many similar tables on former occasions, and which will suffice for most purposes of a general nature, especially for that we havehitherto kept in view,-the fixing of the constants of diurnal and monthly range of heat and pressure for as many points as possible on the continent of India, -we now with permission present to our readers : prefixing Captain Grrard's account of his instruments and of his method of observing.
"With regard to the tables which I now transmit, I beg to state that, generally spenking, the means of the observations, whether of the barometer or thermometers, attached or inside, and detached or outside, in the air and shade, taken doring a march or halt or temporary intermediate place of encampment, are deduced from the highest during the day, and lowest the following morning, which will furaish a correct mean of the place for the day. The attached or inside thermometer at Kotgarh was rather open to a westerly aspect, the observations being taken in a room of the house to the westward, thereby shewing a somewhat higher temperature than if taken in a room towards the north. This was merely done for the sake of convenience. The detached or outside thermometer was suspended on a pole fixed in the ground for this special purpose, apart from the house, from day-break or early in the morning, to the north-west side for nearly half, and to the N . N. E. side for the remainder of the day, in the air and shade, to obriate as much as possible the sudden effects arising from reflection from the earth and the sun's rays in clear, settled, and hot weather; which would thereby indicate a high. er, and consequently somewhat a more incorrect temperature of the air, than it otherwise ought to do, had it been hung at a considerable distance from any building better situated and free from the influence of all or any degree of reflection, so liable at all times to raise it above the true standard.
The barometer used during the two years, to insure accuracy as far as practicabe in the instrument, was unexceptionable in every respect, being filled with pure mercury, carefully revived from cinnabar, by distillation in a retort, with the filings of iron, and gradually boiled over a slow charcoal fire from the sealed end upwards, which process is always tedious and difficult of accomplishment.
As not less than ten or twelve observations were taken and recorded daily with nicety, the correctness of the following tables may be relied on.
I possessed no instruments for ascertaining the density and hamidity of the atmosphere, evaporation, or the quantity of rain which has fallen during the years under review. The winds stated as stormy, strong, brisk, steady, moderate, gentle, litule, and light, have been estimated by their supposed strength unaided by a guage, to indicate their actual force. The same may be noticed in regard to the quality and appearance of the clouds.
The sudden creation and increase of clouds, spontaneously rising from dells and valleys, subsequent to rain and snow*, more especially during the periodical

[^143]rainy and winter seasons, on the hither or Indian side of the Himálaya range (the opposite or ultra side of the Himálaya being little subjected, and that only for a short distance into the interior, from the loftiness of this grand and extensive barrier of mountains separating India from other parts of Asia, to such a deluge), are more astonishing to the beholder than I have words to describe, and their total disappearance in a short space of time (sometimes indeed almost in a moment) is equally surprising. I have often remarked these without any apparent cause during calm settled weather, moving in all directions in henvy loose masses; at other times with incredible velocity, resembling spray, down a ridge or valley, till they reach a certain point, when they evaporate, and in an instant disappear. Sometimes they may be seen in all shapes and curious forms, and frequently they accumulate and disperse in a manner quite astonishing to the spectator. They will rest for days, and even weeks, upon the top, and the slopes of the high surrounding ranges and mountains, defining a clear outline around ${ }^{*}$, thereby condensing and confining the atmosphere within certain limits at an altitude of 8000 feet and upwards, (rarely at a less elevation for any time,) above two or three days, and making it close and sometimes unpleasant to the feelings, although the thermometer may indicate a low temperature at the time; and often in clear, cloudless temperature and mild weather, small patches may be seen stationary in some places, and suddenly gliding along and up the declivity or slope towards the tops of the mountains, and dispersing quickly in others \dagger.

The principal places at which any number of observations were taken are Rampár, Kotgarh and Subathú. At intermediate places, during a march or temporary halt, the observations taken were recorded.

The latitude, longitude, and elevation above the level of the sea \ddagger, together with the name of each village, town, and encampment, on the journeys made each year; the state in which comprised; and to what authority now subject, will be found detailed in a table or " List of Places, \&cc." at the end of the abridgement, and other tables for each year.
The point of ebullition and the temperature of springs, rivers, and streams have not been omitted at most places in the subsequent sheets, during a journey. The utility of the former, when unaccompanied with a barometer, is too evident almost to need illustration. It will give a tolerable idea of the elevation of different stations; while the second, which were only ascertained at a few places, will nearly shew the mean temperature of the year at different altitudes; and the latter will certainly, from the diminution of temperature, indicate a tolerable estimate of the distance of the source of the rivers in the water of which the thermometer may have been dipped, and an observation taken of its temperature. If rivers and streams indicate a high temperature, the source of them may reasonably be considered to be remote; but if a low temperature be evinced, the contrary may be supposed to be the case. Certain local circumstances and influences may in some degree affect the temperature of rivers."

- These remarks apply to Kotgarh and its neigbboarhood, and indeed from Simla apwards, as I can affirm from my own long observation.
\dagger The sun's rays after rising have in general this effect.
\ddagger For these on the present as well as on the former occasion I am indebted to my brother, Captain A. Gerard, late Surveyor in Rajputana and Malwa ; and for a few of the latter, and partly come of the observations of the barometer and thermometer during my occasional short visits to Subathí, to my brother Mr. J. G. Gerard, Surgeon to the let Nassiri battalion, stationed in these mountains.
Summary of Captain P. Gerard's Metcorological Registors for 1819-20.

With exception of the month of April, so inviting to a resident in the hills for expeditions into the higher and more remote parts of the vast Hımálayan range, we find in the foregoing abstract, besides three months at Subathú, a nearly complete annual series of barometrical observations for Kotgarh, a station more than 6000 feet elevated above the sea*, and far enough within the first range of hills to obviate the effects of the currents of air from the plains, as observed in the Dehra Dún by Dr. Royle \dagger. It must not be expected that the regularity observed on the level continent of India will be found in the march of the barometer in a mountainous country, where fluctuations of temperature, moisture, and wind are much more frequent and sudden than in the plains; still the same general curve obtains through the year, and the diurnal rise and fall is regular and of the same nature as in the plains, not a negative oscillation as is observed at great elevations on the Alps. The average diurnal oscillation or fall from 10 A. M. to 4 p. M. is 0.063 inch : to which adding one-fourth (or, as 30 in. to 23 in .) to render it comparable with the oscillation under a pressure of 30 inches, we have .079 , which is only two-thirds of the daily oscillation at Seháranpúr ${ }_{+}^{+}$, as deduced from Dr. Royle's registers; we may therefore conclude that at a greater elevation, we should observe a still further decrease until, passing zero, the diurnal oscillation would become negative; that is, the barometer would rise from 10 A. M. to 4 p. m. as observed at the convent of St. Bernard's. The solution of this curious question and the determination of the zero or no oscillation altitude, may probably be obtainable from the journals of Captain Grrard or his brother, Dr. J. G. Grrard, who is known to have reached an altitude of 17000 feet, barometer in hand ; and we may confidently trust to their joint exertions in elucidation of it : for one fact of this nature estabished on certain data will better repay their labours in the couree of meteorology than even a lengthened series of ordinary observations.

The thermometrical range out of doors is incomplete, the minimum only being registered : there cannot however be a wide difference between the monthly mean, in-doors, and in the open air. The monthly variations deduced from the latter column, (the monthly mean's) or from the column of exterior minima, give nearly the same annual curvature. The following table (column o) takes it from the interior mean. April and October are the two average months for temperature as well as for pressure, but the months of January and February present an anomaly in the barometer being lower than usual for those months in both the years under review.

- 6915 feet, by Capt. Heraret, As. Res. xir. 336 ; 6600 by subsequent correotion, rol. xv. 413.
+ See his note on the hour of maximum temperature in the hills, Jour. As. Soc. rol. i. p. 97.
\ddagger Jouraal, i. 30.

Table of the mean Monthly and Diurnal Range of the Baroweter and Therwometor at Kotgarh in 1819-20, (the month April being interpolated,) deduced frome Captain Gerard's journals.

Month.	Barometer.			Thermometer.				
	Mean height.	B. Deviation frcm mean annual height.	c. Mean diurnal oscillation.	D. Mean of minima in the open air.	Mean of maxima in doors.	$\begin{gathered} \text { Mean } \\ \text { tempe- } \\ \text { rature } \\ \text { in } \\ \text { doors. } \end{gathered}$		B Mean diumal range (e-d)
Jannary,..	$\mathrm{in}_{23.592}$	$\begin{gathered} \mathrm{in}_{-.001} \end{gathered}$	$\operatorname{in}_{0.052}$	33.4	40.9	${ }_{39}{ }^{0} 5$	-	7.5
February,	632	$+.039$. 052	35.3	45.0	43.5	-13.4	9.7
March, ..	. 686	$+.093$. 062	43.5	52.2	51.4	-5.5	8.7
April, 623	$+.040$. 067	47.	58.	57.	$+0.1$	11.0
May, 559	-. 034	. 074	52.4	64.7	634	$+6.5$	12.3
Jone, 461	-. 132	. 068	60.5	72.1	69.8	+12.9	11.6
July, 495	-. 098	. 061	60.8	71.4	69.3	$+12.4$	10.6
August, . .	. 501	-. 092	. 062	60.5	71.4	69.6	+12.7	10.8
Stptember,	. 522	-. 071	. 058	54.2	69.3	66.7	+9.8	15.1
October, . .	. 639	$+.046$. 072	48.9	625	59.7	+ 28	13.4
November,	. 693	$+.100$. 063	37.2	49.5	48.3	-8.6	123
December,	. 711	+.118	. 064	39.3	46.6	45.0	-11.9	13.3
Mean,	23.593	range . 250	. 063	47.7	58.6	56.9	range 33.3	11.3

In the column (c) of mean diurnal barometric oscillation, the observations at Subathú have been included, as producing a better average ; the difference of altitude will in this case have but a trifing influence on the result.
Appended to Captain P. Gerard's tables are catalogues of the latitude, longitude, and barometrical altitude of all the most important points visited in the course of the journeys, whose occurrence is marked by the blanks in the foregoing register. The journey of September, 1819, was made in company with the late Captain J. D. Herbrrt, to survey the course and level of the river Satlej, of which an interesting account is published in the fifteenth volume of the Asiatic Researches. The heights were partly taken trigonometrically, but the majority by the boiling-point method, and a correction of two degrees and upwards was forced to be applied to the instrument used by Captain Herbert, on account of an error deduced experimentally from a comparison of its boiling point with the height of a barometer filled with pure mercury, and well boiled, by Captain Gerard; Dalton's Table of Tensions were used in calculating the volume of the thermometric indications. The latter officer, in his remarks upon the tables before us, explains that his own thermometrical heights were taken with a different instrument, which did not require correction, and that they were calculated by his brother, Captain A. Grrard, on the supposition of the sea level being represented by 30 inches, or 212°. A deduction of 200 feet may in some cases be necessary on this account, but it will hardly affect the relative measurements, especially as the
trips were made in April, September, and October, the months, as before stated, of mean barometrical altitude.

The following table contains a selection of some of the principal results of this part of the journal, and if compared with that printed in the Researches, it will be seen to afford the highest confirmation to Captain Herbert's statement; the altitudes and longitudes are from the latter.

In 1820, our author went alone by another route, and made some additions to his list of altitudes. The whole ought to be pablished, but they would require the elucidation of a route-map and notes of the journey.

On both occasions also, the temperature of rivers and springs was carefully noted, and a sure indication was thence deduced of the distance, direction, and source of the stream ; a few of these are inserted below

Extract from Captain Gerard's Table of Altitudes.

1819. Place.	State.	Latitude. North	$\begin{array}{c\|c} \text { Longi- } \\ \text { h. } & \begin{array}{c} \text { Lude. } \\ \text { tust. } \end{array} \end{array}$	$\left\{\begin{array}{l} \text { Boil- } \\ \text { ing } \\ \text { Point. } \end{array}\right.$	Elevation above the Sea
$\overline{\mathbf{R a}}$ mpur, capital,	Bussáhir,	$31^{-2}-2$	' $770{ }^{\circ} \mathbf{3 8}$	206,8	3398 ft .
Nirtaagar, village,	Do.		227733	206,6	3087
Kotgarh, cantonment,	British,	31	$9{ }^{2} 77{ }^{30}$	200,7	6634
Kombarsén, capital,	Komharsen,	318	9777		5500
Subathu, encampment,	British,	3058	8876		4503
Manlig, encampuent,	Patiala,	-31--	$6 \longdiv { 7 7 1 1 }$		4400
Semila, do.	Keontiul,		$6{ }^{77} 11$		7200
Wartu fort,	Several,	318	$4{ }^{77} 31$		10656
Pabar, river near Raingarh,	British,	31	877	202,7	5700
Rontau, village,	Do.		77748	198,5	8900
Encampment in Klaskell range,	Bussáhir,			194,1	12900
Jako Penk,	Do.			196,1	9100
Crest of Rapen Pass*,	Do.	$\begin{array}{ll}31 & 21 \\ 31 & 36\end{array}$	1788	185,7	15460
Murang, ${ }^{\text {Shipké, }}$ in Chinese Tartary,	Do.	$\left\lvert\, \begin{array}{ll}31 & 36 \\ 31 & 48\end{array}\right.$	367878189 78	197,4	8503
Shipké, in Chinese Tartary,	Tibet,	3148	487845	193,0 $\left.{ }^{193}\right\}$	10597
Hupshang, boundary between	Busabir\&Tibet	3148	87881		10989
Naku, village,	Bussahir,	$\|$31 53 1	37838	191,7	12005
Sheálkbar, village and fort,	Do.	32	$\begin{array}{ll}78 & 35 \\ 78 & 27\end{array}$	194	10403
Kanam village,	Kunáwar,	$\begin{array}{ll}31 & 40\end{array}$	07827	197,2	9000
Wangto jhula, bridge over the	Satlej,	31	32781	203,3	5200
Dalnagar, village, 1820.	Bussahir,		237736		3200
Mandar Ghátí Pass, boundary,	Do.	$\left\lvert\, \begin{array}{ll}31 & 16\end{array}\right.$	$6{ }^{77} 38$		9800
Sirará Pass,		31	$0 \mid 77$		8885
Purag,	Kotgara,	$\begin{array}{ll}31 & 7 \\ 31\end{array}$	777		6900
Nágkanda Pass,		$31 \quad 15$	5777		9016
Dubalda range,	Kuranglu,	131	777		7300
Top of Nankhar range,	Bussahir,	$\begin{array}{ll}31 & 17\end{array}$	777		7800
Buchkal, on ascent to	Shatul,	31 31 22	$22 \mid 7756$		11700
Crest of left peak towards Shatul or	Rol Pass,	3123	3778		13300
Clandidhar range,	Do.	3116	67786		9200
Kujean, village, Jangleg,	Bussahir.	31	8788		9250
Kepu, bridge over Satlej,	British,	$\mid 3121$	$1 \mid 77$ 28\|		2800

- This pass is called the Gunas Pass by Capt. Herbert, (As. Res. xv. 413,) by mistake-the Gunas is another passage across the Himalaya, lying to the westward of the Rapen River.-P. G.

Tomperature of Rivors, Springe, and Torrents obeeroed

Sping between Phafao and Theog,
Stream on Klashel Range, Rupen River, below Pass, Satléj River, below Shipké, Do. at Namghen jhúla,

Beru Naddi or Torrent, Grassu and Badí Torrents, Chegaontí River, Pabnr River, near Mandif, Andrí near Chírgaon, Gop and Chiflu Torrents, Sepon River, Pabar River, near Raingarb, Shillar Torrent, Tons River at conflux with Pabar, Stualwe River,
Couflux of Shalwe and Kholte Rivers,

$\begin{aligned} & 1819 . \\ & \text { 8th May. } \end{aligned}$	7 A. M.	$45,2$
24th Sept.	11 A. M.	45,5
29th	9 A. M.	40,5
15th Oct.	5 P. M.	31,3
22nd	9 A. M.	44,0
1820.		
4th Jan.	9 A. M.	33,1
5th	81, M.	29.5
9th	$8 \frac{1}{8} \mathrm{~A}$. M.	33,6
23rd Mar.	5 P. M.	52,7
24th	74A. M.	43,0
30th	9 A. M.	43,0
30th	10 A. M.	40,1
7th Apr.	$6 \frac{1}{\$ 1}$ A. M.	51,8
20th	6 A. M.	47.0
25th	7 A. M.	57,0
2nd May.	6 р. м.	69,9
5th	7 А. м.	56,0

V.-Notes on the Specimens of the Kankar Formation, and on Fossil Bomes collected on the Jamaa. By Captain E. Smith, Bengal Engineers.
 [Read 26th December.]

Captain E. Smith has been engaged for some years in removing the obstructions to navigation in the river Jamna, between Allahabad and Agra. These obstructions, as is well known, consist of sandstone rocks and kankar banks, protruding from the bed of the river at several points, leaving, at low water, dangerous bars but partially concealed, and causing rapids and whirlpools, which have proved in years past highly destructive to boats. In the course of this important duty, of which we hope hereafter to be able to give a full account, the peculiarities of the kankar formation, which has been the subject of so much specalation to Indian geologists, have been strongly impressed on his observation, und he has very laudably preserved sketches and remarks of their most remarkable appearances in his note-book, which he has now submitted with the series of specimens to the Society. "They are not numerous"-he writes, "having been taken only where differences in the kankar and rock were evident, but they form a regular series from Agra to Allahabad, shewing the nature of the rocks occurring throughout that distance. Having little knowledge of the subject myself, I have not attempted descriptions of the specimens, which will be more correctly recognized by others, but have substituted what may be of use, viz. sketches and notes of the exact situations whence the specimens have been obtained. These even amount to little more than indica-
tions of place, for almost the remarks that have offered themselves have been reserved until I know whether they will be of service."

All geologists will agree that the graphic mode of illustration adopted by Captain Smith is the very best for communicating at once an acquaintance with the nature of the country he has explored, and though confined to the banks and bed of a river, it must be remembered, that the section thus opened to him by the operations of nature, to a depth in some places of 100 feet or more, is a section of the great alluvium of the Doab and of the Agra plains, and not, as it would be in the lower course of the Ganges, a mere exhibition of the continually shifting channel and sands of the comparatively recent delta.This remark extends particularly to the fossil bones discovered at Karimkhún and other places, which will be seen, as we proceed, to belong to the genuine class of fossils, underlying the kankar stratum of the clayey alluvium, and are not merely casual deposits in the present river, as Captain Herbert was led to suspect when their existence was first pointed out, in a situation of the same nature, near Calpí, by Doctor Duncan, in 1828*.

Dr. Royle also brought away a fragment of bone in 1831, and expressed his opinion that fossils would be found in the banks of the Jamna, (Journal, vol. i. 457.)

Regarding the present collection of fossil bones, Captain E. Surtris private letter furnishes the following particulars: "With the specimens of rock there is a box of fossils; I have done little more than indicate the localities, with a few remarks on the state of the bones, originating in

[^144]my acquaintance with the situations in which they are found. The portion of the subjoined note in which the fossils are assigned to different parts of the skeletons of various animals, has been derived from better authority than I can pretend to in such questions. From what has been obtained in the last year or two, it seems that fossils in great abundance are lodged in the bed of the river. They have in previous years of the works been procured in smaller quantities, from rocks or shoals differing in nature from those of the last season, having been removed in the first periods. One cause of so many having been of late discovered has been the presence of intelligent Earopean overseers, whose curiosity has been excited by remains which were matter of indifference to the natives. It is to be regretted, however, that the attention of the men was not directed earlier to the preservation of these fossils.
" I became acquainted with their discovery in such quantities, and of such dimensions, only after an absence from the spot, during which the excavation had been completed, and could then collect merely a few of the fragments, which an interest in the subject on the part of some of the sergeants had induced them to select. Much however has been lost, and as seen in the list, a small piece only was kept of the shoulder blade of an elephant, (No. 3,) described as very perfect, but which unfortunately, with the rest of the mass removed from the shoal, was thrown into the water of a deep channel. I have lately got some more fossils, and in the course of the cold season, I shall have an opportunity of visiting some, of the existence of which in the banks of the river I have just had information, and which (if the account I have received be correct) would seem to prove that the process of petrifaction is still active."

Captain Smith has divided his notices under three heads, which we here insert in the same order, adding the characters of the rocks, and in some places their analysis, from the specimens presented to the Society.

I.-Notes with Explanatory Sketches on a Description of Kankar fousd in Slabs in part of the bank of the Jamna. (Plate XXIII.)

A description of flag, composed of sand coarsely but strongly cemented, in thin slabs, horizontally disposed, is found in considerable quantities at a short distance from Karfmkhán, near Oreyah, on the Jamna. The situations from which it is usually dag are shown distinctly in the accompanying sketches, with the references and notes; but the flag is not confined to the banks of the river, (Sketches Ist and 5th,) being raised as well from sand-banks far out towards the centre of the bed of the stratum.

Kankar beds of the Tumna River

Skeich 5

Sketch 4

It is excavated principally by the boat and ghat men, or the villagers of the Mallak class, on the immediate spot; and the search for it, and the mode of raising it, is simple.

In the hot months, when the river is low, these men observe what parts of the bank have been left by the river (Sketch lst) so bare of sand, or deposits of mud, as to allow of a probability of the flags being reached without much labour in the removal of the superincumbent body. They are, from the excavations in former years, acquainted with the spots in which they may expect to find the flags, and the upper mass being cleared away, if the flags are reached, the excavation is carried on as long as the easy slope of the bank allows of its being profitable. It is generally from about the bottom of the bank, at the level of the lowest fall of the river in the dry months, that the flags are taken, and they are traced at all heights from this level up to 20 or 25 feet above it, but rarely or never higher. Below this lowest level, they are found in depths as great as the water has allowed of the excava. tion being prosecuted in, bat that is not more than 4 or 5 feet. Towards the centre of the river they are raised from similar depths below the surface (Sketch 4th) from a space on which sand settles annually over a greater or less extent. Whenever any part is perceived free of sand, and the flags felt at the bottom of the water clear of that obstruction, they are detached by common iron implements, and raised. As is the case near the shore, the depths from which they are lifted do not exceed 4 or 5 feet. In raising the flags, it is usual to cut them across, (Sketch 2nd, to reduce them to manageable dimensions, and as they are sometimes connected with each other at the edges, they are there too cut asunder. They are generally taken out in lengths of from 2 to 4 feet, the breadth varying from 1 to 2 feet.

Long round pieces are sometimes found between the flat slabs, (Sketch 3,) that is of course when the latter are not so close as to be connected. These round pieces are always smooth, never knotted, at least as those common on the surface of the kankar banks and shoals usually are. The round are always met within the horizontal line between the flat pieces, never above or below them, not even when there are double or treble strata of slabs. The directions of the lateral divisions of the slabs, as also of the grooves which channel the surfaces of both the flat and round pieces, is stated to correspond nearly with that of the present course of the river. These flags are said to harden on exposure to the air. It is unusual to find, in other parts of the bank, fine sand, similar to that of the sand strata immediately adjoining the
flags, and to that of flags themselves*. It seems to be of a kind poculiar to this bank of the river, about the lowest level. Cursory observation at least does not discover it elsewhere. It is darker and greyer, but otherwise not unlike the fine sand of the superficial beds. Flags, it is asserted by the people, are never found on the sites of former excavations, that is, they believe them to be old deposits, and have no expectation of discovering fresh formations in the spots from which they have once before raised the layers. Projecting eaves from the roofs and windows of the native pakka houses are in this neighbourhood very generally constructed with these flags. It seems to be the use to which exclusively they are applied, and they are conveyed for it to Calpi and other towns in the vicinity, where they are sold at a few rupees a hundred.

Similar flags to these may very possibly exist on other parts of the bank of the river, but they have never been observed or heard of except at this place, and here but in one bank of about half mile in length, and in the bed of the river opposite to it. Although, as shewn in Sketch 5 , this in now the main bank of the river, it has not always been so. At some very remote period, the Jamna must have ran along the foot of the higher plain on which Kentra stands, and which line, with the relative distances and elevations, is seen on the small sketch.

Referencer to the Shetches.

Sketck 1. a. Sand in strata, alternating in thicknesses of the fiags.
b. Lowest level of the river.
k. Cess-pool for baling out the water.
c. First stratum of flags.
d. Intervening layer of sand, fine, of the same color and description apparently as that in the composition of the flags, varying in thickness from 6 in . to 1 feet.
e. Second stratum of flags.
f. Second intervening layer of sand.
g. Third stratum of flags.

From 1 to 5, strata of flags and intervening sand are found.
Sketch 2. The slabs in their natural position, in the aand or the river. -...- Cats made by the people to detach them.

Sketch 3. Plan and section shewing the round pieces of kankar (a) fonnd lying between the flat slabs ($b b$).

Sketch 4. The method of obtaining the kankar from the sand-beds towards the centre of the river.
A. One of the men separating the pieces by a sharpened crow-bar.
B. Another lifting up the detached pieces from the bottom.

[^145]-

Digitied dy Google

Thapilies of Kantar in the Panto of the China

Level of water
fig. 12

fig.14
h\{ fig 16

tit $\operatorname{ting} d x$

Sketch 5. Plan of the locality.
a. Present bank of the river, $\mathbf{4 0}$ to $\mathbf{6 0}$ feet above the loweat level of the dry scason.
b. former bank, $\mathbf{1 0 0}$ to $\mathbf{1 4 0}$ feet above ditto.
c. Bank, in, or near which the slabe are found.
2.-Notes on Specimens of Kankar and Rock taken from the Bed of the Jamna, between Agra and Allahabad. (Plate XXIV.)
Fig. 6-represents a section of the river bank at Sinjaity, above Etaiva, with the kankar jutting under water.

No. 1. Loose kankar gravel, cemented with clay and lime.
2. Ditto, with kankar cement : micaceous sand.
3. Botryoidal kankar.
4. Resembles 2, but more solid.
-Fig. 7.-Kaláysar, at the junction of the Sinde, 20th April.
No. 6. Hard sandy kenkar.
6. Stalactitic kankar, rich in lime.

Fig. 8-is a plan of the surface of stratum \mathbf{A} in the last sketch, which much resembles the filling up of the natural cracks; formed on the drying of a clayey soil, with a carbonaceous and sandy infiltration.

Fig. 9-shews the general elevation of the specimens from Kalaysar. The main bank immediately above rises to the height of about 70 feet, and at a furlong further back, to a total height of 130 feet; above the kankar the bank is of fine clay.

No. 7. A concretion of rolled fragments of kankar.
Fig. 10-is a section taken at Kanjosa, at the junction of the sinde. Here the nodular kankar lies in inclined strata in a hard clay, upon the horizontal surface of which rests a flat plate of kankar, (similar to that extracted from the bed of the Jamna ?)

Fig. 11.-Himatpír, 20th April. A mass of nodules in close contact, but disposed in strata nearly horizontal; some at 12 feet above the level of the water, some at less. The kankar which has acted as a cement to the mass is seen in veins.

No. 8. Hard ramified kankar.
9. Smaller, of various forms.

At Burlot, below the junction of the Chambal, 20 th April.
No.10. White kankar in sandy clay ; of this there are extensive shoals, which offered obstructions to the navigation.

No. 11. Rock kankar, a granular concrete, with marks of shells? Stratum, two feet thick, sixty feet above the lowest level of the river : total height of the precipitous bank about 100 feet.

Fig. 12.-At Nani, between Calpi and Hamirpúr, the measurement and nature of the strata are shewn in the sketch.

- No.12. Is a firm clay.

13. A sandy marl, effervesces with acids.
3×2
14. Rock kankar, a calcareous sandatone, containing angular fragments of silex, felspar, and yellow clay. A few strata, about one foot thick each, with strata of the usual description between, form together masses of 12 feet thick rising to 17 feet above the surface of the water.

Fig. 13.-Section of the clay bank above Hamirpur and below Secrori Ghit. The kankar (15) here appears in vertical seams in the scarped front of the bank, which is itself of a firm clay.

No.16. Sandy clay, with perforations-and an imbedded asio sbell, open.
17. Ramified kankar from the bank at the level of the water, Hemirpuir.

Fig. 14.-Section of part of the bank at Arroel, below Hamirpur. No.18. Kankar conglomerate (large rolled fragments, reuniled with kankar cement).
19. Plate kankar, of botryoidal form-micaceous sand sdhering: from Takouri near Chiladara Ghat, it appears combined in large rocks and reefs.

Note.-To this part of the Jamna the clay and kankar formation prevails. Below, fresh descriptions of rock supersede the kankar, except in the specimens distinguished as such.
20. Red vitrified clay, or khangar, of variegated color, from Marka. The mass is ahout 200 feet in dimensions, rising 20 feet above the lerel of the water.
21. Ditto, partially heated, found in detached lumps near the bree of ditto.

Figs. 15, 16, 17.-At Agrye, lst May, above Mhow. Veins of kankar (No. 22, clayey kankar), here run in veins through red clay, containing nodules of kankar : from the unequal wear of such materials by atmospheric influence, the veins are sometimes seen to protrude like dykes above the clay, as represented in Fig. 15, to the height of half a foot or more : the superficial appearance is reticulated, as shewn in Fig. 17.

No. 23. Plate kankar from Kankota ;-of this kind extensive beds and reefs occur, it is much the same as that at Pachkouri.

The other specimens forwarded with the kankar series, are as folJows:

No. 24. A calcedonic conglomerate of fused lithomarge, forming the substance of a rocky island above the Taboda hill, taken from the mass 25 to 40 feet above the water-level.

Specimens from Mhow, 40 miles above Allahabad.
No. 25. Sandstone from the rock about the centre of the river, at six feet above the level of the water.
26. Lithomarge, in masces, 10 feet above the water.
27. Sandstone flag, from the Bundelkikand bank of the river.
28. Red clay and gravel (ferruginous kankar), running in reins 30 to 40 feet in length, 3 or 4 inches thick, taken from the same spot as No. 27.
29. Priable white aandatone, from about the centre of the river, near the lower part of the pass, forming large reefs and masses, 3 or 4 feet above the water-level.
30. Sandstone, fine grained, from a large mass about the centre of the river, in the higher part of the pass, lakea from 3 or 4 feet above the level of the water.

Specimens from the great reef at Bamiarl.
31. Hard sandstone, $\mathbf{6}$ to $\mathbf{1 0}$ feet above the level.
32. Kankar, in very small quantitien, found near the above.

Unless specified otherwise, it should be understood, that by the " level of the water," in the preceding notes, is meant every where the lowest annual level of the river.

Small springs, flowing in free through scanty streams, run from under many of the ledges of kankar on the banks of the river. They are rarely met with except in these situations, and in the possibility of their being still impregnated with the calcareous matter which seems to have been the principal agent in the formation of the kankar, some of the water has been brought off in bottles,-a rude attempt made here to discover the presence of lime was not successful in detecting it*.
3.-List of Fossil bones found in various situations in the prosecution of the Jumna works at Karimkhán, 1833.
The numbers refer to the specimens presented to the Society, and to the figures in plate XXV.

1. A tooth supposed to have belonged to an elephant, 14 or 15 years old.
2. The bony or inner part of an elephant's tusk.
3. The extreme point of an elephant's shoulder-blade; the remaining part of the bone weighed about $1 \frac{1}{2}$ maunds.
4. A portion of an elephant's shin-bone.
5. Portions of the back-bone of a camel, (?) or one of the vertebre of the lower part of the neck.
6. Knuckle bone of the knee-joint of ditto.
7. That part of the shin-bone nearest the fetlock joint of ditto, or end of the shank-bone next the knee.
8. Portion of a rib of dittu.

[^146]9. Portions of human bones, (?) the two black ones being the head of the thigh-bone and head of the arm-bone.
10. Two pieces supposed to have been parts of alligators.
11. Portions of bones belonging to the skeletons of hurses, buffaloes, \& c.
12. The upper part of the leg-bone nearest the shoulder of a young elephant, or the lower part of the thigh-bone of the same animal.

1 and 2 were taken out of a mixture of sand and kankar, partially exposed to the atmosphere.
$3,4,8,9,10$ and 11 , were all procured on sloping the banks of a channel, the sides of which are from 1 to 5 feet above the lowest level of the river (the bank being 50 feet high.) They were dug from depths of from 6 to 18 inches in the firm shoal, which is composed of substances, kankar stone, gravel, rounded bricks (vitrified clay ?) more or less rolled and cemented by mud and clay.
5. Were dug out of a cleft in hard yellow clay about 9 inches deep. filled with black mud, about 3 feet from the surface of the water.
6. Were found in the bed of the river about 18 inches deep, and 4 feet from the surface of the water, during the excavation of a bund.

12-was found on the left shore of the Jamma, at Chowra, above Calpf, partially imbedded in a clay and kanker bank : all the rest were dug up at Karimkhín.

Of the fossil bones those found in the shoals of kankar were the least perfect, the petrifaction being less complete, or the foesil in inferior preservation. In the stiff clay, which composes a considerable portion of the bed of the river here, the fossils were in better order. This difference may be accounted for on various suppositions. The fossils, after being washed from the spots where they became such, might have been better preserved in the stiff clay than in the loose shoals; or the change into the fossil state may have taken place in the immediate neighbourhood of the clay, and those found in the loose shoals have been carried by the water from the original place of formation, having suffered injury in their progress from their first to the new situation in which they are found.

It is difficult to assign to these remains the dates of their passing into the fossil state. The greater number have been found in an extenaive shoal, of partially rolled kankar, cemented by mud, and which from known changes in the river might be of very recent accumulation. A large proportion of the fossils seem to have had a former situation in the hard clay of the bed of the river, however carried thence to the
kankar shoal. But whether they become fossils in the clay, or whether, after becoming so in other sputs, they were swept on, till lodged in the clefts of the clay, still remains a point to be ascertained.

There is a probability in the former supposition, from the fossils found in clay being coloured throughout with its yellow tinge, whilst those dug up from gravel or kankar are of the greyish hue of these latter substances. If then the fossils are of the dates of the masses in which they were discovered, their age must be considerable, for the clay spoken of lies at great depth in the plain of the Doab, and must be a very early deposit.

In regard to fossils-will substances, after having completed their change to that state in some other spot, acquire : throughout their internal structure the color of clays, in the clefts of which, after travelling from a distance, they may have found a fresh resting place? If they will, the difference of color in the fossils leads to no evident conclusion on the preceding surmises. One curious particular seems established after repeated inquiries. The fossils marked 5 were taken out of clefts in clay which lay below a thick stratum of rock kankar. Still it is far from certain that the rock kankar was so entire, so free from fissures, as to permit of no other explanation than that of the fossils having been deposited or changed in the clay, before the formation of the kankar which rested in it. That clay is itself of great age, it is at the bottom of the river, 40 feet from the extreme height of the rise of the river in the rains, and from 100 to 150 below the plain of the Doab and Bundelkhand."

To these guarded remarks of Captain E. Suith, every attention is due, and he deserves our best thanks for so impartially laying the circumstances of the Jamna fossils before us. It would seem to be pretty well established from his local observations, that many if not all of the fossils were first deposited in the clay stratum from 100 to 150 feet below the plain of the Doáb, and under the general line of the kankar formation; that upon the excavation of the present bed of the Jamna, many have been washed out of their original seats and removed to clefts in the ledges of rock in the bed of the river, and have been there mixed up with a fresher muddy deposit, and in some cases impregnated with a tint therefrom. That they belong to the former period, and that the kankar attached to them is also much more ancient than the present sands of the river, is rendered sufficiently evident in some of the specimens by the large angular quartz and felspar gravel, cemented on to many of the bones: Some angular pebbles of
quartz are here and there perceived also in the concretions of rolled kankar ; and it is a curious fact, that the size and description of the granitic gravel adhering to the bones, exactly resemble the characters of those attached to the Jabalput foesils.

With regard to the humari bones (No. 9), much doubt may fairly be entertained, on account both of the imperfect preservation of the fragments and the rarity of their occurrence in a fossil state : indeed, it: is well known to be a mach contested point whether the bones of man, or those of the morkey tribe, have ever been so discovered; although the careful examination of the human remains lately found in the caves of the south of France seem to have set the point at rest with most of the French geologists.

As the Annales de Chimie*, in which M. Tounnal sets forth his opinions, is rarely to be met with in India, and as the animal remains inhumed in the mud and gravel of caves may prove hereafter to be contemporaneons, geologically speaking, with our newly-discovered deposits wader the clays of the Doib, we shall make no apology for concluding our present netice with a brief sketch of.M. Todrnal's view on this intèresting sulject.

$\therefore 1 t^{\prime}: \quad$ Occurrence of the Bones of Man is the Fossil'State.

-The phenomena of caves is much more complicated'than was at first supposed, when the simple theory of a diluvial wave washing into them the debris of animals on the instant of their sudden destruction was proposed as sufficient to account for the quantity of bones found im. bedded in the mad, gravel, and stalagmite of these truly valuable geological depositories.

Of the vast number of caves lately brought to light on the continent of Earope, some have been found to contain no fossils; others ${ }^{\circ}$ merely gravel and mud;-some, meient bones and coprolite ; and others only a prodigious quantity of the recent dung of bats and birds of prey. No general law pertains to them. They occur at all heights;-in calcarepus rocks of every different age, and at various elefations above the present contiguous valleys. Such as are found in inaciessible situations, and at a distance from running water, are generaily empty; those of which the apertures have been but recently disclosed by gradual wear of the rock in front, contain only modern deposits ; the natare of the organic remains varying according to the locality and the antiquity of the aperture. . In some cases we meet exolusively-with the bones of a species of large bear (ursus, gpebene), the skeletons of which are still in connection, and appean to have been gradually inabed-

[^147]Sour:As sue \qquad VCL.II.PL.EXV

Folsu borver from the bed of the Jumna River. colleded by CaponE. Smuch. Eng N. 1.

No: is hads from sizeut Bur's Collectaon
ded and thas perfectly preserved. In others, like Kirkdale, the mass consists of a multitude of bones, half gnawed and rounded, among which is remarked a quantity of hymnas dung (coprolite); in others a narrow crevice is filled with skeletons of the smaller carnivorons animals and birds. The formation in all these cases is natural and evident : the habits of bears and hymenas of the present day accord exactly with what we see to have been their practice in ages past : the caves were the residence of these animals for generations, and were by no means filled by any brisk transient or universal wave of transport : and there is no ground deducible from them for the separation of organic remains into the two classes of ante and postdiluvian.

The soil of these caverns generally has a strictly local origin, and may be identified with the debris of the neighbouring moantains. In most cases it can be proved to have been gradually introduced from some opening above, and not from apertures fronting the present valleys, which have in most cases been laid bare by the subsequent denadation of the channel of the present rivers, when the level of the ocean subsided : the strata of soil can be divided into the finest lamina, and very often thick strata of stalagmite separate one bed of soil, and its contents, from the next.

Having proved that the fossil caves vary in their contents from local circamstances, and that they have been filled in very long periods, M. Tournal comes to the important question, whether the cave deposit ever contains human bones, or pottery and works of human art; and, if so, whether these objects appear to be coeval with the other matter of the caves ; in fact, whether man was or was not contemporaneous with animals now considered to be extinct, and, as it were, belonging to a former creation.

Human remains had been long since observed both in what was called diluvial clay, and in the soil of caves; but their presence was deemed accidental, and it became a dogma of the science that man existed not in a fossil state. The recent discovery however of the caverns of Aude, Herault, and Gard exposed a vast magazine of human bones and antique pottery inclosed in the self-same matrix with the hymana, lion, tiger, atag, and numerous other animals, all of extinct species. Attention was thas once more awakened to the subject, and MM. De Srrres, Chriefol, and Tournal, after an attentive and conscientions examination, have come to the conclusion that all these objects, are of the same date; whence it results that man was the companion of animals now considered extinct and fossil. The grounds of their opinion are ;-
the equal change which the bones have undergone : their mode of deposit: the variety of species in some of the animals, which denotes domesticity ; and the occurrence of extinct species bearing the marks of cutting instruments. The problem being thus resolved, it follows that man must also be included among the fossil species, or rather that the sudden transition from one condition of being to another mast be disallowed, and that the same gradual alteration of species, already so fully developed by M. Deshayes in his comparison of the fossil shells of the different periods of the tertiary formations, must be extended to animals, and perchance to man himself : that, in fact, the barrier of fossil and non-fossil must henceforth be a distinction of convenience only, to separate such remains as may be found buried in the regular geological strata, from those of more modern or accidental inhumation.
M. Desnorers however suggests that these bones may be compara. tively modern, and that they may belong to the primitive Gauls, who lived in caverns. This opinion accords well enough with the circumstances of the cavern at Miallet, in which M. Teissirr found little figures, fragments of jars, bracelets, \&c. but it will not at all apply to the other localities described, and in which the mixture of bones is so decided.

Great light is thrown by these discoveries on the before ill-explained fact of the occurrence of human bones in the breccias of Cagliari, Nice, Gibraltar, and Tripoli, which contain marine shells, and seem to prove that the level of the sea was once 150 feet higher than at present : the caves generally betoken an equal height of the running streams which are supposed to have gradually silted up the caverns.

The shell deposit of Cape St. Hospice, near Nice, also contains broken pottery, and the same has been observed in the bone-breccias of 'Dalmatia and Syria, which contain human bones, as does the ossiferous sand of Bades near Vienna.
M. Bous' rightly observes that such facts are of too frequent occurrence to allow of explanation on the ground of any accidental intro'duction during the period to which history extends. They all testify a lowering of the ocean level with respect to the land, caused by the upheavement of the latter, and thus render it evident, that these changes have been in action subsequent to the existence of man on the globe.
M. Tóvenal and other French naturalists, further suppose that 'several races of men have successively had possession of our continents. The form of the skulls found at Vienna is stated to approach to the African or Negro type. Those discovered in the flaviatile marl of the 'valley of the Rhine and Danube exhibit a close resemblance to the heads - of the Karaibs or those of the ancient inhabitant of Patri and Chili. It
is of course in vain to seek in the most ancient histories of these countries for any tradition of the violent commotions which the crust of the earth has endured (as is now proved), since man became its tenant. Geology alone can seekito unravel the general facts in an uncertain thread of events, through the gradual development of the records carefully treasured in caves and strata, and written in actual symbols of life of less equivocal interpretation than Egyptian hieroglyphics. But the sabject is yet new, the facts limited, and we must be cantioned against coming to any conclasions withont the most mature and impartial examination. It is to this philosophic caution perhaps that we must attribute the silence of Mr. Confreares on so interesting atopic, in his report on geology to the British Aesociation in 1832. After allading to Professor Buctland'e acute observatioms on the numerous bone caverns of England and Germany, " which have thrown so much light on the particulars of the history of so many long-extinct races of animals, and proved beyond a doabt that they were originally the inhabitants of the districts where their remains are now found;" he briefly adds, "but still on many questions connected with this carious and interesting subject, especially the relative age of the haman bones occasiobally found in the same cavern (as at Bize in the South of France), we are bound to compare the opposite views of Da Sarras, Chribtol, and Tournal, with those of Buciland, with whom however Desnoyize appeari entirely to agree.;

The last edition of Dila Becris's manaal also barely allades to the fact of human bones having been lately found in the same mase with the remains of the extinct rhinoceros and other animals usually discovered in caverns.

We have dwelt at some length on this novel sabject, in hopes of drawing the attention of our Indian geologists more zealously to prosecute their investigation of the new field of organic remains now opened to their labours in the clay of the Doabb and the banks of the Jamna. Shoald it be proved that the bones of man are there really imbodded, and that the animals found with him are (like the elephant of Jabalpur) of the existing Asiatic species, it will form a strong and very important link of connection betwees the state of things at two distant epoohs of our globe, now distinguished as the recent and the foseil periods.

In digging wells in the Doab, or in any part of the apper Gaagetic plain, the search for foseil bones at considerable depths should not be neglected, even under the strata of kankar, which oceur almoet every where in the yellow oley. We might not despair even of finding bones. ut the lowernoost depth to which we have bored in Calcutta, for the yellow clay under the blue allavial beds contains kankar, and. is of the same apparent age as that of the Doib.
J. P.
VI.-Further particulars of the Earthquake in Nepal. By A. Campbell, Esq. Assistant Surgeon attached to the Residency. ~~R
In pursuance of the attempt made before to note the destructive effects of the earthquake of the 26th August last, throughout the valley of Nepal, and its immediate neighbourhood, and with the hope of shew ing, as correctly as my information will permit, the probable seat or central point of the commotion, I beg to offer the following memoranda of other places at which the shock was experienced, as well as ita comparative degree of intensity at each.

The means of estimating the violence of this phenomenon are of course most defective, if not wholly icadequate to the purpose; but in absence of better data, the ascertained amount of damage done to the frail and perishable works of man, may be received as an iudex of its intensity at one place, compared with that of another, and in conformity to this mode, it would appear, that the most extreme violence of the shock, as far as its occurrence is as yet known, was expended within a tract of country extending from this side of the great Himálayan range on the north, to the course of the Ganges on the south, and from the Arún river (in the Nepal hills) on the east, to the western branches of the Trisul Ganga on the west, comprising a space of about 200 miles from north to south, and 150 from east to west. In this space, the valley of Nepal, though not geographically the centre point, is most assuredly the portion that has suffered the greatest violence of the calamity; and, unless the inexplicable producing canses have been expended in the frequent and severe shocks that have to this day continued to recur, we may from our experience of the progress of earthquakes in other parts of the world, with reason, as we ought with resignation, look forward to further and more violent exhibitions of the same terrible nature.

In the notice of the earthquake by the Secretary of the Asiatic Society, in his Journal for August, he expressed a belief, that the greatest intensity of the shock would be found to have occured beyond the Himálaya, in the direction of Lassa; and judging by the direction from which the shock was felt to have proceeded, and its intensity in the valley of Nepal, such was the probability, though cther has turned out to be the fact, and that upon good authority.

The recent return from Pekin of an Embassy from Nepal, to the court of the Celeatial Emperor, has furnished anthentic information on this aubject, which otherwise might have been long wanting; and the whole tenor of it shews that the great Himalayan range itself, and the country
on this side of it, was alone the theatre of the earthquake's presence, and that it was not even in the alightest degree felt beyond a very short distance on the Tibetan side of those huge mountains. The Embassy was at Lassa, on the 26th of August, when and where the shock was not experienced. At Digarchi, in the following month, it first received accounts of its occurrence from Nepal ; to the inhabitants of that place the circumstance was known only from reports brought from this side of the mountains; along the road from Digarchi, the answer to all inquiries was the same, " No earthquake on the 26th of August," and not until its arrival at Tingri was it found that the shock had been felt. Tingri is a small Chinese post, immediately beyond the great Himalaya, and the first stage on the table land (as it is called) of Tibet, going from hence to Lassa, (by the Kúti or eastern pass from the valley of Nepal.) From Tingri to Kfrung, a distance of 8 or 10 marches, the route is nearly due west, runuing along; and through the northern side of the Himalaya, and throughout this tract, though but thinly inbabited, authentic reports of the occurrence of the whock were received. By Ktrung (the eastern pass from the valley into Bhote), the Mission penetrated the great range, and at each stage (four in number through the pass), intelligence of the occurrence was commanicated by the few individuals who inhabit that wild and sterile region. But such information was not required, as its effects were sufficiently manifest : in the village of Kirung itself, supposed to contain 400 houses, 60 were fairly demolished, and many more seriously injured : two men had been killed under the ruins of their houses, and about a dozen wounded. From the exit of the pass to Kathmanda there are no towns along the ronte, and scarcely any villages; but at many places, insulated housen of the mountaineers had been thrown down, and the precipitous banks of hills and mountains had been hurled into the subjacent valleys.

This shews the extent of damage done towards the north, and enables us to fix apon the line of Tingri (Lat. $\mathbf{2 8}^{\circ}$) as the northern limit, of the earthquake's presence, and reports would shew that of Jabalpuir and Calcutta to have been the sonthern one. Rangpur* defines the east and Dehli the west.

North-east from Kathmandh, as far as Ditka and Kiti, the violence of the shock would seem to have been greater than in the valley. West from Kathmandú it diminished at every step. At Gorkha, only two housen were destroyed ; at Palpa, none ; and at Doti, on the borders of Kemaon, the shock was felt, but not by any means severely. It will

- Mr. Waltera informs me that it was aleo felt at Chittagong. -Ed.
strike every one as remarkable, that while here, the shock was more violent than elsewhere, its effects should not have been felt equally at as great a distance from hence to the north as to the south. Why this? is the natural question, but who can answer where all are in darkness. Other explosive forces spread equally in all directions, this did not; granting that the centre was where the violevce was greatest. To the south, the country is a level, uninterrupted plain, calculated to facilitate the rapid transmission of the agitating force, while to the north are the mightiest mountains of the world ; it may therefore be supposed, that the quantity of force expended in reaching to the summits of the Himalayan peaks, and in shaking like molehills the whole of the mountain region around, could not be far short in inteasity of that required to agitate slightly the plains to the soathward, even to the distance above recorded. In this light, it may be imagined, that the explosive force may have spread itself equally on all sides, the greater surface distance to which it reached towards the south being balanced by the immense vertical spaces it traversed in shaking from their basce to their summits the innumerable hills and mountains of the extensive region lying between the plains of Hindustan and those of Tibet.

I subjoin an accurate register of the shocks which have occurred up to this date, given me by Captain Rosingon. Many of them have been severe, and throughout the whole course of these visitations, there have been two distinct varieties observed in the character of the shocks: all those at the commencement were of undulatory or swinging kind; the others wanted this swell, and were a violent up and down shaking, with little lateral, motion. The first may be called the horizontal, the latter the vertical, variety. The formar alone have been destructive to property, while the latter, from the greater noise by which they are accompanied, and the more rapid oscillations of the ground, are perhaps the more terrifying.
Aagister of Rarthquakes experienced at Xeathmandur, from 26th Auguct to 268h November, 1833, incluriee.

Date.	Times.	Remarks.
August 26th,	One at 5 h .55 m. P. M. another at 10 h .50 m. P. M. 10-58 P. M. was the time the great one commenced, and its duration was three minutes.	All of the undulating kied, as well as nine others that occurred during the same night.
27 th,	4-53 A. M. 5-20 A. M. 5-26 A. м.	Aleo undulatory.
28th,	7-15 A. M. 4-55 P. M.	Also undulatory.
30th,	4 shocks, one at 9 A.	
Sept 31st,	2 during the night,	Slight.
Sept. 1, tollth, October 4th,	10 shocks,	Slight.
October 4th,	7-30 A. N. a smart one, 1 minute's duration.	This was a severe one, and of the vertical kind; it was felt at Gorakhpar and Allahalad.

VII.-Note on the Fossil Palms and Shells lately discovered on the Table: land of Ságar, in Central India. By H. H. Spry, Esq. Bengal Medical Service.

> [Read at the Meeting of the 26th December.]

Some months since, when I forwarded a specimen of the silicified palm trees, I stated that the trap hills about Ságar, which are at an elevation of upwards of 2000 feet above the sea, formed an amphitheatre, not however in one continuous circle, bat with here and there a break. Within this circle of trap hills, I ought to have stated that a second jutted out of compact red sandstone, but of a less elevated extent, being portions of the great Vindya range.

I took occasion to advert to the former of these two formations, because it was at the foot of the portion that ranges along the Jabalpar road : the limestone bed (travertine and crystallized calcareous spar) projects ; on which, mixed with the trap debris, the silicified fossil trees are found. I lay stress on the word silicified, for it seems singular that silex should be the fossilizing mineral of remains found on a calcareous bed. It would seem to indicate that the bed these remains now repose on could not have been the place of their growth*, but that they must have been projected from a distance; and yet the distance coald not have been great, for although the splintered condition of the trunks would indicate that a powerful force had been applied, the attachment still of all the tender tendrils, so peculiar to the palmata species, to the thicker parts of the roots, and which, though perfectly fossilized, may

[^148]be easily broken of, clearly ehews how little the abrasion mast have been. That however their present site is not their original one, seems now to be further confirmed by the discovery of a bed of fossil shells (univalves reversed), only distant about half a mile, and apparently in a continuation of the same limestone bed as that on which these palm-trees lie*. In the one case, however, the calcareous formation forms the surface soil, whereas in the latter it is covered by 17 feet of hard and soft basalt.
The discovery of these shells was made, as discoveries of the kind usually are, by accident, at the foot of the trap hills beside which the Jabalpúr road runs; a well had been dag some 14 years ago, and with the stones turned out of it a small hut had been erected. It was in a lump of the ont-turned limestone deposit (travertine), a large shell was observed, and inquiry discovered the original locale of it to have been the centre of the well; the sides of the well had been built up with red sandstone, and it was necessary to sink a shaft beside it to get at an accurate knowledge of the site. I caused specimens of the different strata to be preserved, at the same time noting their depth respectively : a sample of each stratum, as well as specimens of the fossils, I have had the pleasure of forwarding for the museum of the Society. I am unable satisfactorily to determine whether the shells are of marine or terrestrial origin. The opinion here is that they are marine: a striking peculiarity in them is that they are all reversed, and some are much more flattened than others.

The surface soil, (No. 1) as well as Nos. 2, 3 and 4, are well marked, and the transition from one to the other is as abrapt and sadden as the specimens furnished. No. 5 is not so well marked. I have called it wacke. It pervades as a sab-soil a large portion of the trap soil about Sagar. A coarse analysis which I made of some from a well about a mile from the fossil well, gave me

Specific Gravity, 3,600.

	$\left.\right\|_{\text {Loss by drying,. }} 34$
200 parts,	Alumina,.............. 14
	Peroxyde iron,...... 30
	Siliceous sand, 100
	Loes,

200

[^149]

When first dug out it is friable and has a very gritty feel, falling abroad on being thrown into water like lime when it is slaking. In the sample I have sent I find several minute nodules of carbonate of lime, which will of course alter the results as given above. No. 7 is a coarse silicious grit, and No. 8 is basalt again. Beyond which I did not consider it necessary to extend my search.
I do not venture to offer any hypothesis on the discovery of the above interesting facts, but content myself by bringing to the notice of the members of the Asiatic Society of Calcutta the singular circumstance of shells in a high state of preservation lodged in a calcareous bed, being found in the midst of volcanic matter. I hope some day to be able to ascertain the limits of the fossil beds.

The following is a section of the shaft :

1. Sarface soil, black, 3 feet.
2. Soft basalt, 21 $\frac{1}{8}$ do.
3. Hard basalt, 7 do.
4. Soft basalt, $1 \frac{1}{8}$ do.
5. Wacke with nodules of limestone, 3 do.
6. Travertine with imbedded shells, $1 \frac{1}{8}$ do.
7. Coarse silicious grit, 2 do.
8. Hard basalt.

VIII May.	derson, Esq.								
		Bar. 32		M. B.	May		Bar. 32°	T. A.	M. B.
8	3 P. M.	28.914	102		17	Noon	28.930	100	76
11	5 P. M.	. 739	106	73		Sunset.	. 815	100	75
12	71) A.M.	. 836	81	66		10 P. M. .	. 850	94	73
	$350 \mathrm{P} . \mathrm{M}$.	. 803	105	74	18	6 A. M. .	. 833	78	63
13	Noon 908	98	75		9 A. M. .	. 847	91	73
	240 P. M.	. 857	99	75		2 P. M. .	. 791	103	72
14	6 A. M. .	. 844	83	70		420 P. M.	. 756	104	74
	$9 \frac{1}{2}$ A. M.	. 889	92	74	19	7 A. M. .	. 814	92	71
	512 P. M. .	. 820	102	75		$9 \frac{1}{2}$ A. M.	. 848	98	76
	10 P. M. .	. 851	92	75		Noon 814	102	77
15	$6 \frac{1}{2}$ A. M.	. 893	84	693		3 P. M. .	. 752	104	76
	9 A. M. .	. 935	91	73	20	$9 \frac{1}{2}$ A. M. .	. 894	95	75
	Noon 921	98	75		3 P. M. .	. 834	103	75
	3 ${ }^{\text {P P. M. . }}$. 858	1031	76		Sunset 815	101	75
	53 P. M. .	. 830	102	76	21	6 A. M. .	. 846	81	65
16	$7 \frac{1}{2}$ A. M.	. 972	89	73		9 A. M. .	. 880	93	73
	10 A. M. .	. 965	96	77		4 P. M.	. 823	104	75
	Noon 965	100	77		Sunset 838	100	$74 \frac{1}{2}$
	4 P. M. .	. 905	102	77		12 P. M. .	. 853	90	68
	Sunset 886	100	76	22	7 A. M. .	. 878	88	70
17	63 A. M. .	. 914	86	72		9 A. M, .	. 921	92	73

June	, 1831.	Bar. 320		M. B.		, 1831.	Bar. 320	T. A.	M. B.
21	71 A. M.	28.805	86젼	$81 \frac{1}{2}$	25	212 P. M.	28.684	87	84
	10 A. M.	. 843	88	822		1012 P. M.	. 713	85근	83
	Sunset	. 734	88	81	26	7 A. M.	. 767	79	79
	11 P. M. .	. 819	86젼	$82 \frac{1}{2}$		91 A. M.	. 825	80	80
22	61 A. M.	. 833	86즉	82		Noon	. 825	82	80
	Noon	. 819	95	82乭		Sunset 813	82 ${ }^{\text {a }}$	80
	Sunset	. 761	94	822		912 P. M.	. 812	82	81
	10 P. M. .	. 810	91	82	27	$5 \frac{1}{2}$ A. M.	. 813	81	80
23	27 A. M. .	. 817	87	$81 \frac{1}{2}$		91 A. M.	. 844	84	818
	9 A. M.	. 834	901	82		Sunset	. 758	86	82
	2 P. M.	. 991	95	82 $\frac{1}{2}$		11 P. M. .	. 794	82	80
	101 P. M. .	. 830	$85 \frac{1}{3}$	$81 \frac{1}{2}$	28	71 A. M.	. 806	82	803
24	$540 \mathrm{~A} . \mathrm{M}$.	. 765	84	$80 \frac{1}{2}$		Sunset 683	89	84
	9 A. M.	. 778	85	82	29	8 A. M.	. 759	84	81
	Sunset	. 673	88	832		Sunset 758	78	77
	10 P. M. .	. 725	86	84		10 P. M. .	. 794	82	$81 \frac{1}{4}$
25	73 A. M. .	. 707	867	84	30	$7 \mathrm{~A} . \mathrm{M}$. 839	82	80
	93 A. M.	. 727	87	84		9 A. M.	. 859	81	80

The detached thermometer was in an open northern verandah, the moistened bulb thermometer was inside the house. The barometer was a plain tube with brass scale. The barometer tube was filled with unboiled mercury, and the air gathered and extracted by repeatedly reversing it. In the "Glisaninas," for October, 1831, I mentioned the altitude of Barelly, gained from a few observations, as about 1080 feet. I was surprised at the result myself, but could not account for it. I think I must have made some mistake in recording the observations, or perhaps in adjusting the scale to the tabe. The barometer with which the above observations were made was precisely similar to the former one, but not the same. A set* of 10 observations in May, compared with those of the corresponding times in Calcutta, gives altitude of Barelly, feet 742.29. Another set of 10 observations in the same month, feet 745.58 ; a 3 rd set of 10 in the same month, feet 730.32 , and a 4th set of 10 gives feet 755.4, and a set of 31 observations in June gives, feet 753.35. With the former tube and scale, a set of eight observations in May, 1830, gave the altitude of the "oaks" at Masuri, 6796 feet above Calcutta; with the same barometer in November, the same

- lst set of 10	Calcutta	Barometer	29.617
	Thermometer 92.94		
2nd ditto	Bareilly	28.891	98.15
	Calcutta	29.560	92.49
	Bareilly	28.833	99.7
3rd ditto	Calcutta	29.599	93.67
	Bareilly	28.885	97.5
4th ditto	Calcutta	29.663	93.7
	Bareilly	28.924	98.7
	Calcutta	29.487	89.9
	Bareilly	28.746	92.5

year, 15 observations gave the altitude, feet 6777.7, and another set of 10 made it, feet $6 \mathbf{7 5} .1$, and then the latter were taken after a long march in the hills, during which the barometer had been repeatedly refilled. I have a barometer made by Bate, on the principle of Guy Sussac's syphon barometer, with Captain Kater's improvements, (that is the description given of it,) and it seems in excellent order. This stands about .05 higher than a barometer of the above simple make, and filled in the same easy manner as above mentioned. (I should mention that the tubes used have all been of large bore.) But I have no means of discovering the error of either.

The following observations were made at Hardwar, near the centre of the pass, in a house about 150 feet above the bed of the Ganges :

Bar. 32°. Ther.

1833, May 24,	7x A. M.	28.216	84	at 10 P. M. suddenly came a cool
	920 A. M.	. 236	96	breeze and reduced the Ther. to 91.
	Noon ..	. 224	100	
	2 P. M.	. 182	106	
	4 P. M.	. 103	104	
	Sunset...	. 107	99	
	912 P. M.	. 119	98	
" 25,	Sunrise..	. 153	75	
	7 A. M.	. 220	83	
	9 A. M.	. 227	94	
	Noon ..	. 219	102	
	2 P. M.	. 187	106	

The height deduced from comparison with corresponding altitudes in Calcutta is, from those in the Journal*, 1214 feet above Calcutta, and from those at the Surveyor General's Office, 1276 do.

The latter are more numerous. The mean of these would be abont 1245 fect, and if the estimated altitude above the river be deducted, it would leave the height of the Ganges at Hardwar above Calcutta about 1095 feet. The barometer used was, as before, a plain tube, freshly filled with mercury. Though not tried, I suppose the depression of the moist bulb thermometer must have been near 30°.
In elucidation of the remarks on filling barometers when the air is damp, (vide Journal of the As. Soc. ii. 260.) I may record the following experiments made by myself:

On the 12th July last, when the depression of the moist bulb thermometer was $9 \frac{1}{\frac{1}{9}}$, I filled a tube which stood exactly the same as one filled on the 3rd June, when the air was very dry ; in both these tubes

- My barometer stands on an average $\mathbf{. 0 4 4}$ lower than the Surreyor General's, which will make an addition of 50 feet necessary to the altitude calculated.-ED.
the mercury stood about inch $\mathbf{0 5}$ lower than that in the English barometer above mentioned.

On the lst August, I emptied the tabe which had been filled on the 3rd June; and refilled it : the results of this and a few more experiments I give below :

$$
1833 .
$$

1st Aug. Eng. Bar. Altd. Detd. M. B. Plain tube.

4 P. M.	28.684	$86 \frac{1}{2}$	87	832	28.594	tube fresh filled.
5	P. M.	.666	do.	do.	do.	.412
tube again filled after re-						

$$
\text { . } 374 \text { tube again filled. }
$$

$$
.564 \text { tube wiped out and filled. }
$$

$$
6 \text { P. M. } 672 \quad 86 \frac{1}{2} \quad 85 \quad 83 \frac{1}{2} \quad .552 \text { ditto ditto. }
$$

. 626 tabe wiped out very care. fully.

The tube was wiped with an iron wire, round which silk was bound for about six inches, and on the last occasion, I heated the silk over a fire, and kept up a smart friction in the tube, till I felt a sensible heat from it. I should think that similar results might always be gained. The height at which the mercury stood, after this method of drying the tube, being the same as regards the English barometer as what it was when it was filled in very dry weather on the 3rd June.

[^150]the Secretary of the Asiatic Seciety, and axtending to the Joural of the Asiatic Society, should cease from the 4th June, 1834.

After some discussion, the Secretary was empowered, in any representa tion he might think fit to make to the Government, on the plea of his en gagement to print official documents of a scientific nature, to express the earnest desire of the Society for the continuance of a privilege which has already proved so highly beneficial to the interests and extension of Science in India.

Library.

The following Books were presented :
Marcri's Contes Arabes du Chiyife El-mordy, for July, August, September, October, and November, 1832, and February, March, April, and May, 1833-dy the Author.

Journal Asiatique, 64, 65-by the Asiatic Society of Paris.
Abdul Mujeed's edition of the Seyr-ul Mutakhereen, 1 vol.-by the Editor.
Sixth volume of the Transactions of the Medical and Physical Society-by the Society.

Select Speeches of John Serjeant of Pennsylrania-by Herambanath Thakoor.
The following works, published under the auspices of the General Committee of Pablic Instructions, were forwarded by the Secretary, Mr. J. C. C. Sutherland.

Inaya, vol. 4.
Kefaya, vols. 3 and 4.
Aphorisms of Hippocrates.
Sudeedee.

Fatawa Alemgiri, rol. 4.

Raghuransa.
Retnavali.
Wilson's Sanscrit Dictionary.

Meteorological Registers from July to November, 1833—by the Surveyor General.

MS. Register of the Weather \approx Jorhat, Ascam, for the months of August and September, 1833-by Mr. H. Biage.

The following books were received from the book_sellers :
Lardner's Cabinet Cyclopedia, Herschel's Astronomy.
Cbronology of History.
Read an extract of a letter from Captain J. B. Jervis, Bombay Engineers.
The letter announces, that the writer is engaged in the publication of a systematic account of the weights and measures of India, to which is annexed an account of Indian Chronology, gleaned fromr the Vedas, Siddhantas, Purannas, \&ec. and broaght into one view with the systems that have prevailed in all ages over the world. Whence be has deduced that all bave a common origin, and that the memares of time in use amoag the Bindus were introduced so late as A. D. 607-8. The work is in octavo, 700 pages, and is now mearly through the press. It is to be publisbed by subscription.

Resolved,' that the prospectus be circulated among the members, and a list of subscribers returned to Captain Jervis.

Antiquitios.
A large Lingam, from the Jangira reek-presented by Lieut. T. S. Bume, Engineern

An ancient Hindu gold coin (corresponding with No. 17 of Wueon's plates, As. Res. xvii.) was exhibited to the meeting-by the same.

Accurate drawings of the stone lath or column now lying in the Fort at Allahabad, and fac similes of all the inscriptions on it; and a small fragment of the stone-by the same.

A paper on the subject, by Lieut. Burt, was read.
A talwar, or native sword of iron, dug up from six feet under the bed of the Jamna river, was also presented by the same.

The weapon is of the modern form, and was probably lost with some wreck ; it was corroded nearly through its substance.

A manuscript table exhibiting the particulars of the twenty-four Jinas of the Budh religion, drawn up by a Pundit at Hyderabad-presented by Mr. E. C. Ravenseaw.

Museum.

A piece of planking and copper sheathing, from the bottom of the Barque Adele, pierced by the horn of an unicorn fish, on her voyage from Penang to Akyab, on the 94th January, 1833-presented by Dr. Twining, on the part of Dr. Baker, Civil Surgeon of Noacolly.

The following extract from the log of the vessel was read :
Lat. $\mathbf{y}^{\circ} 23^{\prime} 53^{\prime \prime}$ north, Long. $96^{\circ} 31^{\prime} 45^{\prime \prime}$ east, at 8 h .3 m . P. M. of the 24th Jan., felt a sudden very severe shock aft, which made the vessel shake: could not account for it.

26th January. Found the vessel leak slightly, in consequence as supposed of the shock.

12th February. Lying at Akyab; cleared away sand-ballast, to examine the cause of the leak. Pound a rent in the ship's bottom, caused by the born of an unicorn fish thrast through the copper shenthing, and four inches of planking; the horn protruded seven inches on the interior, and had been snapped off close to the copper on the outside by the struggles doubtless of the animal to disengage itself.

Edward Marguard, Commander."
A stuffed Pangolin, or five-toed Manis-presented by Dr. Burinnu.
Two tigers' heads; the skin of a Boa Constrictor, 14 feet long ; two stuffed birds ; two triangles, ornamented with peacock's feathers ; an Assamese hat, and other Curiosities from Assam, were presented by Dr. Burlini, in the name of M. B. Binnori.

Further specimens of the Hoshungabad coal were received, from Captain J. R. Ouseley.

Although of a better quality than the former specimen, (see page 485,) this slaty coal is still very inferior, being in fact little better than a bituminous shale; its composition agrees nearly with that of the specimen inserted in the table of India coals, page 283 of the Gleanings, vol. iii.

It burns with a good flame, and leares a slaty ash.

Specimens of the fossil bones, kankar, and rocks extracted from the bed of the Jamna-by Lieut. T. B. Burt, Engineers.

These form a valuable addition to the fossils presented in the name of Captain E. Smiti at the last Meeting, and they contain the following bonea not found in that series :
14. Fragments of the tusk of an elephant : one piece of very large size. The patella or kneepan of ditto.
13. Teeth of the camel ?
15. Tooth of a horse.

Part of the jaw of a human skull, and one other bone, were evidently recent, burning before the blowpipe, \&c. whereas those in the fossil state did not contain the slightest trace of animal matter, and were of much higher specific gravity than ordinary bones: the animal matter seemed principally replaced by carbonate of lime and clay iron. Drawings of the three teeth, marked as above, 13, 14, 15, have been inserted in the Plate of Captain Smitr's collection, (PI. xxv. of the present number.)

Lieut. Burt also presented a collection of nine species of shells found in the bed cf the Jamna at Kárim Khan.

Captain E. Smitr's notes on the kankar formation, and on the fossil bones, collected in the Jumna river, were then read.

Also a letter from Dr. H. H. Spry, on the subject of the foesil shelle, presented by him at'a former Meeting.
[Both of these are printed in the present number.]
A map of a route from Hoshangabad to the Fort of Makrai, in the Kalibhit hills, was presented in the name of Lieut. R. H. Minss, with remarks on the Goand inhabitants, and on the features of the country, by the same officer.

A note on the climate of the fossil elephant, by the Rev. R. Everrest, was read.
[These will be printed in an early number.]
Thanks were voted for the several contributions of the evening.

X.-Miscellaneous.

[ORIGINAL COMMUNICATIONB.]

1.-Note on the Tailor Bird's Nest. By Lieut. Gifford.
"I send you a tailor bird's nest along with the Journal of the Asiatic Society, in which I see a description is given of it. This is the third nest I have found ; the first one was built in a banghen bush ; the two last in a low thick shrub (name I know not,) but the natives make a reddish dye from the flower, which is a very light yellow colour, with pretty large leaves.

The specimen I send you was constructed of three green living leares, with two small old (dry) ones, to fill up a space where the living ones would not meet. The leaves were sewn together with raw and spun cotton; the bird is a light brown above, and a dirty white below, about four inches in length from tip of bill to end of tail : the malts call the bird Phutkt."
2.-Note on the Inscription on the Findw Coin. (Pl. VIII. Fig. 15.)

At page 415 of the present volume I stated, that the characters of the inscription on the reverse of the ancient gold coins of Hindu fabrication from Kanouj, represented in fig. 15, and in several coins of Plate I. vol. xvii. Asiatic Researches, was not legible. Mr. Wirson had however suggested, that the three first letters agreed with the ancient Nagari characters पाक, and I find on referring to Dr. Babington's Accomnt of the Inecriptions and Sculptares at Mahdmalaipur, that all of the letters may be unquestionably identified with the ancient Sanskrit characters of the Ratha sculpture, so ably decyphered by that gentieman, and of which he has given a complete alphabet in the same volume.

The first letter is probably \& rather than \boldsymbol{p} or \boldsymbol{x}^{2} although as observed by Dr. Babingtion, these letters are very similar in form ; the fourth letter is \boldsymbol{p} and the whole word thus restored becomes clearly चाकम: but the meaning is still as hidden as ever; and if it be a proper name, none such is to be found in the catalogues of Hindu princes.-Ed.

3.-Radiation in Valleys.

Mr. W. Cracroft, in 1832, made the following observations for several mornings at sun-rise, in pessing over the Kasya hills, on the radiation of heat to the sky.

Dace. Jan.	Place.	Therm. suspended.	Therrm. onstrawo.	
13	Surarím,	38°		
14	Mouflong, 9 A.m. 30		27-5 ice formed in a tumbler in the house.	
15	Myrong,	27	24	
16	Nanklao,	39		at top of hill, brisk wind,
		31		at bridge, in valley, 130 feet lower.
17	Ditto,	33		at top of hill, little wind.
		30		at bridge below.
18	Ditto,	42*		at top*, six inches above the ground.
		28.5	25.5	5 at bridge, ditto
19	Ditto,	49		on top of hill on a mat, ice within six inches of bulb, out all night!(?)
		27	26	at bridge.
20	Mopea,	43*	39	at top of hill*, two feet raised.
		33	32	at bottom of valley, 80 feet below.
21	Ongshye,	37.5	37.5	heary dew, same on straw.
22	Ránígaon,	50\%	46†	$\ddagger 4 \mathrm{ft}$. from ground. +In a ditch 2 ft . dp.

Prom the above, it may generally be remarked, that the bottom of a valley is much colder than the top of a hill at night ; although the latter must be much more open to radiation : aerial currents may be the cause of this apparent anomaly.

4.-Bones in the Delta Alluvixm.

In the Report of the Asiatic Society's Committee on the boring experiment an observation occurs, that some bones were discovered in the strata of blue clay allu$V_{i n m}$ of the circular canal, at a depth of about 20 feet below the surface: on reference to some old papers in Mr. Wilson's possession, a memorandu m has been met with of a similar fact observed on digging a tank at Dumdum, in the year 1813. Lient. J. Colvin, Engineers, describes the circumstance as follows :-"'The soil is throughout a fine garden mould, from two to three feet thick:- there are no nalles visible, but Dumdum is nearly surrounded by jhils and salt-water mikes. The bones form a kind of regular line with some intervale of a foot or two between them; they lie pretty close together, their intersticen filled with earth. They are
so soft that all but the thickest bones break on endeavouring to separate them from the earth. I cannot say to what animal they belong, but I an very sure there are now no animals at Dumdum to which such large bones conld have belonged, and I have never heard of any kind of deer near the place. The tree was found at a depth of 18 feet below the ground; it soems to be Soondry, (as is the case with most of the wood found in similar situations elsewhere.)"

We hope when a deposit of bones is again found, either at Dumdum or in any other parts of the Delta, some pains will be taken to extract them carefully, for comparison with existing species of the inhabitants of the present Sunderban swamps and forests; for, although, geologically speaking, they are of rery modern origin, and we trace in the names of villages considerably higher up the Delta the fact of the present continent having at one period been divided into islands: such as Agardwíp, Sukhsagar, \&c. Still at the present observed rate of recovery of flooded Sunderband land, it appears to require a very lengthened process to fill up from 18 to 25 feet of alluvium over the peat stratum, which was evidently the Sunderban regetation of the time. History lends no aid in defining the sea boundary at different epochs. We must therefore seek the aid of physical research to solve the interesting question of the growth of the Delta.
J. P.

5.-Fall of Fish from the Sky.

The phenomenon of fish falling from the sky in the rainy season, bowerer incredible it may appear, has been attested by such circumstantial evidence, that no reasonable doubt can be entertained of the fact. I was as incredulons as my neighbours, until I once found a small fish, which had apparently been alive when it fell, in the brass funnel of my pluviometer at Benares, which stood on an insulated stone pillar, raised five feet above the ground in my garden. I have now before me a note of a similar phenomenon, on a considerable scale, which happened at the Nokulhatty factory, zillah Dacca Jelalpur, in 1830.

Mr. Cameron, who communicated the fact, took the precaution of having a regular deposition of the evidence of several natires who had witnessed the fall, mede in Bengalee, and attested before the magistrate : the statement is well worthy of preservation in a journal of science; I therefore make no apology for introducing a translation at length. The shower of fish took place on the 19th February, 1830, in the neighbonrhood of the Surbundy factory, Feridpoor.
J. P.

Deposition of the Witnesses to the Fall of Fish from Heaven, on the 9th of Phalgwn, 1236, B. E. at Havelli, zillah Dacca Jelalpur.

1. Shekh Kitabuddin, son of Shabdi, and Shekh Shumsuddin, son of Bakshu, were called, and declared in their deposition, saying, "That on Friday, in the month of Phalgun, we do not recollect the date, at $12 o^{\prime}$ clock \mathbf{p}. M., the sky being clondy, there was slight rain, and a number of fish of different kinds and sizes fell from heaven; we took some of these fish and retired home. This is the account which we know."
2. Shekh Sulimuddin, son of Ibadullah, inhabitant of Bibhagdi, declared in answer, saying, "On a Friday, in the month of Phalgun, the date of which I do not recollect, at 12 o'clock evening, while I was coming from a village named Nukefbath, I perceived a badall fish, large about one cubit, fall before me from the sky; after which, I went further, and found another fish of the same size, lying upon the ground. I picked up these two fish and proceeded forward; and as soon as I arrived at home, I found, to my great surprize, that many persons had likewise collected fish, and carried along with them. This is all, and I know no more.'
3. Shekh Maniruddin, son of Mydi, inhabitant of Umerbati, expressed in his deposition,-" About 12 o'clock P. M. on Priday of Phalgun, the date of which I have forgot, the clouds being gathered together, began to rain, and a little after, many fish, large and small, began to fall from the sky. I picked up some of them and carried to my house, but I did not like to taste any of them. I know no more of this account."
4. Fakirchand Chang, inhabitant of Nagdi, was called in, and declared in his deposition, "That in the month of Phalgun, the date and day of which have escaped my memory, at 12 o'clock p. m, the sky began to be cloudy, and to rain little; while I was sitting in the front part of my cottage, I observed a mirgal, and some other fish, bodulis, \&c. of different size, fall from the sky. I picked up about five or six of these fish to satisfy my curiosity, but afterwards threw them away, and did not eat them at all. This is my account."
5. Shekh Chaudhari Ahmed, son of Mutiullah, inhabitant of Nagdi, relates in his deposition, "That I had been doing my work at a meadow, where I perceived at the hour of $\mathbf{1 2}$ o'clock, the sky gather clouds, and began to rain slightly, then a large fish touching my back by its head fell on the ground. Being surprised, I looked about, and behold a number of fish likewise fell from heaven! they were saul, sale, guzal, mirgal, and bodul. I took 10 or 11 fish in number, and I sam many other persons take many-then I returned home, I looked at heaven, and I saw like a flock of birds flying ap, but these my perceptions was not clear enough. Amongst these fish, many were found rotten, without heads, and others fresh and perfect; and amongat the number which I had got, five were fresh, and the rest stinking and headless.
6. Shekh Turikullah, inhabitant of Nagdi, 12 years of age, deciared in his deposition, "That in the month of Phalgun, on a certain Friday, I do not recollect the date, while I was sitting in my own house, I perceived a number of fish fall from the sky, some of them on the roof of my cottage; one of them was large, about one cubit, and three seers in weight. I know no more."
7. Shekh Suduruddin, inhabitant of Nagdi, was called in, and declared in his deposition, saying, "On Friday, at 12 o'clock p, M. in the month of Phalgun, I do not recollect the date, when I was at work in a field, I perceived the aky darkened by clouds, began to rain a little, and a large fish fell from the sky. I was confounded at the sight, and soon entered my small cottage, which I had there, but I came out again as soon as the rain had ceased, and found every part of my hut scattered with fish, they were boduli, mirgal; and moucki, and amounted to 25 in num-ber.-I know no more."
8. Shekh Katbuddin, inhabitant of Nagdi, relates in his deposition, saying, "At 120° clock p. M. of Friday of Phalgun, the date I forget; at I was coming from the fields, I saw a number of fish spread on the bank of a nala. I picked up aix of them, viz. two boduli, two mirgal, and two nouchi, besides these, there were many other fish of numerous kinds, and they were witnessed by many persons who were there. Some of these fish were fresh, but others rotten and without beads. I know no more."
9. Sree Dipchundrn Bundopadhya, son of Puncharam Bundopadhya, inhabitant of Sobindi, aged 45 years, declared in his deposition, "That in the month of Phalgun, 1 cannot reeollect the date, seeing the sky commeaced to gather clonds, I sat down near the door of a workman's cottage; it was then precisely 12 o'clock, when a drizzling rain began to fall; and at the same time, two boduli fish fell down from heaven. I soon got up nd marched on, and in the midst of the road,
saw several other fish fallen before me. I picked up some of these.fish-but ose nemed Banchha Ram Chung forbade me, saying, 'Do not tonch thepe fish; you do not know what fish they are, and how they have fallen here.' Listening to him, I threw away all the fish, and went away. This is my account of the fish."
[Several other depositions of those who were not immediately eye-witaesaes are omitted.]

6.-Fossil \boldsymbol{h} ells near Herat.

[Extracts of a letter from Dr. J. G. Gerard, dated Herdt, 21st Jwne, 1833.]
"I have discovered the locality of a large deposit of organic exuvire within thirty miles of this place (Herat), but have not thought it prudent to visit the apot, Iest I should find myself unexpectedly in the hands of the Tárkomans.
"The fossils correspond to the species represented as Pecten,-they abound in the side of a mountain, which is evidently calcareons, but are especially found in a water-course, being rolled from their situs by that agency. Judging from the eleration of this city, which by the ebullition of water (2073) approaches to 2,800 feet, if the barometer stood then at $30,000^{*}$ the locality of the fossils may be deduced at a height of between 3 and 4000 feet. Elevation in such objects has ceased to be interesting, since the new theory of subterranean projection has deprived it of a mineculome aspect. Monsieur Jaquemont when at Simla, read to me (explained) a letser he had received from another traveller, Mons. Elie de Beavmont in South America, I think, wherein it was mentioned, that there was a subterranean connexion betwixt the most distant monntain ranges, and that a simultaneous movement was actually going on (traceable) by which their masses were gradnally elevated."

7.-Cochineal.

"I hear the Cochineal insect is here, but not appreciable, that is, it cannot be turned to account, from the inability of the people to dry it properly; this is at least one canse. I have been asked the method of its preparation, but all my knowledge extends to a faint recollection of the process adopted by the South Americans, treated of in Humboldr's published Account of New Spain. Artificial heat is there used to kill the insect. Query, may not the very mode of extinguishing life affect the properties of the colouring matter ? Certain it is, that in preparations of insects, this is so much a necessary precnution that various gases, the air-pump, ace. have been resorted to for the better preservation of the hues and form of the specimens. Do we not know that there is virtare in the manner of killing animals for our daily alment ?--that the anatomist can readily discorer the effeets of disoxygenation (in suffocation) upon the blood and evea the muscular fibre, that electricity (lightning) and the Simoom not only change the color, but produce decomposition of animal matter when their effects are fatal. I don't remember what Homsold says on the subject, but the complaint bere is, that the insect cannot be killed without adegradation of its virtues. It is found in the root of a plant that flourishes in a marsh, and many people here bave exbausted their skill in endearours to appreciate its value : most of what reaches Herat is imported from Bokhara where it is received from Rassia, and I believe from Yarkhuad; the latter need not surprise us if indeed the insect is an inhabitant of that country ; the industry and artificial expertness of the Chinese alinost lead us to the conclusion.

A species of Cochineal, or at least a substitute, is fonnd in India, but I suspect that the mercantile article is an import from South America. As climate has such

* As the observation was made in Jone, when the sea harometer woald etemd at 29.5, the altitade may be more correctly assumed to be 2,000 feet. See page 199.-Ed.
an effect apon the productions of animal and regetable existence, and an arid one towards the improvement of a great many of them, especially Horticultaral, while the softness of the goats' fleece seems to owe its existence to that cause, -the silkworm its superior procreative powers, and even the silk its finer structure;-the cats of those regions, Cabul especially, are well known; -when these and thousands of others are the effects of those bright and eternally blue skies, we may infer that the kírmes (Keerm, worm), or cochineal of Herát, Bokhara, and other places requires only the application of skill to render it an appreciable commodity, and even superior to the American species, except indeed that comes from the dry regions of Chili and Peru. The bazar (retail) price of Cochineal at Herat is now six Rs. per seer, country measures, or 32 St. Rs. per Indian seer. The moist opium of the place sells at 44 Rs. per seer of India, and after one year when it is pretty dry, at 70 Rs.! while a species that comes from Yezd and Kain in Persia, in sticks like sealing-wax and as brittle as a dried reed, sells at the enormons price of $\mathbf{8 0}$ to 100 Rs. per Indian seer. At Bokbara I procured some at 90 Rs. methinks the Hon'ble Company's opium from Malwa at a prodnctive cost of three Rs. per seer, would realize remunerating profit in this country, where every production of nature or art is so exorbitantly high-priced, (valuable.)"

8.-Reply to the Questions of the Burmese Philosopher-Prince.

Sir,
Having not yet seen, in your interesting Journal, any replies to the questions proposed by the Burmese Prince, in vol. ii. p. 47, I venture to send you the following for insertion, and hope they may be found satisfactory.
Investigation of Sir Isaac Newton's statement, that some Comets have been raised, by the effect of the sun's rays, to a heat, 900 times greater than that of red hot iron.

Reply to $2 n d$ Question.

It is a well known fact*, that the force of heat varies, inversely, as the square of the distance of the direct cause of that heat, from the object affected by it; so that in order to determine the above point, it is only necessary to refer to the distance of the sun from the earth (95 millions of miles), where the measure of force of his rays is known, and having the distance of a Comet from the sun, to ascertain by the above rule, the degrees of heat to which the Comet has been raised, and then with the aid of Wedgwoon's, or any other pyrometer, shew, by calculation, the excess of heat of the Comet over that of red hot iron for the answer.

In Newton's Philosophy by Maclaurin of the year 1748, page 373, it appeara, that the Comet of 1680 approached 166 times nearer to the sun, than our earth is ; let this Comet therefore be taken for the investigation.

Now the distance of the earth from the sun, $95,000,000$ miles divided by 166 times is $=572,300$ miles, or distance of the Comet from the sun ; consequentiv, by the above rule inverse, as the square of $572,300 \mathrm{viz}$. $327,527,290,000$ miles to 100 degrees of heat here, so is the square of $95,000,000$, or $9,025,000,000,000,000$ miles, to 2,755,500 degrees of heat of the Comet.

The degrees in Wedowood's Pyrometer, are reduced to their equivalent in Farenheit's thermometer by multiplying them by 130, and adding 1,077; because each degree of the former, is equal to 130 of the latter, and Widowood's first degree commences at Fahrenheit's 1077th, (vide Fyre's Elements of Chẹmiatry of

[^151]1827, vol. I. p. 19.) Assume 100° of Farenheit, for the measure of the heat experiended on the surface of the earth, by the direct influence of the san's rays.
It is stated in the work above quoted, that silver melts at 22 degrees of Wedgwood, and as I am not at present exactly aware, at what degree of heat iron becomes red hot, I will assume that of silver, just going into a state of fasion, instead of $\mathrm{it}^{\text {t. }}$.
Silver melts at 22° of Wedowood, and 22 multiplied by 130 plas 1077 , eqral $3,937^{\circ}$ of Farenheit*, therefore, the degrees of heat of the Comet, 2,755,500 divided by $3,937^{\circ}$, or heat of melting silver, will make the heat of the forxer, 700 times greater than that of silver going into a state of fusion.
(Macladrin, without investigating the truth of the remark, says, the Comet conceived a heat, $\mathbf{2 , 0 0 0}$ times greater than that of iron almost going into fusion. This must be a mistake, for I find that iron fuses at $158^{\circ} \mathbf{W b d g w o o d , ~}^{\boldsymbol{W}}=\mathbf{2 1 , 6 1 7 ^ { \circ }}$ Farenheit, so that, using this as a divisor, instead of $3,937^{\circ}$, we obtain only $127 \frac{1}{\frac{1}{2} \text { for the }}$ number of times excess of the Comet's heat, over that of iron in a state of fusion).

For gold under the same circumstances, $32^{\circ} \mathrm{W} .=5,237^{\circ} \mathrm{F}$., at which it melts : therefore $2,755,500^{\circ} \div 5,237=526$ times excess of the Comet's beat over that of gold in a state of fusion.

Tin melts at 442° F. (Fypr, vol. II. p. 35,) therefore 2,755,500 $\div 442=6,234$ times excess of do. over tin. (But at page 21, vol. I. Pype says tin melts at 644 F., therefore $2,755.500 \div 644=4,278$ times do. do).

Copper melts at 30° Wedawood $=4,477^{\circ} \mathrm{F}$., therefore $2,755,500 \div 4,977=554$ times for the excess over copper, in a similar state.

Lead at $612^{\circ} \mathrm{F}$.; therefore $2,755,500 \div 612=4,502$ times of same orer lead in fusion.
I believe Sir Isanc Newton's mode of measuring the quantity of caloric, in heated bodies, was, by their rate or time of cooling, to a degree equal to that of the surrounding medium.

It does not, however, so far as I can see, follow, that the interior, to the rery centre of the comet, becomes heated by the sun to so great a degree, as is here indicated, and which affection applies to the surface particularly, for, the time that the Comet is exposed to the sun's rays, its rate of motion being increased in proportion to its proximity to the sun, (so as always to describe equal areas in equal times,) would probably be of insufficient daration, for so large a body to conceire, to its centre, this immense degree of heat ; for, the comet has, no doubt, its seasons, and days and nights, as well as the earth, and much free space, almost void of the sun's heat, or even his light, in which to lose its caloric.

Since writing the above, I see by Mr. James Prinsep's experiments in the Asiatic Journal, vol. ii. page 140), that iron heated "uniformly to a glowing red," measured 16090 of temperature, Pahrenheit ; if this be nsed as a divisor, instesd of the former denominator, for the melting silver, we shall obtain as follows: $2,755,500 \div 1609=1712.554$ times excess of the Comet's heat over that of red hot iron.

It is evident, that this amount must flactuate, in exact proportion to the number of degrees, assumed for the measure of the sun's hent, as felt upon this globe, and which I have taken at 100°; but it appears that the sun's heat at Montpelier, raised Amonton's thermometer, on one occasion, to the height of boiling water, or 212 Fahrenheit, (see Hutton's Math. Dict. of 1815, p. 640). This would increase the

[^152]above amount (by 2. 12 times) to 3,630 times, but taking the general average heat of the air, in the shade, in hot countries, at 70° only, the amount would be 7 -10the of the above, $=1200$ times nearly; while for England, assuming 50° as a mean, we have one half of the $1712=856$ times excess of heat of the comet of 1680 , over that of iron raised to a glowing red : this is tolerably near the 900 times mentioned by the Burmese prince; but the medium heat of air, out of doors in the shade in England, is about 51. 4^{0}, so that, multiplying 1,712. 554 above mentioned, by $51.4=514$ we get $880 \pm$ for the excess of heat, differing only by $19 \frac{4}{4}$ from the answer sought : but we get it nearer, by using the 100 dth . part of the mean heat of the thermometer, out of doors, $=51.4$ and of that within doors, 52.9 mean $=$ 52-15 instead of the last mentioned .514dth., for we have 52.15 for the multiplier of $1,712.554$, and the product is 893 times, instead of 900 as desired, and lastly, it becomes still nearer, viz. 905.9 times, by using the mean heat within doors or $52^{0} .9$ as above. This will, I trust, be considered sufficiently near and satisfactory. (N.B. It is equal to the quotient of $(95.000000),{ }^{2} \times(572,30 \theta)^{2} \times$ by $\mathrm{x} 8 \%$).

Afer the above was written, I found in the 1 st volume of the Gleanings of Science, page 96, that Mr. Prinserp has noticed the little reliance which is to be placed on Wrdawood's Pyrometer, the degrees of which I have used in the former calculations: this will not, however, affect the answer last given, viz. 905.9 where I have quoted that gentleman's own experiment, so that the statement is left nearly as I had at first written it; but as the measure of temperature, of some of the metals there shewn, differs considerahly from the corresponding ones here noted, it is right to state, that in that work the metals are represented to melt, at the undermentioned degrees of heat :

The degree of heat of the comet above fusing silver, \&c. will therefore be as follows, taking 100° for our temperature :

Correotion.

Instead of $2,755,500$ as a numerator, on the assumption of 100° being the heat on the earth, take the medium heat, as before, $52^{\circ} .15$, and the quotient of $95,000,000^{2} \div 572,300^{2}=$ or $1,436.990$, and divide it by the degrees of the metal, thus;

Than silver fusing, the comet is '308 times hotter, by using Wedgwood's degrees 4,777,

For iron raised to a full red heat, ($1,200^{\circ}$, according to Prinsep, $1,436,990^{\circ} \div$ $1,200^{\circ}=1,197.5$ times, by using Prinsep's degrees.
For do. raised to an orange heat, 1650° P. $1,436,990 \div 1,650=870$ times by ditto.

Reply to 3rd Question.

I almost fear to venture an opinion on the next question, but I should say, that the atmosphere is certainly, as the querist supposes, attracted, by the sun and moon, when in conjunction, or opposition, in the same manner, as are the tides of the ocean, or as any other light fluid, would be; but why the barometer is not sensibly affected, at these periods, I can only ask, whether he is sure that it is not so affected, or so much, at least, that a fair conjecture may be hazarded, that its rise is proportional to the increased height of the atmosphere, (if such indeed occur, at the time of high tides, : our purpose will, therefore, be to see, whether the barometer can indicate this rise, or not, and if it do, to determine, what the amount of that difference is.
May not one objection however be made, that will have a sendency to controvert this opinion, which is, that the force, exerted by the moon or sun, or both, to elevate the atmosphere, above its usual level, might, on account of the elsasticity, or buoyancy of this body, destroy the additional weight, that would, otherwise, be added to it ? In other words, would not the force of attraction, here supposed to cause the additional height, by the hold, (if I may say so,) that it has on the fluid, keep it in equilibrio, without adding any thing to the weight, by the increase of the part so added ?

This remark will not, of course, apply to water, bat will it not to air, which is an elastic body ? If not, then I must resort to the first supposition, that there is a rise of the barometer, and that it is proportional to the increased height of the atmosphere, caused by the attraction of the sun and moon.

If the height of the atmosphere were uniform, and of the same weight, as it is at the earth's surface, pressing about 144 lbs , on the square inch, it would extend no farther than to the height of 54 miles, or thereabouts, (see Hutron's Course, p. 244, vol. ii.) whereas it reaches to between 40 and 50 miles, (the boandaries of twilight only included, the air being so thin and attenuated, beyond that distance, that its comparative weight amounts to almost nothing).

Now, if the height of the atmosphere be increased, by any cause, (excluding heat, which would, however, have something to do with that increase, but has or has not to do with this investigation,) beyond the height of $\mathbf{4 5}$ miles, a proportional part must be reduced, in height, on the sides of the earth, which are at right angles to the horizon, acted upon by the sun and moon, to make ap for this quantity, unless it be rarefied and of itself kept in equilibrio by attraction, as abore supposed : it cannot be very great, bat supposing it to be proportionally raised, as much as the sea, what will be the pressure gained, in this, upon one square inch, at the surface of the earth, and also, at what height will the barometer stand, in this case ?

Taking $12 \ddagger$ feet, which is about the height of the tides, or what is added to the ocean, by the attraction of the sun and moon, either when in conjunction or opposition, and assuming f of a mile, or 1760 feet, as the average depth of the ocean, of which $12 \pm$ feet is near the 138th part; by taking the 138th part of the atmosphere's height of 45 miles, as above, we get .326087 parts of a mile for the additional height of the atmosphere, gained by the force of attraction, consequently, if 45 miles press upon the surface, with a weight of $14 \frac{1}{4}$ lbe. per square inch, 45.326,087
miles will press with a weight of $14.856,884,072 \mathrm{lbs}$ ．on every aquare inch，and then to get the height in inches，gained by the barometer，we have 144 lbs．to 30 inches， （or general height of the barometer at the level of the sea nearly，）as $14.856,884,072$ lbs．to $\mathbf{3 0 . 2 1 7 , 4}$ inches nearly，or $\mathbf{2 1 7 , 4}$ decimal parts，rather inore than fth of an inch only for the measure of height，gained in the barometer，by the additional weight of the 138th part of the total height of the atmosphere，caused by the attraction of the sun and moon，in a similar manner，and in the same proportion， as the tides are raised above the level of the sea．

Very nearly the same answer is obtained，by considering the atmosphere so con－ densed，as to have its specific gravity equal to that of water；for，instead of the former height in miles，use 34t feet height of water，which is equal to the pressure of the atmosphere，and higher than which a common atmosphere pump will not raise that fluid．Then $34 \frac{1}{y}$ feet divided by 138 as before is $=.25$ of a foot，therefore 34.5 feet height of water ： 14.75 lbs ．pressure on the square inch ：： $34.5+.25$ ，（or height of water plus its 138th part $=34.75 \mathrm{lbs}$ ．）： $14.856,876 \mathrm{lbs}$ ．pressure on a equare inch，only exceeding the former $14.856,884,0 ; 2$ by the $.000,008,072$ 2nd part of a lb ．and proving the result of the former calculation to be correct．

In the above investigation，the specific gravities of air and water are taken as equal，but as they differ much＊，and as I have no other data，let the height of the atmosphere be considered uniform，for $5 \$$ miles only，as before explained；the calculations will，on the foregoing principle，make the height，gained by the baro－ meter，equal to only $\frac{1}{6}$ th part of an inch，which is almost an inperceptible quan－ fity，and shews，that that instrument cannot sensibly indicate the difference of altitude of the atmosphere，due to the attraction of the sun and moon，as sup－ posed by the Burmese Prince；for $5 \div-138$ miles $=.003,804,347,8 \mathrm{th}$ part of a mile， when the atmosphere is uniform，and $\mathbf{5} \ddagger$ miles high，therefore，as 5.25 miles ： 14.75 lbs ．：： $5.25+.003,804,347,8$ miles $:: 14.760,688,405,7 \mathrm{lbs} ;$ and $\mathrm{ngain}, 14 \mathrm{lbs}$. ：30 inches ：： $14.760,688,405,7$ lbs．： $30.021,739,125$ inches，or $.021,739,125=\frac{1}{\mathbf{1} \delta}$ th part only of an inch gained in height by the barometer as above stated．

I subjoin a table of the heights of the barometer，in order that the differences， which I have＇shown，for every month，may be observed，at the times of spring and neap tides，in Calcutta，for the satisfaction of the Burmese philosopher，should be think it necessary，to prosecute his inquiries any further into this subject．
Barompter at Smwiop，（reducod to 32° F．），at the Swreyor General＇s Ofice，Cal． cutta，taken from the As．Soc．Jour nal，nol．1，for the year 1832.

1832.	Means，In．	$\begin{gathered} \text { Monthly } \\ \text { Diff. } \end{gathered}$	Temperature of Air．	$\begin{gathered} \text { Monthly } \\ \text { Difference. } \end{gathered}$
January，．．	30.0517		54.6	${ }^{\circ}$
Pebruary，	29.943	［ 108	61.2	6.6
March，	29.865	$\dot{8} 078$	66.3	5.1
April，	29.760	E 105	74.9	8.6
May，	29.664	迷 096	79.5	${ }^{46}$ 13 ${ }^{\text {a }}$
June，	29.515	8 ¢ 149	80.8	
July，	29.489	026	80.1	0.1 \％
August，	29.468 29.650	$\left[\begin{array}{l}021 \\ 182\end{array}\right.$	80.0 79.3	0.7 ¢
September，	29.650 29.837	蔮 $\left\{\begin{array}{l}182 \\ 187\end{array}\right.$	79.3 74.7	0.7 4.6 9.6
November．	29．997	¢ 160	64.9	9.8 a
December，	30.998 J	品 001	55.8	

Reply to lat Question.

Having attempted, as well as I am able, to satisfy the curiosity of the Buranese philosopher, on the above mentioned points, I trust I may, in retarn, be allowed to put a query or two to him, relating to the moon, as well ns to Cometa, [which I should, with reference to his question, suppose to have little connection with one another, because, the former is a planet, secondary to, or dependeat on, the earth, around which, she describes her epicycloidal course; the earth, agaia, being dependent on the sun, and the sun appenring to govern the Comets, as they are all believed, or found, to pass round him] : if his highness cannot answer these quesLions, I hope that some other person, equally anxious for such inreatigations, will favour me by doing so.

Question lst.

Why may not such comets as we know of, especially those, which have extremely elongated elliptical orbits, be considered, to possess two centres or foci within their orbits, one of them being our sun, and the other, any other sun, or star. Would not this disposition, supposing it to have been adopted all over the universe, have the effect of keeping the numerous systems in equilibrio, the comet incesaantly acting as a link, or chain, connecting any two [or more?] of these aystems, with the neighbouring ones ?

Question 2nd.

If the moon have no atmosphere, [as is asserted by astronomers, how is it possible to account for the distinct view, we sometimes obtain, of the circular dark part, which she presente at night; I mean, that part which is involred in shedow when the moon is in either her first or her last quarter?

Quostion 3rd.

Has it ever been ascertained, in what proportion, fluids are attracted, by the sea and moon, [or by any other bodies,] in terms of their specific gravities?

Are they, or are they not, attracted, inversely as the cube roots of their apecific gravities ; the distances of each fluid, from the centre of attraction, being equal ?

Camp near Calpie, June, 1833.
I am, your obedient servant, W. BURT, Eaga.

To the Secretary, Phl. Class, Asiatic Society, Calcutta.

> [gUROPRAN EXTRACTA.]
> 9.-Cave of Secanderiah, near Tabris.

As the celebrated Cave of Secanderiah, resembling the Grotto del Case in Italy, was only distant six miles, I proceeded to the village of Secanderiab, situated at the mouth of a very strong defile, formed by the river of Sied-abad; and having procured a numerous party of villagers with tools, combustibles, sec., set out determined fully to examine the care, or at least to ascertain to what extent the
noxious vapour existed; we also took some fowls to see the effect procured on therth. After a fatiguing walk of three miles, up rocky steep ravinea, we arrived at.the entrance of this singular cavern, the wouth of which was fifty feet wide and thirfy feet high, descending very rapidly to a depth of thirty feet.
The guides set fire to some brushwood; and found the air much less noxious then msial ; and it was only after a descent of .10 feet that we felt any inconvenience, We were absolntely standing on the bones of some animals which had perishod therè upona former occasion; we remarked a dog, a deer, and two frixen: the head of a wolf lay at some distance. We, at the same time, put to flight a great number of pigeons, who build in the roof of the cave. We found that fire was extinguished at.a few feet below where we stood, and the fowls died in half a minute. The sides of the cave had many marks of sulphur in powder amongst the soft sand and limeatone, which were also strongly coloured with iron. Theough the: fire made with dry brush-wood and thorns, even when sprinkled with naphtha, wis instantly extinguished, port fires and fuses barnt nearly the same fime as in the open air. I was, therefore, enabled to fire a quantity of gunpowder at the very botiom. The quantity amounted to sereral pounds at the time, and that repeaied: ofien, had the effect of so entirely :filling the cave with smoke, that we could no longer see any thing at the bottom. On again throwing in some fowls, they soon made their escape, and fire burnt at the bottom. I would not, however, allow any of the people to descendr which they appeared willing to do; a this cave was, visited by a party of the Mission, aecpmpanied by Mr. Browne, the celebrated African traveller, fire would not birn tiwo feet below the entrance, and oppression was felt close at the mouth of thecaye.' :Mr. Brownr entered some paces by 'holding his breath, but as Englisti: officer attached to the Mission had nearly perished in attempting to follö him. He was instantly dragged out, and recorered with some difficulty. In the winter, (supsequently to my second visit), after a strong gale, the wind from the N: W.tad blowin for some days directly into the mouth of the cave : we were enabled to walk ail prer it, and only in a deep Thole, at the bottom, did there exist any noxious air. There a fowl died in two minutes, and from its cries appeared to suffer much. After sixty feet, we found the cave again :ascended, and curved a little to the right: it then became exceed--ingly narrow wad very low; faiming a kind of passage, which did not allow of jutanding up; we couldi-not see to the end of this even with a reflecting lamp, hand none of ns fett inclined io prosecicute the discovery,. i tave only mentioned ithese circymstances to prove how múch the. extent and force of the vapour are affected by the state of the atmospliere, and by particalar citcumstances. As the ground slopes rapidiy frọm the mouth of the caverni- both to the ravine and inwards, it might be cleared away with little diffcilty, and thẹ̀ heavy noxious gas thus allowed to pass off; but with! the exception of forming a large winter stable for sheep, no other good pricpose could be answered by it; there was formerly a human ikeleton, which has been remored; it was that of an old man in the village, who, tired of life, took this tray of ending his intisgry s the peasants considered the circumstances of the care: bejong accossible little short of a miracle, but were much disappointed at not.finding the treasure said to have been deposited there by Albxandik, from whom it derives its name.-Monteith's Tour. Zour. Geog. Soc. iii. 6.
Metporoloyical Register, kept at the Assay Office, Calcutta, for the month of December, 1833.

INDEX.

Page.
Abbas Mirza, Prince of Persia, 147
Abá, Jain Temples of, 161
Adi Budha System, 59
A. K.'s Note on Trisection, 159
Ali Mardan Khan's Canal, 109
Alluvium, Calcutta, Section of, 371
Alum, Native, of Nipal, 482
Analysis of Books 897
Analyses, Chemical, 434
Analysis of Coal, 263, 26t, 368, 549, 647

696,

696,
402
402
402
of Limestone,
of Limestone, 482
—__ of Sulphate of Iron, 321
of Ashes of Plants, 322
Ancient Canals in Delhi 105
Annealing, Effects of, on Metale, 141
Arts, Indian, Notices of, .. 158, 209, 24
Asiatic Society, (See Society.)
Astronomy, Report on, 48
Astronomical Observations, Madras, 380
318
Attraction, on the Laws of, 41
Ava, Mines of, 75 75

- Richardson's Route from 59 59
Ayoon-ool Hisab, Extrect from, 552
Bactrian Coins, Note on 405
Balkh, Description of, 15
Bamián Idols, Account of the, 561
Baneoora, Climate of, 383
Banyan Tree in Mysore 47
Barometer, Extraordinary Fall of, 497 497
-, on Compensation 258
Thermometrical, 194
Wet, Theory of, 260, 644
Barometrical Elevations,6691, 643
Batavian Researches, Analysis of, .. 597
Bees' Love for Mango 355
Bháratpar, Marriage at 273
Bharja, Mountain Birch 337 337
Birds, Catalogue of, in Dholbhám, -
Boilean's (Capt.) Description of AgraSun-dial251
Bokhara, Gerard's Account of, 21
——, to Meshid, Gerard's Route 224
from, 143
Bombay Harbour, Rise. of Spring- tides in, 247
Bones in Hyderabad Caves, 77
- 586
——--, of the Jamna, 629
——. Human, in France 632
in Delta alluvium, 649
Borabhum, Birds of 569
Boring Experiment, Report on, 369
Page.
Boston, Ice Trade of, 491
Botany, Indian, Notice of 15
Boulderson, (H. S.) on Barometer at Barelly, sec. 644
Bramley, (M. J.) Nipal Articles pre- sented by 367
Brewster, (Dr.) on coloured lights, 494
Bridge, Rustic, 267
Suspension, near Ságar 538
Budhist. Sect of Sakya, 385
Burt, (Lieut.) Replies to the Ques- tions of the Burmese Prince 653
Burnes' (Lieut. A.) Account of Tem- ples on Mount Aba, 161
-Description of Bokhara, 294
- Route to Bothara, 1
on the Bamián Idols, 661
der, 365
Bats of Bamian, Description of 661
Calidása's Poem, Uma, 329
Campbell, (Dr. A.) on Earthquake of Nipal, 636
Canal, Delhi, Description of, 105
- Doab, Ditto,
- of Feroz Shah, 114
Capila vastu, a Town in Rohilkhund, 385
Catalogue of Indian Woods 168
- of Nebula, Herschell's, \&ec. 252 of the As. Soc. Museum, 97
Caves, at Secanderiah, 658
Cedar Tree 343
Census of Murpshodabad 567
Charak-paja, 609
Coal from Arracan, 263
- from Hoshungabad, 647
- from Morddabad, 264
- from Peshiwar, 267
Khyook Phyoo
696
696
Syneg Kyong, 369 ; Oogadong 368
Mine of Sylher, Discovary 47
Cochineal of Heratt, 652
Coins in Asiatic Society's Cabinet, 27
——, Bactrian,37, 312, 405
——, Hinda, 649
--, Mahomedan, 39
\longrightarrow, Roman, fron Buxar, 368
Collection for the Muserm 204 688
Colvin, (Major) on Delhi Canals, 106
Conybeare, (Rev.) on Indian Geology, 606
Copper Mines of Nellore 95
Cracroft, (W.) Experiments in Radi. ation. 649
Page.
Csoma, A. de Körō's's MSS. of Kah- gyur,.............................. 367on Sakya Reace, 385on the KKla
Chakra, or Adi Budha Systema, 87
a Tibotan Passport, 202
D'Amato Guiseppe's Description of Ava Mines 78
Delli Student's Joarnal, 19
Dholbham, Birds of, 597
Diamond Mines 403
Doab Canal, Water Mills of, 360
Dost Mahomed Khán 3
Dugong, Notice of the, 100
Dum Dom, Bones discovered 649
Dyeing of Kharwa Cloth, sec. 151
Earthquake in Nipal, 636
Eclipses of Jupiter's Satellites, atChuprah,41
Everent's (Rev. R.) Geological Re- marks, 547
Ghaxipar 602
Evaporation at Bokhara, 17
Ewer's, (W.) Obeervations of Jupiter's Satculitee 41
Fish, Fall of, from the Sky, 650
Flowers, Celestial, Fall of, 351
Fossil Bones, 161, 205, 686, 629, 632, 649
-- Shells,94, 205, 270, 583, 639
Gale, 21et May, 1833, 465
427
427\longrightarrow, 7 th Oct. 1833,
Garjan Oil, 482
Geddes (Dr. W.) on the Climate of Nagpar, 239
Geological Society's Instructions, 857
Geology, Mirzapar to Sagar, $\therefore 475$
- of Hyderabed. 392
—__ of India, Sketch of, 605
Gerarts or Teasesertm Archipelago 157
Gerard's (Capt. P.) Met. Obs. 615
- (Dr. J.) Route from Bokhara
to Meshid, 143
\longrightarrow Note from Herht, 652
Ghagber, Sandy bed of the, 108
Ghasiphr, Temperature of, 602
Gold, Dilatation of, by Heat, 142
- Mines, of Mount Ophir, 497
- Sandth Moradebad Distriot, 266
Groek Coins, Account of, 27
Hanuman's Exploits, 348
Heights, Measurement of,.. 194, 621, 645
Herbert, (Capt. J. D.) Death of. 495 495
Hersehell's (Sir J. S. W.) Catalogue of Remarkable Stars, 253
Himalaya, Legend of, 329
Hinda Coins, 649
- Kush B
Hodgson's Nipal Zoology, 418
THibes 217
Hot Spring of Pachete, 46
Hutton (T.) on Tailor Bird's Nest,. 502
\longrightarrow, Strictures on, 374
Page.
Hyde, (Dr.) Extract from,
202
202
Hyderabad, Geology of, 392
Ice, Manufacture of, 80
, Importation of 491
Indian States, Area of, 488
Indo-scythic Coins 405
Inscription, Ancient, of Ceylon, 548
-, Arabic, at 'Chanderi' 548
Iron Mines, 402
- Suspension Bridge, 538
Jain Temples on Mount Aba, 161
Japanese Mirror, Dr. Breweter's Ex- planation of, 214
Jeffreys (J.) on Laws of Attrection
and Repulsion 506
Journal, Medras Literary, 657
Journey from Ava to Kendat, 59
Kebul, Deseription of, 3
Kala Chakra System, Origin of, 57
Kall Kishen, Raja, on the Tale, 615
Writing 618
Kemaon, Report on the Bhotia Me- hals of, 561
Kerr, Copper Specimens sent by Mr. 94
Kakúmb-ka Tej, 692
Light, Fiffect of Coloured, 404
Linneen Soc., Extracts from Proceed- ings of, 156
Lloyd, (Lieut.) Catalogue of his Spe- cimens, 157
L. D.'s Remarks on Hutton, 374
Lloyd's (Capt.) Temperatare of Nas- par, 543
Lushington, (G. T.) on the Jitte,.... 273
McRitchis's Moteorologieal Reginter at Bancoora 38e
Madras, Lit.Soc. Proceedings or. 154, 650
Malcolmson (Dr.) on Caves nour Hy- derabad, 77
——, on Fomeil Bomers, 94
Manufecto on Seine Doporis..... 7
Manufacture, Native, of Turpentine, 249
Marriage of the Jatto 273
Maaritius, Contributtons from, 95
Metals, Expansion of 130
Meteorological Register, Bijnore, 206
383——————_Kotegart,. 615
615 ${ }^{200}$——_Nosuferpar,208
8is gapar. 4 for Calentit
at the end of each month.
Metre of Hinda Poetry 330
Mibtary Tribes of Nipal 917
Milking of the Earth 338
Mill, (Rev. Principal's) Translation of Una, 329
Mirror, Japanese, explained, 214
Mirrors, of Fusible Alloy, 559
Mines of Jewels in Ava, 78
Monteith's Description of Perria, 68
Moorcrofth Grave of, 18
Page.
Morâd Beg 1
Morrieson's, Trisection of an Angle, 71
Mozufferpur, Climate of 208
Murshedabad, Census of, 667
Museum, Catalogue of, 97
Nagpir, Climate of, 239, 542
Nask, (D. W.) On Progressive Deve- lopment of the Vertebrata, 465
Newbold, (Lt. J. T.) Journal o 491
Nipal, Military Tribes of, 217
- Paper stufr, 93, 101, 417
Or Zoology 1,273
Observations of Lanar transits, 432
Oliver, (Col. T.) Astr. Obs. 432
Onslow (W.) Coins presented by, 94
Ophir, Viait to Mount, 897
Opium, Substances in, 495
Ornithology of Dholbham, 597
Oxus River, 16
Panchaki, Description of, 359
Panchpadder-Salt works, 365
Peahiwar to Bokharen Route from, 1
Pearson, (J.-F.) on Coll. Nat. Hist. 588
______ on Strychnia 48
on Zoological pape
of Asiatic Researches, 417
690
Pottery Glazed, account of 209
Presgrave's (Major D.) Bridge at

Prinsep, (J.) Account of Greek Coins, 27
Persiando. 36, 40
—— Bactrian ditto, 37, 405
Hinda ditto, 472, 649
- Chemical Analyses, .. 4Description of a Com-pensation Barometer,. 258
\rightarrow Experiments on the Expan-
sion of Metals 130
532
532
Note on Nagpar Climate,
Note on Nagpar Climate,
194
194
- on Boiling Poin 405
on Jabalpur Fossils, 883
-_ on Jamna Fossils, 622
Proceedings, see Society.
Progress of European Science, 48
Protraction, mode of correctin 79
Questions of Burmese Prince, . . 47, 653
Radiation, Experiments on, 649
Railway, Liverpool, 659
Ramcomul Sen, on the Charak-paja,
Ravenshav's (E. J.) Metcorological 689
Register of Bijnore, 207
radabad 264
Reply to Burmese Prince, 653
Report on Boring 369
- on Publication. 323
on Sylhet Collection 588
Repulsion, Laws of 506
Revenue from Delhi Canals. 126
Richardson's March from Ave to Kendát 59
Robinson's Anatomy of the Dagong, 100
Route, Mode of Protracting correct- ed, 70
Royle, (Dr.) Collection of
Page.
Russian Slaves in Bokhara 156 156
Ságur, Fossil Sholls of, 376, 642
Balajt of Nipil 478 4
Saline Deposits in Hyderabad,
Saline Deposits in Hyderabad, 77
Saltpetre, Manufacture of
Salt-works of Panchpadder, 23
Sanskrit Poem, Uma 357
Satellites of Jupiters, Eclipses 41
Schlegel, Prof. on Bectrian Coins,. 407
Shakya Race, Origin of, 385
Shells, Recent and Fossil, 270
Singapar, Climate of, 428
Silver, Dilatation of, by heat, 342
S. J. on Trisection, 486
Society, Asiatic, Proceedings of, is
91, 149, 213, 262, 323, 367, 546,. 646
Society, Literary, of Madras, 154
Society, Royal, Anniversary, 376
Spilsbury, On Fossil Elephant, 586
Spry, (Dr. H. H.) Fossil Shell dis.covered by.376
- Fossil Shells, 639
Standard Bar, Expansion of, 138
Stephenson on Salajit, 605
ture, 23
Strychnia, New Mode of Preparing, 42
Sundial at Agra 251
Sutheriand, (Capt. J.) on Indian States, 480
Swiney's, (Dr.) Ancient Coins 408
Swiaton, (G.) Farewell Address to, 94
Table of Boiling Points, 199
ture of Air,
ture of Air, 200 200
- of Shells 270
\longrightarrow of Meridional Lengths, 271
216
Tailor-Bird, Nest of the, 802 , 648
Taylor's Ast. Obs. Madras, 380
Thermometer, measurement of heights with, 194
Thor, Hindu parallel to, 349
Tibetan Passport, Translation of a. 201
Tickel, (Lt. J.) Description of Btrds, 597
Tides in Bombay Harbour, 247
Tides, Desiderata regarding, 151
Traill's Report on Kemann, 551
Trebeck, Grave of, 14
Triseetion Instrument, Defence of,. 486
Turpentine, Manufacture of, 71
Tytler (J.) on Arabic Extraction ofRoots.652
Vertebrata, Progressive Develop- ment of, 466
Voysey's Geologieal Reports,. . 298, 392
Uma, Legend of, 320
Unicorn Fish, Accident from, 647
Wallich's (Dr. N.) Cataloguc of In- dian Woods, 167
Warlow's Catalogue of Mammalia and Birds, 97Page.
Water-mill, Native, 359
Wise's (Dr.) Experiments on Ice, 80Woollaston's Thermometrical Baro-
194
meter, 194
Woods, Indian, Catalogues of 167
Note on, 417
Wylie's (Dr.) Meteorological Oheer- Pege.
vations 542 342
Yak, Bos Grunniens
Yak, Bos Grunniens Zoological, Indian, Catalogues of,. 377

+

Digitized by GOOgle
'x.

 xyVタgrt Ditand yyox Mgn ghi
-

[^0]: - For these the cost of prtating and paper only is charged.

[^1]: - Originally 32 pages only were givea in ench number, latterly 64.

[^2]: - I should rather think my brother means inaccessible on horseback, A. G.

[^3]: - "In the journey from the Oxus to Bokhára, the mean difference between the wet bulb and the temperature of the air was upwards of 20°, the extreme difference often 34° and 35°, and the least 10° or 11°, but in Calcutta during the same month (July) $3^{\circ} .5$ is the mean difference, and $5^{\circ} .5$ and 2° the maximumand minimam." At Benares, according to Prinsep, the difference between the wet and dey balbe is cometimes 37° in the hot season. Bokhara seems to be drier in July than Calcutte is in January :-can July be the driest month at Bokhara, when the cold season appears to be driest in other parts of the world ?' If the cold weather is drieat here in winter, the evaporation must be astonishing, which will account for the excessive degree of cold in so low a latitude as $39^{\circ} 433^{\circ}$.
 "The evaporation from a cup can be easily measured by a scale: I found it more than once amount to two inches, in 24 hours, the thermometer being from 72° to 104° in the open air ; in the shade, since entering Tarkistan, the higheat has beea 110°, and the lowest 54°, which occurred in the desert. In so arid an atmosphere you may suppose we do not complain of heat, although the thermometer is every day 97° and 98° in the house, and the more one perspires here the colder one becomes. It is owing to the hygrometrical state of the air, that we see ice made when the thernonscter is above 500°, and by increasing the aridity, ice might be made $2 \mathrm{a} 70^{\circ}$: is fact a difference of 37° is nearly that in the driest months here, we ought therefore to expect ice with the thermometer at 80°. This great aridity will acconnt for the state of our feelings, the formation of ice, preservation of meat, drying of fruits, cold, vegetation, and many other phenomena."

[^4]: - I have not been able to ascertain whether the sajji mati (native carbonate of moda) is found in this district; as far as my own observations have extended, it does not form a part of the composition of the soil. I also could not detect any alumina, though it is likely some parts may contain it.

[^5]: - An account of General Ventara's operations was communicated to Col. James Young and by him printed in the newspapers of the day : it is reprinted in the seventeenth volume of the Researches, page 600.

[^6]: - Trans. Roy. As. Soc. i. 314.

[^7]: - The following is the process given by Magendie. "Add a solution of liquid subacetate of lead to a solution of alcoholic extract of the Nux Vomica in water, until no more precipitate be thrown down; the foreign matters being thus separated, the strychnine remains in solution, with a portion of colouring matter, and sometimes an excess of acetate of lead. Separate the lead by sulphuretted hydrogen, filtrate it, and boil with magnesia, which will unite with the acetic acid, and precipitate the strychnine. Wash the precipitate in cold water, redissolve it in alcohol, to separate the excess of magnesia, and by evaporating the alcohol, the strychnine is abtained in a state of purity. If it be still not perfectly white, it must he redissolved in acetic or hydrochloric acid, and reprecipitated by means of magnesia." To prepare the alcoholic extruct, the Nux Vomica must be rasped and exhausted by repeated macerations in alcohol, which must then be evaporated; a process the tediousness of which can only be duly appreciated by those who have tried it, and which it was my object to avoid.

[^8]: * Philosophical Traneactions, vol. xxxv. p. 639.

[^9]: - The Khla-Chakra and Adi-Buddha systems are probably-the same with that of the Samanians in the north, in Transoxana, and beyond the Jaxartes, as it has been described by M. Deguignes, in bis " Histoire Générale des Huns," Lirre III. p. 223, \&c., recently criticised by M. Remusat ; since the doctrine of the Samanians is exactly the same, as I have found in the Tibetan volumes.-Besides the mystical theology and philosophy, there are in the Kala-Chakra system several works on astronomy, astrology, and prophetical stories on the rise, progress, and decline of the Muhammedan faith.-In the bstan-hgyur collection (of 225 volumes) the five first volumes contain fifty-two tracts or treatises on the Kala-Chakra, all translated from the Sanscrit; but, besides these, there are many other volumes written by Tibetan authors on the same subject. In the Asiatic Society's library, there are also some printed volumes, containing commentaries on the Kála-Chakra, by Khétup or more properly mKhas-grub, mentioned in this paper as a very celebrated writer in the fifteenth century. Should I find any interesting article in it, I shall take occasion to notice it hereafter.

[^10]: - Burmese, Pyoung; I am told the whole country from this to Mouxobo is - mider water in July, August, and September.

[^11]: - I was told that the ditch could at any tme be filled from the Kam-daw-gyoe, or great royal lake, which lies about two or three miles to the N. E.

[^12]: - I discovered on my return that I had considerably underrated the population of this part of the country.

[^13]: *This is the only village left of several very large ones, which were situated here, and were destroyed by robbers before Bundoola, who immediately preceded the present governor, was appointed to this province; they came from Lado, about 11 miles 8. E. of Moutshobe. Their chiefs, wearing gold chattahs, ransacked the country sometinaes with 2000 followers. Bundoola however cleared the country, which has remained quiet since, and travelling now is perfectly safe.

 + A large forest tree; the timber of which is used in boat-building, and the leaves in the thatching of houses where grass is scarce.
 + All the streams to the eastward fall into the Moo, those to the weotward into the Elyondwer.

[^14]: * Vide Glifaninga in Sclenct, III. 125.

[^15]: - A term of approbation in Burcuese, " well done-that is right."

[^16]: - The Kyat-pyen mountains are doubtless the Capelan mountains mentioned as the locality of the ruby, in Phillip's Mineralogy-" 60 miles from Pegwe, a city in Ceylom." Though it might well have puzzled a geographer to identify them without the clve of their mineral riches.
 + Estimating the cubit at 1 it feet, the league will be $\mathbf{1 0 , 5 0 0}$ foet, or nearly two nilies;-about an Indian koe.

[^17]: * The letter seems to have been intended for some scientific friend in Italy.
 + Probably the turmali or transparent zircon, which is sold as an inferior dia. mond in Ceylon. [Vide vol. i. page 357.]
 \ddagger The Perre d'Amato's bicke is the bisse of Mendea Pinto, and the old travellers, and the biswe or vis of Natives of India. The Burmese word is Peik-the, which is equivalent to 3 지 lbs., and to a weight on the Coast of Coromandel called vir. B.

[^18]: - Fahrenheit's thermometer is used in the following easay : a minute having beea allowed for each experiment.

[^19]: * I have strong reasons for believing that electricity has a considerable influence on the formation of ice, but I have not had sufficient opportunities of investigating this important point, which I must leave to form the subject of another commanication.

[^20]: - A mountain-torrent nearly dry, except in the rains, when it receives the drainage of the mountrins south-east of Nahon, and of the plains east of its course, nearly to the Jamana, from which and a strong fall, its floods are most violent and sudden in their effects.

[^21]: - Of this branch all I am aware of is, that in heary seasons of rain great floode pour into the canal near Barbd, said to be consequent on che destruction of the earthen dams of the Chitang.
 \dagger The grounds of this remark are, that south of the bed of the Chitang the country is merely a succescion of hills, and swells of sand, in some parts rising 200 feet, whilst to the north the sand is chiefly in detached ridges and patches; the subsoil, when it gets clear of the dritt sand, being a hard flat, coveried with low troe jungle, totally different from the sandy desert of Bhikantr.

[^22]: - Sach bricks. were all found marked thus evidensly by a revolutioa of the fingers extended with the thumb as a centre, and gradually drawn round and up to the thumb. Similar bricks of an age anterior to the Mahomedan conquest, have been excarated at Hewrob.

[^23]: - By-excavating anew from near Rair to Jatola.

[^24]: 具: these sums I do not pretend to perfect aceuracy : they are noted from recollection Phafgerin and Korban are two of those stated to have yielded a lakh of ruped a yman

[^25]: - The effects of this, supposing the Jamna to cut into the canal, may be here soticed: the present bed of the canal is above the low-water surface level of the Jemane; the fall of the Jamana is more rapid than that of the canal, the level of the latter being maintained to attain the upper surface level of the country, and the maximum rise of the Jamma would suffice to throw about 12 feet water into the canal at height of floods; this would probably cause much damage in times of heary floode, and might permanently be injarious by sweeping out the bed, and inclining the river to take this course from its lying direct in the line of current. In such case, it would break into the river again either at Kanjinú, or at Karnal, or both, and its strength of current would suffice to clear for itself such a channel as would rensedy the evils it could not fail to bring about in the meantime. The superior slope of the bed of the Jumna is likely to prevent this, and means may be devieed to lead off the strength of the current from the bank, it has this year so fiercely attacked.

[^26]: - Practice in the management of the dam, if ultimately completed according to the original design, will admit of its being regularly worked in the rains, so as to keep up a constant supply.
 \dagger The separation from and junction with the Jamasa being at poiats almool on opposite sides of the river.

[^27]: - This epidemic was not confined to the canals, but extended from Ladianal to Jaipur, as also east of the Jamna, when the Doab canal was not opened. The abstracts will show its effects, from which many places have not yet recovered.
 t The expence of clearing out the water-courses, from 100 to 200 rapees per mile, is always incurred by the cultivators, sometimes aided by a. loan from government free of interest.

[^28]: - 1.to sas manals of sugar, grain, and such heary articles would lie inside a boat,of thaee feet dapth, of suitable langth, and 7 to 8 feet beam, which might be meity londed.to dean two seat. water, so.es to pase uador tho bridgen freely at common water level.

[^29]: - Expension of wire-drawn iron by Lavoisier, 1.001235

 Smeaton, 1.001258
 Prineep, 1.093256

[^30]: * This list should have been printed with the proceedings of the same date, but the localities were not at that time known to us; they may now be found immediately by reforence to Captain Rose's Chart of the Tenaseorim Archipelago.

[^31]: - I should have been more disposed to attribute the injury which the temples of Abu have received to MA'日xúd of Ghizni, who came by Ajmír into Guzerát, in 1024, through Patam, and who was so zealous in the destruction of Hinda geds and temples, and has been rendered famous by the demolition of the one at Paten Someltik in Kattywar ; but if the inscription be true the whole of these temples, eren the oldeat of them, are of a posterior date to that conqueror's inroad.

[^32]: * It has been thought better to leave the spelling of the native mames.as in the original catalogue, since it is difficult to know in many cases bow they ought to be remdered orthoepicaly.-ED.
 \dagger Sp. the individoal specimen examined.

 5 B. The Barmese language.

[^33]: * The Gualpara specimentare not ae yot in the Society's poncescion. t Parbattea, the language of the natives of Nipal.

[^34]: - 8a-Abrug (earth's dragon) is the title of the second year of the Tibetan cycle of sixty years: it corresponds with Vibhava of the Indian and Va Dhin of the Chinem cycle. The Tibetan reckoning commences from February, 1026: as therefore Hyde's first edition was printed in 1701, and he uses the expression "mapperis ansin ax India redurx," the MSS. has been referred to the twelfth cycle, then correath which fires ite date to the year 1688.
 Colonel Warren in the Kala Sankalita (Chron. tab. xxi.) has given a fall description of the Indian system;-a catalogue of the Tibetan cycie, which is twofold, one following the Sanskrit, the other following the Chinese syatem, win be published in the Tibetan Dictionary now preparing for the prose.

[^35]: - As socn se we are in pomemion of Tibetan type, we ahall give ineertion to this valuable catalogue--

[^36]: - Vide Glizanimes, iii. sea.

[^37]: * Trans. Soc. Arts and Repository of Inventions.
 †Ed. Trans. vol. xi. p. 4 .

[^38]: *That is, they agreed to put away their old gods, and to take the new; to hare Brahmans for Gurus; and not to kill the cow : for the rest, they made and still make sufficiently lightly of the ceremonial law in whatever respects food and sexdal gratification. Their active habits and vigorous character could not brook the reatraints of the ritual law; and they had the axample of licaations archimane to warrant their neglect of it. The fow prejudices of the IKhie ace maefol rulmer than otherwise, inasmuch as they favour sobriety and cleanliness.

[^39]: * Here, as in the cases of the Brahman and Khds, and Kihatriya and Khds, there ve no marriage. The offspring of a Kades with a Magartn or Gurvingni in a
 sheir mothers, and retain only the patronymic.

[^40]: - Vide also Glsanimes in Sctence, i. 201.
 + (Amdropegon contortwin.)
 \ddagger As the temperature, at which these comparisons were made, is not mentioned, It is impossible to form accorrect scale for KAmss's hygrometer: the safent plan with be to assume that equal increments denote nearly equal sccemions of aqueons tension; 9.05 being 100 or extreme moisture, each indication may be divided by 9 to find the tensior roughly.-En.

[^41]: - Many mountain barometers have an ivory scale of correction for mean expansion of mercury and glase, which the makers have probably copied from Danimbias original scale and have not aince rectified.

[^42]: - Then 14 years of age.
 + Such is the tradition of the Bharatpur Jabs themselves. They assert their (spurious) descent from the famous or fabulous Bises Pal of Diana, regarding whose power, riches, and extent of dominion, many curious tales are still current ,among them. In the "Bijer-Pal Rash," a metrical romance or ballad (writterho In Brij Bhakha), the Hindu scholar will find a full and particular account of th

[^43]: great Hinda monarch, who is fabled to have conquered Raja Joxrsewar, the father of Piatrio Raj, the celebrated Chouhan king of Delhi, and to have raieddespotically over the whole of India. The Krrolr* Raja too, boasts his descent from Bijyi Pal, and if any faith can be placed in a "Baneaolr" or genealogical "tree," he has a fair claim to the benefits, real or imaginary, resulting therefrom. Abulpazl has a short and pithy sentence regarding the "Banimens." "And all of these tribes now carry in their hands genealogical tables for ases ck."—Gladwin's Ayeen Akbert, vol. ii. p. 399.

[^44]: - The ceremony of tying on the necklace is performed when the Olurd is selected; the Chela, or disciple, being then an infant. This is preparatory, and intended to show that a selection has been made. When the disciple has arrived at the prescribed age, the ceremony of initiation is completed by the Gtul's pronouncing the "GAr Mantra," or mystical charm in the cars of the Chella, who thereby becomes a twice-born, or regenerated man.

[^45]: - Remedia potius malorum quam mala ipsa differentes.-Tacitus.
 t The "Bhowane" or garden-palaces of Dig, built by the celebrated Jit, Su'anj Mul, may safely be compared with any of the buildings erected by the Muhammedans at Delhi or Agra. They were constructed of the stone found in the Rkpbas hills about 80 years ago. For a short account of the antiquities of Dif, see Appendix, A.

[^46]: - There is a curious passage in the Koran, illustrative of the feeling which previiled among the Pagan Arabs on the subject of female offspring : see Sals's Koran, c. 16. "And when any of them is told the news of the birth of a female, his face becometh black, and he is deeply afflicted; he bideth himself from the people, because of the ill tidings which have been told him, considering with himsolf whether he shall keep it with disgrace, or sohether he shall bury it in the dust." The feeling led, in Arabia as in India, to the crime of infanticide. It was formerty practised by many of the Rajpats and by the Jats. I wish I could persuade nar. self that it has ceased.

[^47]: * Not less extraordinary was the enthusiastic belief of the Emperor Jolian, the hero, legislator, and philonopher, in the virtue of the Eleusynian Mysteries and Grecian arts of divination. Gibson observes, with his usual felicity of expreesion, "By a strange contradiction, he disdained the salutary yoke of the Goapel, whilat be made a voluntary offering of his reason on the altars of Jupiter and Apollo." Doeline and Fall, chapter xxiii.

 With regard to Sir J. Newron's belief in the doctrines of alchemy, I observe that Sir D. Brewsten, in his lately published Life, (page 302,) states, that there is no reason to suppose that Sir I. N. did belicee in them:

 + He is lified up, because it is considered improper that he should come in contact with the vile carth during the performance of the ceremonies.

 I Nei or barber; the attendants on Rajas and Sirdars at Bharatpore are all of this caste. Natins, females of the same caste, wait upon the Rand.
 fit is the favorite colour of Kaisena; bence his aynonime Pitamase, the, " yellow-clothed" deity.

[^48]: - For an account of the sacred dwrva or dab grass, see Asiatic Researches, vol. iv. Observations on select Indian Plants, by Sir W. Jones. The following tert is there quoted: " May Durva, which rose from the waters of life, which has a hundred roots and a hundred stems, efface a hundred of my sins and prolong ny ecistence on earth for a hundred years." Mr. Hensy Consbroore quotes another text in praise of Durva, in his learned Essays, and Colonel Toddtmentions that the Rajpuits are fond of comparing themselves to this valuable grass, which thrives in almost every soil, and propagates itself for ages and ages. The comparison is not confined to Rajputs alone, it is current throughout upper India.
 \dagger I quote from memory, not having Colonel Todd's valnable work by me, the lst oulume of which 1 perused (with lesa attention than it deserved), two years ago, in Calcotta, the 2 nd voluane I have not yet seen.

[^49]: - The favorite epithet applied to Karbana Syamare.

 4 During the assault in 1804-5, our Sipahis protested that they saw the god distinctly ! "dressed in yellow garmente, and armed with his peculiar weapons the bow, mace, conch, and pipe!"
 \ddagger Previound to siting, he performs the dandanat, a salutation which consists in raising botk hande joined to the head, which is, at the same time, alightly bowed.
 \$The two principal temples at Bharatpur are those of Beriari Ji and Lacr-
 Byragts. The Mehants of these temples have each a Chanda or coss allowed

[^50]: - A yellow flag, with the figure of the monkey-general Handuman rampaat in the centre.
 + Phagwa, so called from the month Phagurn.

[^51]: - See Pidpinferox's Indian Pleata. The Onga is the Upe Maya of Samscrit.

[^52]: *" Mortifora facundia." Juvenal. Sat. x.

[^53]: - "Combien prenez-vous par mois? quatre double-pistoles, reprib-il ; c'eat le pris cournat, et je ne donne que deux legons par semaine. Quatre doublons par mois! m'ecriai-je, c'est beaucoup. Comment beaucoup? repliqua-t-il d'un air etonné ; vons donneriez bien wne pistole par mois à wn maitre de philosophie f"

[^54]: - He washes the bridegroom's feet as stated above, an unequivocal recognition of inferiority on his part-Sic passim.
 t Perhaps the term marriage is too strong for this sort of alliance. It is what we call a left-handed marriage, and yet the issue of such marriages is considered in all reapects legitimate.

[^55]: - For the satisfaction of the Sanscrit scholar I subjoin the Samscrit shlot:

[^56]: + An elegant edition of Na'la and Daxyantr, as contained in the Mchablafrets

[^57]: - Colonel Lambyox compates the height of Byderabad, above the level of the seat, to be 1800 feet.

[^58]: - See description of the logging stones in Cornwall, in the Transactions of the Geological Society.

[^59]: - Turbo cyclostoma, land-shella.

[^60]: - I regret extremely to say, that I have lost these valuable reliques, though impreasions of them remain.

[^61]: - A gold solidus of the lower empise was also found at Khoja-o-bhom, of rude fa-brication:-it is either of Marcianus, or more probably Mauricius-inscription DN MAVRC.. TIb PP AVG. On the reverse, an angel bolding the cross and globe with VICTORIA AVGGG. and below, CONOB.

[^62]: - By way of convenietce to those who have not the power of refereace rexpecting the history of Bactria, to which I may often have to allude in the disonadon of these coise, I subjoin a catalogne of ita Kings, accosining to the derthority of Scrlegri.-Jowral Asiatique, 1828;\{p. 326.

[^63]: - See translation of portions of the Salsette and Ellora inscriptions by Major Wilyond, As. Res. v. 140, which shews them all to refer by name to Sarya. Mr. A. Straling, As. Res. xv. 314, says of some similar inscriptions on the Udaya Givi hill in Orissa. "The Brahmans refer the inscription with horror and disgust to the time when the Buddhist doctrines prevailed. I cannot however divest myself of the notion that the character has some connection with the ancient Prakrit, and I think an explazation is to be looked for only from some of the learned of the Jain sect." What has become of the key to this and other ancient Sanskrit alphabets, which Wilirosd says he fortunately discovered in the possession of an ancient sage at Benares ?
 t "Ce qui me parait la circonstance la plus remarquable dans ces medailles, ce sont ces preures du culte brahmanique adopté par les rois Tartares. Ils regnaient donc certainement sur des provincee ou ce colte était etabli."-Joursal Ariatiguc; Nov. 1828.

[^64]: St.6, 7. The frontal pearle, \&e. \&c.-The Earopean reader has no need
 Hinda writings to lie under the kumbina or frontal bone of the elephant, is a mere fabulous non-entity. The confidence with which book-learned Pandits will, however, assert its reality, is as surprising as it is characteristic : though some few, who have learned a little regard for experiment as a guide to truth, are cautious enough to confine its existence to the three former ages: thus making the frontal pearl (like the horse and ox saerifice, perfect abandonment of the world, the presentation of flesh to deceased ancestors, and the levirate law), a thing too precious for the present degenerate Kali-Yuga or iron age of the world.

[^65]: " From a cry of the giant son of Diti, rovembliag the roaring of the troabled octanat the close of the Calpa, eprang the variogated amidingam (lapis hamits sonree of colours of a bright and ravishing aplendour. Not far from the declivity of Monnt Vidina, was the mine of that precious stone, but limited so particular seasons for its production, and then closed. First from the origination of that demon cry, did this mine suddenly apring in the world,

[^66]: - It is not therefore with perfect sccuracy, that the learned F. Roeen, in his Specrieme of the lig. - Veda, publiched at London in 1830, p. 6, describes udu for $u t_{4}$ and abhidu for abhit, as mere rerionimp or licences of the most anctent language. They are rather the emexations to the univermel form of this expreadive particle U.

[^67]: " How shouldst thou, \mathbf{O} bee, turning to the desire of new honey, and occupied too entirely with the lotus's sweetness, forget the mango blossom which thou hast so often kissed ?" A comparison with this text will shew that M. de Chezy's version of this, "Se pourrait-il, abeille volage, \&c." in p. 102 of his very splendid and valuable edition of the "Sacountala"-though somewhat paraphrastic, hes greatly the adrantage in point of correctness over that of Sir W. Jones-ce Sroet bee, \&c." (Works, ix. p. 464,) which is marred by the misplacing of a very significant clause. But M. de Chézy is utterly mistaken as to the metrical harmony of this exquisite stanza, which hie supposes (in p. 227 of the notes) to be in the A'rý measure of the kind called Otti, (bat Udgathd in the Pingala,)-in order to. Which he is obliged to suppose a new license, inadmissible in that metre, - and has abo, In this imagination, allowed a very faulty reading विक्षमरिछिषि for विस्सरिसेषि in the fourth line. The uniform succession of long and short syllables in these lines is sufficient to shew that they are not A'rya lines of any kind. They are of a very common metre of alternate 10 and 11 syllablea, called Apere maktram ; the distribation of which is, $\left\{\begin{array}{l}1 \text { and 3. Proceleusm. Anapest. Dijamb. } \\ 2 \text { and } 4 .\end{array}\right.$
 and 4. Proceleusm. Chorianb. Dijamb. or "whose course is through the three worlds." See Amara Cosba, II. § 3. al. 31, (p. 69. ed. Colebrooke). The question is put and answered in the Rámájana, L. 37. St. 3.

 $$
 \begin{aligned}
 & \text { शीन् पथे हेतुना बेळ घाबये चेक्पाबनी। }
 \end{aligned}
 $$

 " Why does Ganges, purifier of the worlds, flow in three courses-and by what works, O thou who knowest righteousness, is she attemied, (i.e. for what is the accompaniment of her purifying water required,) throughout the three worke? ?"

 No other topic of this remarkable triple comparison requires illustration, except that by زंखार्बताffry in the third, is meant the utmost perfection and correctness of Sasecrit apeech.

[^68]: - Some Malayalim MSS. have बारिणितो.
 + One Malabar MS. places this sloka after the next following.
 \ddagger Some Bengal MSS. have ₹ाषामिषे.
 s Some MSS. have कutcan: in the plural.

[^69]: - Vide Major Colvin's Report, p. 121. ${ }^{\text {. }}$

[^70]: - These cuilleres, or spoon-shaped ends, are mere indentations in the native mills, and the trough alluded to by Belidor for the delivery of the water at an angle of about 25° is in the native mills a square tube or shoot placed at an angle of 45°. The crapaudine and the arrangement for raising or depressing the upper stone by the transom in which it is fixed, is also practised in the native mill.

[^71]: * See Gleaninge, iii. 10.

 2 в 2

[^72]: * The boring was commenced at the bottom of an abandoned well.
 + We understand that a large supply of cast-iron tubes and boring rods was brougtt ont for Madras by the H. C. S. Buckinghamshire this eeason.-ED.

[^73]: * See on this head T. ${ }^{\text {s }}$ paper in Gleanings, iii. p. 161, 213.-Ed.

[^74]: * Printed in the Phil. Mag. Feb. 1833.
 \dagger Vol. i. p. $\mathbf{3 0 7}$.

[^75]: * Professor Barry, Lecturer at Gư's, fell a victim to the impradent parsuit of his chemical inquiries, from the explosion of some gaces in a highly condemed rates, upoe which be was experimenting.

[^76]: - The ancient Potala, or the modern Tatta, at the month of the Indua.

[^77]: - From subsequent observations, I am inclined to believe that this allurium or cilluviam was the result of a deluge of water which found its course to the sea by the present opening of the rivers-and that they have done no more than form their beds in it.

[^78]: *See Journ. As. Soc. vol. i. p. $150 \quad \dagger$ See ditto, p. 245.

[^79]: - See a paper by Dr. Vorszy in the Asiatic Researchea, vol. xr. p. 120.

[^80]: - See Journal of Science and Arts, vol. i.

[^81]: - Major Tod oa Bactrian Medale, Roy. As. Ree. L. 330. + See page 315.

[^82]: - Journ. As. Soc. I. 394.
 + The Raja Taringisi, a comparatively modern work, mentions the dinar, a Persian gold coin.
 \ddagger As. Res. V. 93.
 §See Mr. Ratinbiaw's note, page 266.
 || Major Wilpord, and many as inveterate etymologists, might have derived our English sovereign from this word, had it chanced to have been current at an earlier period than is assigned by our mint annals for its introduction, namely, Epwand IV.'s reign, A. D. 1489.

[^83]: * If so, this coin should belong to Antiocrios the Great, and not A. Theos as supposed in page 312, from his cognomen Bpiphaxes.

[^84]: - Vide Col. Tod's plate.

[^85]: - See plates III. IV. As. Res. XVII. and Mr.Wilson's remarks on the Ramatean Lers, Garada-Mudras, \&ec.

[^86]: - On the migration of the Natatores and Grallatores, as observed at Kathmandr, page 122.

[^87]: * Mr. Hodgson, in a private note, explains that, "M. Duvadceri's description refers to the Ghorál, which all our English zoologists class with the antelopes, becasee it has suborbital sinuses and cylindrical horns. The latter obvious character abould have prevented its being confounded with the Jharal, which has angulax borna."-Ed.

[^88]: - To this gentleman the author of the present notice owes his thanks for some specimens of a species of Valvata and eggs of Ampullaria; and his apologies air not haring noticed them before.

[^89]: - Brands's Journ. xx. p. 296.

[^90]: - Elements of Chemical Philosophy, p. 68.
 + This is of course the same effect; for though a liquid expanding in a jar mey not have the surface exposed to the air increased, yet it displaces more and more air, and is re-acted on by the. vessel, with precisely the same force, as if it were compreased on all sides by the atmosphere.

[^91]: - Murea y, vol. i. p. 248, System of Chemistry. Berthollet, Chem. Statics. Lambert, vol. i. p. 116, 117, and 143.
 † The seat of the repuleive force, according to most authors ; as will be prosently comsidered.

[^92]: - The reader will not, it is hoped, think that the following error is here committed of supposing that by increasing the surface of a volume of gas the compression of ite parts is increased; as for instance, that the compression of the parts of a spherical pint of gas (in which form the surface is the least possible) woold be increased by moulding the volume into any other form, as that of a long cylioder, where the surface would be greatly increased. So long as the number of perticles in a given volume is constant, the pressure and mutual re-action of the atoms will of course not vary, whatever may be the extent of surface exposed to the atmosphere or to any vessel it is contained in. But directly the number of particles in a given bulk, ceases to be constant owing to expansion, the pressure on each particle, of necessity must increase, whether it be a superficial particle contignous to the air, or inside of the vessel, or a central one receiving the pressure from the other particles and re-acting against it.

[^93]: - It is well known Mr. Dalton and others have endeavoured to explain these fects, without the assistance of an attraction. This will be discussed in a future part of this paper.
 + I have used the term effective, here and elsewhere, to denote the excess of one force above its opponent; thus, if the attraction be 4 but the repulsion 10 , the effective repulsion $=6$. In like manner, there is in some cases an "effective" ettraction.

[^94]: - Thits fact does in no degree militate against the well established and important doctrine of definite proportions in combination.

[^95]: - Supplement, Art. Cohesion.

[^96]: '*Art. Attraction. \dagger Sir H. Davy's Elements of Chem. Philosophy, p. 68.

[^97]: - Vide page 443. t Vide page 451, Head 3. \pm Vide page 443. 5 Vide page 450.

[^98]: - Encyclopadia Britannica, Supplement, Art. Cohesion. 2 N

[^99]: - Treatise on Optics, Query 18.

[^100]: - Elements of Chemistry, translated by Kere, page 72.

[^101]: - Treatise on Optics, Query 31.
 \dagger New System of Chemical Philosophy, page 98.

[^102]: - Considerable deposits, however, of saline matter are to be found on lands overflowed by the Jumna, when the rains are over; which, of course, are a recent formation : but the saline deposits, as I have noticed elsewhere, are usually above the present level of the floode.

[^103]: - The specimens are deposited in the As. Soc. Museum : but their nature bas not been ascertained. They are identical with what Franiclin named "stems of ferns." See As. Res. xviii. p. 29.-RD.

[^104]: * Nor do we find traces of any such subetances dimemiamed througt the tufiosens limestones, ts is commonly the came in voleario taf.

[^105]: - There is no known force but that of an earthquake that could produce such effects. From Dr. Spilsbuny's account of the fossil shells he found near Jabalpher, they appear to be scattered through the soll in a similar manner.

[^106]: * In small light lumps, colour brownish white ; externally anhydrous ; internally semierystalline ; fracture slightly fibrous, with a lustre resembling asbestus ; porous, containing pall anvities limed with scarcely porceptible needle-like crystals; adheres a little to the tangue. Taste acidulons saline, solable in twice its weight of distilled wator; specific gravity not ascertained, hut probably not quite double the weight of distilled vater; friable.

[^107]: * There is a dark bituminous substance used in Nepal, said to be extdod from rocks; it is called "Black Salajift." I am ignorant of its nature ; it resembles in external chameter the bituminous alum ore (called mhale) which is mid to be found in Sweden and in many coal mines in England, but there is much vegetable matter in it, and it is probably a vegetable production, notwithstanding the belief by the Nepal physicians of its mineral nature.

[^108]: * Dr. Hamiluton in his account of Nepal says, "I have collected Salajít in Behar with my own hands."

[^109]: - The demonstration of this is as follow, vide fig. 2.

 First $\angle \mathbf{C G A}=\angle \mathbf{G C M}+\angle \mathbf{C M G}$
 $=\angle \mathbf{G C M}+\angle \mathbf{C g A}-\angle g \mathbf{A M}$
 $=\angle \mathrm{GCM}+\angle \mathrm{Cg} A-\frac{1}{2} \angle \mathrm{GCM}$ (재. III. 20.)
 $=\angle C g A+\angle Z G C M$
 $\left.\begin{array}{l}\mathrm{But} \angle \mathbf{C G A}=\angle \mathrm{AFL} \\ \text { And } \angle \mathbf{C g A}=\angle \mathrm{AFL}\end{array}\right\}$ (by hypothesis)
 Therefore substituting these values in above equation

 $$
 \angle \mathrm{AFL}=\angle \mathrm{Afl}+\angle \mathrm{GCM}(\mathrm{No} . \mathrm{I})
 $$

 Again $\angle \mathrm{CfD}$ or $\mathrm{Afn}=\angle \mathrm{CF} f+\angle f \mathrm{CF}$
 $\mathrm{Or} \angle \mathrm{AFl}+\angle \mathrm{Nfl}=\angle \mathrm{AFL}+\angle \mathrm{fCF}$
 Or, by substituting the value of \angle AFL foond at (No I.)

 $$
 =\angle \overline{A f l}+\angle f C F+\angle G C M
 $$

 And subtracting $\angle \boldsymbol{A} f$ from each side of the equation

 $$
 \angle \mathrm{afl}=\angle f C \mathrm{~F}+\angle \mathrm{GCM}
 $$

[^110]: * From this equation may be derived the other properties of the curve just mentioned. For instance if x be taken equal to o, then y becomes $=\rho$ or $r=$ CH. If $s=$ r, then y also becomes $=0$ or $r \sqrt{ }{ }^{3}=\mathbf{G F}$; and lastly, if x be taken oqual to $3 r$, thon y becomes $=0$ or an imaginary quantity. The curve will therefore pase through the point G,C,H and M.

[^111]: - Zoonomia, S. xvi. 13. 3.
 + Forbes' Oriental Memoirs, i. 55.

[^112]: " See "Architecture of Birds." Lib. Entertaining Knowledge. + Fis. 3.

[^113]: - Sir H. Davy's Elements of Chemical Philowophy, p. 97.

[^114]: - © Dalton's New System of Chemical Philosophy, Part 1st, page 149.

[^115]: - Elements of Chemistry, translated by Kerr, page 56.

[^116]: - Chemical Statics, translated by Lammers, vel. i. 20.
 - Ditto, vol. i. 205.

 I System of Chemiatrya vol, i. 40.
 5 Ditto, p. 41.

[^117]: - New System of Chemical Philosophy, p. 162.

[^118]: - Dalton's New System of Chemical Philonophy, p. 162.

[^119]: * It has been already shewn under a former head, that this theory cannot arerd even a mechanical explanation of the solution of water in the atmosphere.

[^120]: tion of water, and its lessening the density of the atmosphere. The objections stated under that head still remain.

 * New System of Chemical Philosophy, p. 189.

[^121]: - Syatem of Chemistry, last Edition, vol. iii. p. 35.
 + By this expression I mean of course the gases having an effective repulsion between them.

[^122]: - System of Chemistry, rol. ii. p. 41.
 + "The solution of solids in liquids."
 I That the two forces vary in the same ratio.

[^123]: * Elements of Chemistry, (tranglated by Kere, p. 55.
 + Elemente, p. 56.
 \ddagger Elements, p. 50.

[^124]: - Manchester Memoirs, vol. v. part 2.
 + New System of Chemical Philosophy, p. 162.
 I Vide Repulsion varying in a less ratio than attraction, and also the followins law.

[^125]: - The excess of the repulsion, over the attraction ; the only force which, in a gacous fluid, admits of measurement.

[^126]: - The repulsive force and attraction operating between the atoms of the water themselves need not be mentioned : as the doctrine may be explained without tuking them into consideration.

[^127]: - As an illustration of this remark, we refer to the description of the rollers oa which the chains rest.

[^128]: - After this filling of the tube in the damp weather of June, we find the mercury for Ave months standing full two-tenths too low, confirming my remarks in a former number of the Journal. The cleaning in the dry weather of November again raised the index to the same or cren a greater amount.

[^129]: - See page 415 and p. 317.

[^130]: * See note in page 337.

[^131]: - See Ereay on the Binomial Theorem, vol. xili, of the Reccurches, po 403. The Dowan heremen Noned is aince dends

[^132]: - Not by chronometer, but by a good-going clock, which stopped daring the great shock. Its pendulum vibrated north and south. [If the clock was set by the sun, the shock must have been 51 m . earlier than in Calcutta.-Ed.]
 + Doctor Campbell's subsequent letters inform us, that there have been frequent shocks of less violence since the above, many of which (on the 4th and 18th Oct. particularly) were felt at Calcutta, Monghyr, Chittagong, Allahabad, and Jabalpúr, nearly simultaneously. On the 26th Oct. he writes, "At 10 h .45 m . A. M. a sharp shock of the dangerous or undulating kind occurred. The embasay has returned from China, and I am informed that the great shock was not felt at Lassa, so that it would appear to have been confined to India within the Himalaya.' - Ed.

[^133]: －One woman became Sattl at this village，her husband having been killed．

[^134]: - The Jyotishis say that the planets Jupiter and Saturn were at the occurrence of this present one in the same situation as when the above destructive one happened. From this greater mischief was for many days after the 26th hourly expected, and many lucky moments were fixed upon by the said astrologers for the eatartrophe; but all fortunately have come to nought, and although slight shocks continged to recur until about the 15 th instant, no addition has been made to the erects of the one great paroxysm of the 26th.

[^135]: - The mames of such birds, as have never come under my notice before, and are socesaarily of my own coining, I have distinguished by the addition ol a T.

[^136]: - I have been credibly informed of this, by several who witneased the animats at a diatrince, and afterwards examined their foot-marks (ther aurmiges being cortop berated by the natives of the country.)

[^137]: - Part of the opposite jaw has been since received, and has been added to the drawing. (P1. XX. Pig. 1.) They are both inverted in the engraving.

[^138]: - Diametor of the bose about the middle and its amallest oylimder moarly ciax meloce

[^139]: * The same peculiarity is observable, more or less, in all the concrete oils : is is probably owing to their bad conducting power.-ED.

[^140]: - In the plate this bas been called Syneg-kyong by mistake.-Ed.

 3 н 2

[^141]: *This atriking symptom appears to be mnnoticed in our Medical Publications.

[^142]: IV.-Abstract of a Meteorological Journal, kept at Kotgarh, (Lat. 31° $18^{\prime} 45^{\prime \prime}$ N. Long. $7^{\circ} 27^{\prime} 49^{\prime \prime}$ E.) Subathú, and the intermediate places in the Himalaya mountains, for 1819-20. By Captain Patrick Gerard, 9th Regt. B. N. I.

[^143]: * During the rainy months, the clonds, after rising, forming, and collecting, escend to a certain altitude, and generally remain stationary, and frequently d ay after day aboat the same time come down again in rain.

[^144]: - See Gleaninges in Science, i. 23.-Account of fossil elephant bones found in the river near Calpt. As no further notice was taken, at the time, of Dr. Duncan's discorery, I take this opportanity of pnblishing the extract from Mr. J. Lescie's letter which brought the subject to the notice of the Physical Clinss of the Asiatic Society.
 " I had the pleasure of sending you on the 6 th, two portions of the fossil bones of an elephant, for which I am indebted to my friend Dr. Doncan at Calpi; the following is an extract from his letter which accompanied them : 'The spot on which these remains were found is nearly three miles up the river on the opposite side to Calpi ; at the time of visiting them there was not a long bone whole; proba. blya tooth might have been procured, but certainly not now, the remains being scattered by the natives who accompanied us, in all directions. I however send you what I preserved, part of a loag bone (the femur) and a portion of a tusk, the lamellated structure of which is very distinct. The remains layabout $\mathbf{4 0}$ yards from the edge of the water, then very low, but which during the rains must evidently overflow the spot to an equal or greater extent. They appeared but superficially imbedded in the slightly coherent earthy stratum, which has been deposited by the waters on a bottom of kankar, of which the bed and banks of the river were here composed.' "

[^145]: * The composition of the flag kankar analysed by me was as follows: Carbonate of lime, 42.2
 Fine aand, 57.8

[^146]: - Both of these waters were found to be nearly pure, their specific gravity being sensibly the same as that of distilled water. On applying the proper testa, the only salt discovered in the water from Nawf was carbonate of lime; that from Arroel contained the same, with a very slight admixture of muriate of coda. The slight solution of carbonate of lime may have been rather derived from the kankar, than have aided in producing it.-Ed.

[^147]: - Annales de Chimic, Ferrier, 1833.

[^148]: * The constant occurrence of fints in chalk is suficient to outweigh this objection. -ED.

[^149]: - The annexed topographical sketch (Plate XXVI), which I am eambled to furaish through the kindness of Capt. Macdonald, of the trigonometrical survey, will convey a better idea of the locale of the two sites than any written deecription.

[^150]: IX.-Proceedings of the Asiatic Society.

 Wednesday Evening, the 26th December, 1833.
 Captain W. N. Forbes, Engineers, in the Chair.
 The Proceedings of the last Meeting were read.-G. A. Bushiby, Eeq. proposed at the last Meeting, was elected a Member.
 A. Hanilion, M. D. Surgeon of H. M. 41st Regiment of Foot, at Moulmein, was proposed as a Member by Mr. Twiniva, seconded by Mr. Pringer.
 Mesers. Mackenzie, J. S. Stoppord, and Mr. A. Beattie, proposed by Mr. Bageram, beconded by Dr. Tytler.

 A letter was read from M. J. J. Marchi, Ancien Directeur de l'Imprimerie Royale, Membre de la Commission d'Egypte, \&c. requeating to know the result of his application of the 14th July, 1830, and presenting copies of his Translations from the Arabic.

 Mr. Marcel was elected an Honorary Member on the 4th January, 1838, but the announcement had unfortunately miscarried.
 A letter from G. A. Bushby, Eeq. Officiating Secretary to Government, General Department, intimating the resolution of the Right Hon'ble the Governor General in Council, that the privilege of franking accorded to

[^151]: - Vide Ferguson's Astronomy, of 1790, p. 88.

[^152]: - Vide Ferguson's Astronomy, of 1790, p. 88.

